Department Surface Waters - Research and Management

Lake Kivu

A fascinating ecosystem and a source of energy

Lake Kivu is situated in East Central Africa and lies on the border of its riparian countries, the Democratic Republic of the Congo and Rwanda. The Lake's surface covers 2370 km2 and its volume amounts to 560 km3 with a maximum depth of 485 m. Its surrounding area offers home to about 2 million people.

Lake Kivu is considered to be an amazing and unique aquatic system in several respects. Not only is its water column strongly density stratified, the lake water also contains an estimated amount of 60 km3 of methane and 300 km3 of carbon dioxide. The extraordinarily high concentrations of these gases pose a severe risk to the riparian population in the event of uncontrolled degassing. However, the dissolved methane is also of economic interest since it is worth more than 20 billion dollars.

The involvement of Eawag in research on Lake Kivu has been initiated by the eruption of the volcano Nyiragongo in 2002. Since then, we have conducted several research and consulting projects on Lake Kivu, which are summarized below. The research carried out concerns the unique ecosystem as well as the methane extraction. A summary of the knowledge on the physics, geochemistry and biology of Lake Kivu was published in 2012 in the book Lake Kivu - Limnology and biogeochemistry of a tropical great lake. Further below, we include a detailed list of publications which offer insight into specific aspects of this fascinating lake.

Current Projects

Double diffusion

The accumulation of huge amounts of methane and carbon dioxide in Lake Kivu is only possible because density increases strongly with depth below ~60 m. Thus the seasonal convective mixing which happens in most other lakes is inhibited. Upward transport occurs through slow upwelling (< 1 m per year) caused by sub-aquatic inflows, and in part by “double-diffusion”. Investigating upward transport is important for a general understanding of Lake Kivu and in particular for a sustainable extraction of the methane.

Double-diffusion occurs because both temperature and salinity (in Lake Kivu also dissolved gases) are increasing with depth. In regions where the stabilizing gradient of salinity is two to eight times stronger than the destabilizing gradient of temperature, mixed layers (m-scale) form, which are separated by stable interfaces (dm-scale). Investigating the vertical fluxes of temperature, salts and dissolved gases through such double-diffusive staircases is the goal of this project.

Three field campaigns in 2010 (see movie for impressions), 2011 and 2015 have so far been conducted and the main results are:

  1. We showed that the most common parameterization for vertical fluxes through double-diffusive systems works well for the step sizes observed in Lake Kivu, but underestimates the heat flux in systems with larger steps (like in parts of the Arctic Ocean) by up to a factor of four.

  2. We conducted direct numerical simulations of double-diffusive interfaces under Lake Kivu conditions and showed that the interface structure is well reproduced by the simulations and that the heat flux through double-diffusive interfaces is close to molecular.

  3. The results above rely on measuring large gradients within the temperature and salinity interfaces. Even though microstructure sensors are extremely fast (ms) they are not fast enough to accurately resolve double-diffusive interfaces. We therefore developed an in-situ method to improve the current knowledge of the sensor responses.

Currently we are working on linking double-diffusion to the large-scale dynamics of a water body by studying the horizontal coherence of the layering in various systems including Lake Kivu, Powell Lake (Canada) and the Arctic Ocean.

Publications

Scheifele, B.; Pawlowicz, R.; Sommer, T.; Wüest, A. (2014) Double diffusion in saline Powell Lake, British Columbia, Journal of Physical Oceanography, 44(11), 2893-2908, doi:10.1175/JPO-D-14-0070.1, Institutional Repository
Sommer, T.; Carpenter, J. R.; Wüest, A. (2014) Double-diffusive interfaces in Lake Kivu reproduced by direct numerical simulations, Geophysical Research Letters, 41(14), 5114-5121, doi:10.1002/2014GL060716, Institutional Repository
Sommer, T.; Carpenter, J. R.; Schmid, M.; Lueck, R. G.; Schurter, M.; Wüest, A. (2013) Interface structure and flux laws in a natural double-diffusive layering, Journal of Geophysical Research C: Oceans, 118(11), 6092-6106, doi:10.1002/2013JC009166, Institutional Repository
Sommer, T.; Carpenter, J. R.; Schmid, M.; Lueck, R. G.; Wüest, A. (2013) Revisiting microstructure sensor responses with implications for double-diffusive fluxes, Journal of Atmospheric and Oceanic Technology, 30(8), 1907-1923, doi:10.1175/JTECH-D-12-00272.1, Institutional Repository
Carpenter, J. R.; Sommer, T.; Wüest, A. (2012) Simulations of a double-diffusive interface in the diffusive convection regime, Journal of Fluid Mechanics, 711, 411-436, doi:10.1017/jfm.2012.399, Institutional Repository
Carpenter, J. R.; Sommer, T.; Wüest, A. (2012) Stability of a double-diffusive interface in the diffusive convection regime, Journal of Physical Oceanography, 42(5), 840-854, doi:10.1175/JPO-D-11-0118.1, Institutional Repository
Wüest, A.; Sommer, T.; Schmid, M.; Carpenter, J. R. (2012) Diffusive-type of double diffusion in lakes – a review, In: Rodi, W.; Uhlmann, M. (Eds.), Environmental Fluid Mechanics: Memorial Volume in Honour of Prof. Gerhard H. Jirka, 271-284, Institutional Repository
Schmid, M.; Busbridge, M.; Wüest, A. (2010) Double-diffusive convection in Lake Kivu, Limnology and Oceanography, 51(1), 225-238, doi:10.4319/lo.2010.55.1.0225, Institutional Repository
Schmid, M.; Halbwachs, M.; Wehrli, B.; Wüest, A. (2005) Weak mixing in Lake Kivu: new insights indicate increasing risk of uncontrolled gas eruption, Geochemistry, Geophysics, Geosystems, 6(7), Q07009 (11 pp.), doi:10.1029/2004GC000892, Institutional Repository

