Abteilung Aquatische Ökologie

Aquatische Ökologie

Die Abteilung Aquatische Ökologie der Eawag besteht aus elf Forschungsgruppen und umfasst eine Vielzahl von verschiedenen Disziplinen der Ökologie und Evolutionsbiologie, wobei die gesamte Bandbreite vom individuellen Level über Vergesellschaftungen bis hin zu Ökosystemen abgedeckt wird. Erfahren Sie mehr

News

Ladevorgang fehlgeschlagen

09.07.2015

Elisabeth Salhi und Urs von Gunten von der Abteilung Wasserressourcen und Trinkwasser wurden am 1. Juli in Barcelona mit dem Harvey M. Rosen Memorial Award für ihre Publikation «Process Control for Ozonation Systems: A Novel Real-Time Approach» in der Fachzeitschrift Ozone: Science & Engineering ausgezeichnet. Weiterlesen

Publikationen

Zur Bibliothek

Forschungsprojekte

The impact of cyanobacterial blooms triggered by nutrient pollution on aquatic environments in the context of climate change. A Romanian-Swiss collaboration.
Individual level diversity in traits and small-scale spatial and temporal heterogeneity are common features of aquatic microbial environments, but they are the hardest to measure and understand drivers of biodiversity changes and plankton productivity. We are developing innovative approaches to phytoplankton and lake-ecosystem monitoring and integrating data with community and ecosystem theory. The long-term goal is a correct understanding of plankton-driven ecosystem processes with the aim of contributing to a sustainable management of water resources, the biodiversity that they harbour and the services that they provide.
Multiple human-induced stressors in the form of chemical pollutants, habitat transformation and climate change are affecting the structure, functioning and adaptive capacity of natural populations and communities. Interaction of multiple stressors occurs over a nested set of adaptive systems that span from cells to food-webs, and resilience is mediated by physiological, ecological and evolutionary responses at different spatial and temporal scales. Our goal is to understand how environmentally relevant exposure scenarios to water-borne micropollutants affect these nested responses within plankton communities, interfere with the processes that maintain biodiversity and functioning of natural systems, impair the ability of communities to adapt to environmental gradients or additional stressors. Key innovative aspects of our approach include the use of environmentally relevant scenarios and exposure levels, the targeting of multiple endpoints at increasing levels of biological complexity, and the use of data acquired at the individual level.