Managing Lake Kivu: moving from a steady-state to a dynamic modelling approach

This project aims at developing a new transient model for Lake Kivu that considers the dynamic properties of the lake. The model will be used to

  • derive a range of possible scenarios for the history of the lake in the last 1000 years that has led to the present conditions
  • estimate the most probable development of the lake in the future for selected CH4 extraction scenarios under a range of different climatic conditions
  • assess the contributions of the CH4 extraction, the hydrological processes and climatic conditions on the uncertainty of these projections.

The development of the new model relies on novel measurement and modelling techniques that have emerged in the last decade and will be further advanced during this project, as well as on the availability of observational data from preceding research projects on Lake Kivu. For the purpose of quantifying the transport and mixing processes in the lake based on geochemical data, we will couple our successful 1-dimensional physical lake model Simstrat via the Framework for Aquatic Biogeochemical Models (FABM) to the Aquatic EcoDynamics Modelling Library AED, of the University of Western Australia.


The already available data from our previous projects will be complemented with vertical profiles of the concentrations of dissolved gases (noble gases, CH4, carbon dioxide) in the lake. For this purpose, we will adapt the portable field mass-spectrometer which was recently developed by the Environmental Isotopes research group at Eawag for vertical profiling in deep lakes. The newly acquired gas measurements will enable us to better constrain the vertical transport processes between the deep water and the near-surface water and to quantitatively assess the influence of the subaquatic groundwater discharge on the lake-internal processes.

Terminated Project

Lake sediments and sub-aquatic sources

In the project “Lake Kivu: Learning from the past for managing its future”,  we investigated the following topics:

  • The lake floor of the northern part of the basin was mapped using a side scan sonar. The resulting map showed old shorelines, which indicated that the lake surface was at least 300 m below its present level about 15’000 years ago. A large number of volcanic structures were observed on the lake floor, which had been formed during or after the lake level rise.
  • An analysis of sediment cores indicated a cyclic behaviour of the lake, where long periods of permanent stable stratification were occasionally interrupted by mixing events that were probably caused by volcanic activity which could possibly also have caused gas eruptions from the lake.
  • Several subaquatic groundwater sources feeding the lake were located and the inflowing waters were characterized by sampling at the inflow locations. In agreement with previous predictions from lake modelling, two different types of groundwater sources were found: cool and fresh sources, which are probably fed by rainwater infiltrating in the volcanic ground, and warm and salty sources, which are fed by one or several hydrothermal systems.
  • The water balance of the lake was assessed, using a simple modelling approach. The model showed that the observed lake level variations could be largely explained by variations in precipitation. The results also highlighted the lack of recent meteorological and hydrological data from the region.

This project was financed by the Swiss National Science Foundation and the Swiss Agency for Development and Cooperation. The project was done in collaboration with the Institut Supérieur de Bukavu (DR Congo) and the Kigali Institute of Science and Technology (now University of Rwanda). Besides the scientific aims, it also aimed at improving the local research capacities in both countries, the Democratic Republic of the Congo and Rwanda.

Publications

Ross, K. A.; Gashugi, E.; Gafasi, A.; Wüest, A.; Schmid, M. (2015) Characterisation of the subaquatic groundwater discharge that maintains the permanent stratification within Lake Kivu; East Africa, PLoS One, 10(3), e0121217 (21 pp.), doi:10.1371/journal.pone.0121217, Institutional Repository
Ross, K. A.; Smets, B.; De Batist, M.; Hilbe, M.; Schmid, M.; Anselmetti, F. S. (2014) Lake-level rise in the late Pleistocene and active subaquatic volcanism since the Holocene in Lake Kivu, East African Rift, Geomorphology, 221, 274-285, doi:10.1016/j.geomorph.2014.05.010, Institutional Repository
Muvundja, F. A.; Wüest, A.; Isumbisho, M.; Kaningini, M. B.; Pasche, N.; Rinta, P.; Schmid, M. (2014) Modelling Lake Kivu water level variations over the last seven decades, Limnologica, 47, 21-33, doi:10.1016/j.limno.2014.02.003, Institutional Repository
Bhattarai, S.; Ross, K. A.; Schmid, M.; Anselmetti, F. S.; Bürgmann, H. (2012) Local conditions structure unique archaeal communities in the anoxic sediments of meromictic Lake Kivu, Microbial Ecology, 64(2), 291-310, doi:10.1007/s00248-012-0034-x, Institutional Repository

Nutrient cycling and methane production

This project examined the cycles of the main nutrients phosphorus, nitrogen, and silica in Lake Kivu. In particular, the external nutrient sources, their internal fluxes and the export to the sediment were quantified. The study showed that the internal recycling is by far the most important source of the limiting nutrients nitrogen and phosphorus for the biological production in the surface layer of the lake.

Furthermore, the production and consumption of methane in the lake was examined. A previous study had proposed that methane concentrations in the lake may have increased by up to 15% within only 30 years. The present project yielded further indications for increasing methane concentrations. However, it also showed that the 15% increase within 30 years was at the upper end of what could have been supported by the carbon cycling within the lake. An increased upward flux of nutrients due to increased subaquatic groundwater discharge into the lake was estimated to be a possible cause for the increased methane production.

This project was done in collaboration with the Institut Supérieur de Bukavu (DR Congo) and the National University of Rwanda. It was financed by the Swiss National Science Foundation and the Swiss Agency for Development and Cooperation. Besides the scientific research, it also supported the build-up of research capacities in Rwanda and Congo and provided a continuous scientific exchange. This was an important base for developing the present monitoring of the lake during methane extraction activities by the Lake Kivu Monitoring Program.

Publications

Muvundja, F. A.; Wüest, A.; Isumbisho, M.; Kaningini, M. B.; Pasche, N.; Rinta, P.; Schmid, M. (2014) Modelling Lake Kivu water level variations over the last seven decades, Limnologica, 47, 21-33, doi:10.1016/j.limno.2014.02.003, Institutional Repository
Pasche, N.; Schmid, M.; Vazquez, F.; Schubert, C. J.; Wüest, A.; Kessler, J. D.; Pack, M. A.; Reeburgh, W. S.; Bürgmann, H. (2011) Methane sources and sinks in Lake Kivu, Journal of Geophysical Research, 116, 1-16, doi:10.1029/2011JG001690, Institutional Repository
Pasche, N.; Alunga, G.; Mills, K.; Muvundja, F.; Ryves, D. B.; Schurter, M.; Wehrli, B.; Schmid, M. (2010) Abrupt onset of carbonate deposition in Lake Kivu during the 1960s: response to recent environmental changes, Journal of Paleolimnology, 44(4), 931-946, doi:10.1007/s10933-010-9465-x, Institutional Repository
Pasche, N.; Dinkel, C.; Müller, B.; Schmid, M.; Wüest, A.; Wehrli, B. (2009) Physical and biogeochemical limits to internal nutrient loading of meromictic Lake Kivu, Limnology and Oceanography, 54(6), 1863-1873, doi:10.4319/lo.2009.54.6.1863, Institutional Repository
Muvundja, F. A.; Pasche, N.; Bugenyi, F. W. B.; Isumbisho, M.; Müller, B.; Namugize, J.-N.; Rinta, P.; Schmid, M.; Stierli, R.; Wüest, A. (2009) Balancing nutrient inputs to Lake Kivu, Journal of Great Lakes Research, 35(3), 406-418, doi:10.1016/j.jglr.2009.06.002, Institutional Repository

Methane Harvesting

Management for the safe extraction of methane from Lake Kivu

The Democratic Republic of the Congo and Rwanda decided to reduce the risk of a sudden eruption of the gases dissolved in Lake Kivu. This is intended to be done in a safe, environmentally sustainable, and economically beneficial way. In total, the dissolved methane in Lake Kivu is worth an estimated amount of 20 billion dollars and should help to reduce the dependency on imported energy resources and wood fuel. A group of experts, including Eawag representatives, has developed management prescriptions for the safe extraction of methane from Lake Kivu.

A first pilot plant, Kibuye Power 1 (KP1) has started extracting methane from the lake in January 2009. A larger plant with an installed capacity of 25 MW is currently constructed by KivuWatt/ContourGlobal and is expected to start operation in 2015. Several further projects for methane extraction are under development in both countries.

In Rwanda, the Lake Kivu Monitoring Program was established in 2008. It is responsible for monitoring the methane to avoid any impacts on the lake and on the safety of the riparian population. Since 2015, the LKMP is supported by an international expert advisory group with the participation of Eawag representatives. An important next step would be the build-up of a binational authority involving both Rwanda and the DR Congo for the joint management of methane extraction and lake monitoring.

Documents to download:

  • Modelling the reinjection of deep-water after methane extraction in Lake Kivu, Report, December 2009, A. Wüest, L. Jarc, M. Schmid [pdf, 2.52MB]
  • Management prescriptions for the development of Lake Kivu Gas Resources Expert Working Group, June 2009 [pdf, 675KB]

Publications

Wüest, A.; Jarc, L.; Bürgmann, H.; Pasche, N.; Schmid, M. (2012) Methane formation and future extraction in Lake Kivu, In: Descy, J. P.; Darchambeau, F.; Schmid, M. (Eds.), Lake Kivu: Limnology and biogeochemistry of a tropical great lake, 165-180, doi:10.1007/978-94-007-4243-7_10, Institutional Repository
Schmid, M.; Halbwachs, M.; Wehrli, B.; Wüest, A. (2005) Weak mixing in Lake Kivu: new insights indicate increasing risk of uncontrolled gas eruption, Geochemistry, Geophysics, Geosystems, 6(7), Q07009 (11 pp.), doi:10.1029/2004GC000892, Institutional Repository
Schmid, M.; Tietze, K.; Halbwachs, M.; Lorke, A.; McGinnis, D.; Wüest, A. (2003) How hazardous is the gas accumulation in Lake Kivu? Arguments for a risk assessment in light of the Nyiragongo Volcano eruption of 2002, Acta Vulcanologica, 14(1-2), 115-122, doi:10.1400/19084, Institutional Repository

Publications

Lake Kivu has aroused the interest of various scientific fields and therefore the publications concerning this East-African lake are similarly diverse. Thus, only a selected list of literature is provided here.

Lake Kivu catchment: Hydrology, geology, volcanic activity

  • Bergonzini, L. (1998), Bilans hydriques de lacs (Kivu, Tanganyika, Rukwa et Nyassa) du rift est-africain, 183 pp., Département de géologie et de minéralogie musée royal de l'afrique centrale, Tervuren.
  • Bluth G.J.S., Carn S.A. (2008) Exceptional sulfur degassing from Nyamuragira volcano, 1979–2005. International Journal of Remote Sensing, Vol. 29, No. 22, 20 November 2008, 6667–6685, doi: 10.1080/01431160802168434
  • Bultot, F. (1954), Saisons et périodes sèches et pluvieuses au Congo Belge et au Ruanda-Urundi, 70 pp., I.N.E.A.C., Bruxelles.
  • Bultot, F. (1971), Atlas climatique du bassin congolais. 4 parties, I.N.E.A.C., Bruxelles.
  • Bureau Climatologique (Bruxelles) (1960), Bulletin climatologique annuel du Congo et du Ruanda-Urundi, I.N.E.A.C., Bruxelles.
  • D'Oreye N., Gonzáles P.J., Shuler A., Oth A., Bagalwa L., Ekström G., Kavotha D., Kervyn F., Lucas C., Lukaya F., Osodundu E., Wauthier C., Fernándes J. (2011)
    Source parameters of the 2008 Bukavu-Cyangugu earthquake estimated from InSAR and teleseismic data. Geophys. J. Int. (2011) 184, 934–948, doi:10.1111/j.1365-246X.2010.04899.x
  • Durieux, J. (2004), Nyiragongo: The January 10th 1977 eruption, Acta Vulcanologica, 14/15, 145-148.
  • Ilunga L. (1991) Morphologie, volcanisme et sédimentation dans le rift du Sud-Kivu. Bulletin de la Société géographique de Liège, 27, 1991, 209-228,
  • Komorowski, J. C., et al. (2004), The January 2002 flank eruption of Nyiragongo volcano (Democratic Republic of Congo): Chronology, evidence for a tectonic rift trigger, and impact of lava flows on the City of Goma, Acta Vulcanologica, 14/15, 27-62.
  • Martineau, P. (2003), La route commerciale du coltan Congolais: Une enquête, 41 pp, Faculté de Science Politique et de Droit, Montréal.
  • Moeyersons, J., et al. (2004), A geomorphological assessment of landslide origin at Bukavu, Democratic Republic of the Congo, Engineering Geology, 72, 73-87.
  • Muvundja F.A., Wüest A., Isumbishoa M., Kaninginia M.B., Pasche N., Rinta P., Schmid M. (2014) Modelling Lake Kivu water level variations over the last seven decades. Limnologica 47 (2014) 21–33, http://dx.doi.org/10.1016/j.limno.2014.02.003,
  • Muvundja F.A., Pasche N., Bugenyi F.W.B., Isumbisho M., Müller B., Namugize J.-N., Rinta P., Schmid M., Stierli R., Wüest A. (2009) Balancing nutrient inputs to Lake Kivu. Journal of Great Lakes Research 35 (2009) 406–418, doi:10.1016/j.jglr.2009.06.002
  • Peeters, L. (1957), Contribution à l'Étude de la Genèse du Lac Kivu., Bull. Soc. Belg., Études Géogr., XXVI, 155-168.
  • Rinta P. (2009), Modelling nitrogen and phosphorus inputs to Lake Kivu, Central
    Africa. MSc thesis, 95 p.
  • Tassi, F., et al. (2009), Water and gas chemistry at Lake Kivu (DRC): Geochemical evidence of vertical and horizontal heterogeneities in a multibasin structure, Geochemistry Geophysics Geosystems, 10.
  • Tedesco, D. (2004), 1995 Nyiragongo and Nyamulagira activity in the Virunga National Park: A volcanic crisis, Acta Vulcanologica, 14/15, 149-156.
  • Tedesco, D., et al. (2007), Cooperation on Congo volcanic and environmental risks, Eos, Transactions, American Geophysical Union, 88, 177-181.
  • Tedesco, D., et al. (2002), Niyaragongo. Report of field work; MODIS imagery from January 2002 eruption Bulletin of the Global Volcanism Network, 27 no. 3.
  • Tedesco, D., et al. (2007), January 2002 volcano-tectonic eruption of Nyiragongo volcano, Democratic Republic of Congo, Journal of Geophysical Research-Solid Earth, 112.
  • Tuttle, M. L., et al. (1990), Natural hazards associated with Lake Kivu and adjoining areas of the Birunga volcanic field, Rwanda and Zaire, Central Africa, Open File Report, 47 pp, USGS.
  • Wauthier, C., Cayol V., Kervyn F., d’Oreye N. (2012), Magma sources involved in the 2002 Nyiragongo eruption, as inferred from an InSAR analysis, Journal of Geophysical Research, 117, B05411, doi:10.1029/2011JB008257.
  • Wong, H. K., and Vonherze.Rp (1974), Geophysical Study of Lake Kivu, East-Africa, Geophysical Journal of the Royal Astronomical Society, 37, 371-389.

Lake Kivu ecology

  • Beadle, L. C. (1981), The Inland waters of tropical Africa an introduction to tropical limnology, 2 ed., X, 475 pp., Longman, London New York.
  • Bootsma, H. A., and R. E. Hecky (1993), Conservation of the African Great-Lakes - a Limnological Perspective, Conservation Biology, 7, 644-656.
  • Bootsma, H. A., and R. E. Hecky (2003), A comparative introduction to the biology and limnology of the African Great Lakes, Journal of Great Lakes Research, 29, 3-18.
  • Darchambeau F., Sarmento H., Descy J.-P. (2014) Primary production in a tropical large lake: The role of phytoplankton composition. Science of the Total Environment 473–474 (2014) 178–188, dx.doi.org/10.1016/j.scitotenv.2013.12.036
  • De Iongh, H. H., et al. (1983), Feeding habits of the clupeid Limnothrissa miodon (Boulenger), in Lake Kivu, Hydrobiologia, 102, 113-122.
  • Descy, J. P., and Y. Fourniret (1991), Quelques données récentes sur la production planctonique du lac Kivu (Rwanda), in Hommage à F. A. FOREL. Proceedings of the Third CILEF, edited by P. Vernet, pp. 147-149, Morges.
  • Dumont, H. J. (1986), The Tanganyika Sardine in Lake Kivu - Another Ecodisaster for Africa, Environmental Conservation, 13, 143-148.
  • Frank, T. (2008), Chlorophyll-a-Kartierung des Kivusees (Ruanda, Kongo) mit Fernerkundungsdaten, Diploma thesis, 79 pp, Universität Zürich, Zürich.
  • Froese, R., and D. Pauly (2008), Fishbase, www.fishbase.org.
  • Guillard J., et al. (2012), Is the fishery of the introduced Tanganyika sardine (Limnothrissa miodon) in Lake Kivu (East Africa) sustainable?, Journal of Great Lakes Research 38 (2012), 524–533, doi:10.1016/j.jglr.2012.05.004
  • Hecky, R. E., and J. Kling (1987), Phytoplankton ecology of the great lakes in the rift valleys of Central Africa, Archive für Hydrobiologie. Beihefte: Ergebnisse der Limnologie, 25, 197-228.
  • Isumbisho, M., et al. (2004), Seasonal and diel variations in diet of the young stages of the fish Limnothrissa miodon in Lake Kivu, Eastern Africa, Journal of Tropical Ecology, 20, 73-83.
  • Isumbisho, M., et al. (2006), Zooplankton of Lake Kivu, East Africa, half a century after the Tanganyika sardine introduction, Journal of Plankton Research, 28, 971-989.
  • Kaningini, M. (1995), Étude de la croissance, de la reproduction et de l'exploitation de Limnothrissa Miodon au lac Kivu, bassin de Bukavu (Zaïre). Presses Universitaires de Namur, Namur.
  • Kaningini, M., et al. (2003), Étude du zooplancton du lac Kivu: composition, variations d'abondance et distribution, Bull. Séanc. Acac. R. Sci. Outre-Mer, 49, 145-160.
  • Kilham, P., and S. S. Kilham (1990), Endless Summer - Internal Loading Processes Dominate Nutrient Cycling in Tropical Lakes, Freshwater Biology, 23, 379-389.
  • Kiss, R. (1959), Analyse quantitative du zooplancton du lac Kivu, Fol. Scient. Afr. Centr., 5, 78-80.
  • Kneubühler M., Frank T., Kellenberger T.W., Pasche N., Schmid M. (2007), Mapping chlorophyll-a in Lake Kivu with remote sensing methods. Proc. ‘Envisat Symposium 2007’, Montreux, Switzerland
  • Marlier, G. (1954), Recherches hydrobiologiques dans les rivières du Congo oriental - II. Etude écologique, Hydrobiologia, 6, 225-264.
  • Marshall, B. E. (1991), Seasonal and annual variations in the abunda
    nce of the clupeid Limnothrissa miodon in Lake Kivu, J. Fish Biol., 39, 641-648.
  • Masilya, M. P., Darchambeau, F., Isumbisho, M., and Descy, J.-P. (2011), Diet overlap between the newly introduced Lamprichthys tanganicanus and the Tanganyika sardine in Lake Kivu, Eastern Africa. Hydrobiologia, 1-12., doi:10.1007/s10750-011-0797-y
  • Muderhwa N., Matabaro L. (2010), The introduction of the endemic fish species, Lamprichthys Tanganicanus (Poeciliidae), from Lake Tanganyika into Lake Kivu: Possible causes and effects. Aquatic Ecosystem Health & Management, 13(2):203–213, 2010. doi:10.1080/14634981003800733
  • Plasencia A., Gich F., Fillol M., Borrego C.M. (2014) Phylogenetic characterization and quantification of ammonia-oxidizing archaea and bacteria from Lake Kivu in a long-term microcosm incubation. International Microbiology (2013) 16:177-189
    doi:10.2436/20.1501.01.192
  • Reyntjens, D. (1982), Bijdrage tot limnologie van het Kivu-meer. Werk van landbouwheending Ingenieur, 89 pp, Rijksuniversiteit Gent, Gent.
  • Roest, C. F. (1999), Introduction of a pelagic fish into a large natural Lake: Lake Kivu, Central Africa, in Fish and Fisheries of Lakes and Reservoirs in Southeast Asia and Africa, edited by W. L. T. van Densen and M. J. Morris, pp. 327-338, Westbury Publishing, Otley.
  • Sarmento, H. (2006), Écologie du phytoplancton du lac Kivu (Afrique de l'Est), Dissertation thesis, 184 pp, FUNDP, Namur.
  • Sarmento, H., et al. (2006), Phytoplankton ecology of Lake Kivu (eastern Africa), Journal of Plankton Research, 28, 815-829.
  • Sarmento, H., et al. (2007), Species diversity of pelagic algae in Lake Kivu (East Africa), Cryptogamie Algologie, 28, 245-269.
  • Sarmento, H., et al. (2008), Abundance and distribution of picoplankton in tropical, oligotrophic Lake Kivu, eastern Africa, Freshwater Biology, 53, 756-771.
  • Sarmento H., Isumbisho M., Stenuite S., Darchambeau F., Leporcq B., Descy J.-P. (2009) Phytoplankton ecology of Lake Kivu (eastern Africa): biomass, production and elemental ratios. Verh. Internat. Verein. Limnol. 2009, Vol. 30, Part 5, p. 709–713
  • Snoeks J., De Vos L., Thys van den Audenaerde D. (1997) The ichthyogeography of Lake Kivu. South African Journal of Science, Vol. 93, 1997, 579 - 584
  • Spliethoff, P. C., and H. H. De Iongh (1981), Resume d'un programme d'echantillonnage biologique et limnologique dans le Lac Kivu, janvier-decembre 1980. Rapport final sur le programme de recherches biologiques, 48 pp, FAO.
  • Spliethoff, P. C., et al. (1983), Success of the Introduction of the Fresh-Water Clupeid Limnothrissa-Miodon (Boulenger) in Lake Kivu, Fisheries Management, 14, 17-31.
  • Verbeke, J. (1957), Recherches écologiques sur la faune des grands lacs de l'Est du Congo Belge. Exploration Hydrobiologique des Lacs Kivu, Edouard et Albert (1952-54), Institut Royal des Sciences Naturelles de Belgique, Bulletin, 3, 1-177.
  • Villanueva, M. C. S., et al. (2008), Modeling trophic interactions in Lake Kivu: What roles do exotics play?, Ecological Modelling, 212, 422-438.

Lake Kivu stratification, double diffusion and physical processes

  • Carpenter J.R., Sommer T., Wüest A. (2012). Stability of a double-diffusive interface in the diffusive convection regime. Journal of Physical Oceanography, Vol. 42, 840 - 854. doi: 10.1175/JPO-D-11-0118.1.
  • Carpenter J.R., Timmermans M.L. (2012) Temperature steps in salty seas.
    Physics Today 65(3), 66-67 (2012), doi:10.1063/PT.3.1485
  • Damas, H. (1937), La stratification thermique et chimique des lacs Kivu, Edourd et Ndalaga (Congo Belge), Verhandlungen der Internationalen Vereinigung für Theoretische und Angewandte Limnologie, 8, 51-68.
  • Halbwachs, M., and A. Lorke (2002), Investigations in Lake Kivu (East Central Africa) after the Nyiragongo eruption of January 2002 specific study of the impact of the sub-water lava inflow on the lake stability, 49 pp., Solidarites Aide Humanitaire d'Urgence, Paris.
  • Hirslund, F. (2012), An additional challenge of Lake Kivu in Central Africa - upward movement of the chemoclines. Journal of Limnology, 71(1), doi:10.3274/JL12-71-1-09
  • Lorke, A., et al. (2004), Response of Lake Kivu stratification to lava inflow and climate warming, Limnology and Oceanography, 49, 778-783.
  • Newman, F. C. (1976), Temperature Steps in Lake Kivu - Bottom Heated Saline Lake, Journal of Physical Oceanography, 6, 157-163.
  • Schmid, M., et al. (2005), Report of the scientific expeditions to Lake Kivu in November 2003 and February 2004. An investigation of physical and chemical properties of Lake Kivu as a base for gas outburst risk assessment, 17 pp, EAWAG, Kastanienbaum.
  • Schmid M., et al. (2010) Double-diffusive convection in Lake Kivu. Limnology and Oceanography, 55(1), 2010, 225–238
  • Sommer T., Carpenter J.F., Schmid M., Lueck R.G., Schurter M., Wüest A. (2013) Interface structure and flux laws in a natural double-diffusive
    layering, Journal of Geophysical Research: Oceans, Vol. 118, 6092–6106, doi:10.1002/2013JC009166, 2013
  • Spigel, R. H., and G. W. Coulter (1996), Comparison of hydrology and physical limnology of the East African Great Lakes: Tanganyika, Malawi, Victoria, Kivu and Turkana (with references to some North American great lakes), in The limnology, climatology and paleoclimatology of the East African lakes, edited by T. C. Johnson and E. O. Odada, pp. 103-139, Gordon and Breach Publishers, Amsterdam.

Lake Kivu sediments and topography

  • Al-Mutlaq, K. F., et al. (2008), Composition and sources of extractable organic matter from a sediment core in Lake Kivu, East African rift valley, Applied Geochemistry, 23, 1023-1040.
  • Botz, R., et al. (1988), Isotope Geochemistry of Carbonate Sediments from Lake Kivu (East-Central Africa), Chemical Geology, 69, 299-308.
  • Degens, E. T., et al. (1972), Microcrystalline sphalerite in resin globules suspended in Lake Kivu, East Africa, Mineralium Deposita, 7, 1-12.
  • Degens, E. T., and G. Kulbicki (1973), Hydrothermal Origin of Metals in Some East-African Rift Lakes, Mineralium Deposita, 8, 388-404.
  • Haberyan, K. A., and R. E. Hecky (1987), The Late Pleistocene and Holocene Stratigraphy and Paleolimnology of Lakes Kivu and Tanganyika, Palaeogeography Palaeoclimatology Palaeoecology, 61, 169-197.
  • Hecky, R. E. (1978), The Kivu-Tanganyika basin: the last 14,000 years, Polskie Archiwum Hydrobiologii, 25, 159-165.
  • Kovachev, G. (1986), Chemical composition of compounds isolated from Kivu Lake (Africa) sediments, Izvestiya po Khimiya, 19, 477-480.
  • Lahmeyer, and Osae (1998), Bathymetric survey of Lake Kivu. Final Report, 18 pp, Republic of Rwanda, Ministry of Public Work, Directory of Energy and Hydrocarbons, Kigali.
  • Lahmeyer, and Osae (1998), Levé Bathymetrique Complet du Lac Kivu. Final Report, 32 pp, Republic of Rwanda. Ministry of Public Work. Directory of Energy and Hydrocarbons, Kigali.
  • Pasche N., Alunga G., Mills K., Muvundja F., Ryves D.B., Schurter M., Wehrli B., Schmid M. (2010) Abrupt onset of carbonate deposition in Lake Kivu during the 1960s: response to recent environmental changes. J Paleolimnol (2010) 44:931–946, doi:10.1007/s10933-010-9465-x
  • Schoberth, S. M., and K. Tietze (1978), Isolation of Methanogens from Lake Kivu Sediments, in Abstracts of the XII International Congress of Microbiology, edited by International Association of Microbiology Societies, Munich.
  • Stoffers, P., and R. E. Hecky (1978), Late Pleistocene-Holocene evolution of the Kivu-Tanganyika Basin, in Modern and ancient lake sediments; proceedings of a symposium., edited by A. Matter and M. E. Tucker, pp. 43-55, Blackwell, Oxford, International.
  • Yankov, L. K., and G. D. Kovachev (1980), Normal Alkane Hydrocarbons Isolated from Kivu Lake-Sediments, Dokladi Na Bolgarskata Akademiya Na Naukite, 33, 533-535.

Lake Kivu methane: Biogeochemistry and gases

  • Bochem, H. P., et al. (1982), Thermophilic biomethanation of acetic acid: morphology and ultrastructure of a granular consortium, Canadian Journal of Microbiology, 28, 500-510.
  • Borges A.V., et al (2011) Diffusive methane emissions to the atmosphere
    from Lake Kivu (Eastern Africa), Journal of Geophysical Research, Vol. 116, G03032, doi:10.1029/2011JG001673
  • Burke, K. (1963), Dissolved Gases in East African Lakes, Nature, 198, 568-569.
  • Craig, H. (1989), Helium, Tritium, Methane, and Temperature in Deep Rift-Valley Lakes: Tanganyika, Kivu and Baikal., EOS, 70, 1137.
  • Degens, E. T., et al. (1973), Lake Kivu; Structure, Chemistry and Biology of an East African Rift Lake, Geologische Rundschau, 62, 245-277.
  • Deuser, W. G., et al. (1973), Methane in Lake-Kivu - New Data Bearing on Its Origin, Science, 181, 51-54.
  • Doevenspeck M., Lake Kivu's methane gas: natural risk, or source of energy and political security? (2007) Afrika Spectrum 42 (2007) 1:95-110
  • Hecky, R. E., et al. (1996), Phosphorus pumps, nitrogen sinks, and silicon drains: Plumbing nutrients in the African Great Lakes, in The limnology, climatology and paleoclimatology of the East African lakes, edited by T. C. Johnson and E. O. Odada, pp. 205-223, Gordon and Breach Publishers, Amsterdam.
  • Jannasch, H. W. (1975), Methane Oxidation in Lake Kivu (Central Africa), Limnology and Oceanography, 20, 860-864.
  • Joye, S. B., et al. (1999), Oxidation of ammonia and methane in an alkaline, saline lake, Limnology and Oceanography, 44, 178-188.
  • Kufferath, J. 1960), Le Méthane du Lac Kivu, Les naturalistes Belge, 41, 418-426.
  • Lliros M., et al. (2010) Vertical Distribution of Ammonia-Oxidizing Crenarchaeota and Methanogens in the Epipelagic Waters of Lake Kivu
    (Rwanda-Democratic Republic of the Congo). Applied and Environmental Microbiology, Oct. 2010, p. 6853–6863 Vol. 76, No. 20, doi:10.1128/AEM.02864-09
  • Muvundja F.A., et al. (2009) Balancing nutrient inputs to Lake Kivu. Journal of Great Lakes Research 35 (2009) 406–418, doi:10.1016/j.jglr.2009.06.002
  • Pasche N., et al. (2009) Physical and biogeochemical limits to internal nutrient loading of meromictic Lake Kivu. Limnology and Oceanography, 54(6), 2009, 1863–1873
  • Pasche, N., et al. (2011), Methane sources and sinks in Lake Kivu, Journal of Geopyhsical Research, Vol. 116, G03006, doi:10.1029/2011JG001690
  • Schmid, M., et al. (2004), How hazardous is the gas accumulation in Lake Kivu? Arguments for a risk assessment in light of the Nyiragongo Volcano eruption of 2002, Acta Vulcanologica, 14/15, 115-122.
  • Schmid, M., et al. (2005), Weak mixing in Lake Kivu: New insights indicate increasing risk of uncontrolled gas eruption, Geochemistry Geophysics Geosystems, 6.
  • Schmitz, D. M., and J. Kufferath (1955), Problèmes posées par la Présence de Gaz dissous dans les Eaux profondes du Lac Kivu, Académie Royales des Sciences Coloniales, Bulletin des Séances, nouvelle Série, 1, 326-356.
  • Schoell, M., et al. (1988), Origin of Methane in Lake Kivu (East-Central Africa), Chemical Geology, 71, 257-265.
  • Tassi F., et al. (2009) Water and gas chemistry at Lake Kivu (DRC): Geochemical evidence of vertical and horizontal heterogeneities in a multibasin structure. Geochem. Geophys. Geosyst., 10, Q02005, doi:10.1029/2008GC002191
  • Tietze, K. (1978), Geophysikalische Untersuchung des Kivusees und seiner ungewöhnlichen Methangaslagerstätte Schichtung, Dynamik und Gasgehalt des Seewassers, VIII, 149 pp., Kiel.
  • Tietze, K. (1980), Central-Africa - Methane Gas in Lake Kivu, Umschau in Wissenschaft Und Technik, 80, 438-440.
  • Tietze, K., et al. (1980), The genesis of the methane in Lake Kivu (Central Africa), Geologische Rundschau, 69, 452-472.

Lake Kivu methane harvesting

  • Halbwachs, M. (2003), The exploitation of methane in Lake Kivu: Pilot station project. Data environment., 70 pp.
  • Hassan, M. (2000), Lake Kivu gas development and promotional related issues. Final report, 22 pp, Republic of Rwanda. Ministry of energy, water and natural resources, Kigali.
  • Kling, G. W., et al. (2006), Lake Kivu Gas extraction - Report on Lake stability, World Bank.
  • Preussag (1972), Étude technique préliminaire - Extraction et Traitement du Méthane Dissous dans le Lac Kivu., 149 pp, Bundesstelle für Entwicklungshilfe, Hannover.
  • Saarberg Interplan (1982), Gaz Méthane du Lac Kivu. Étude de Préfactibilité, élaborée pour la Communauté Economique des Pays des Grands Lacs dans le Cadre du Contrat ET/1294, Projet Régional, Tome I& II, Saarbrücken.
  • Tazieff, H. (1988), Lake Nyos - Lake Kivu. Opportunities and Risks for Exploiting Methane, Courier, 109, 45-47.
  • Tietze, K. (2000), Lake Kivu gas development and promotion-related issues: Safe and environmentally sound exploitation, 110 pp, Republic of Rwanda; Ministry of energy, water and natural resources, Kigali.
  • Tietze, K. (2007), Basic plan for monitoring, regulating and steering exploitation of the unique methane gas deposit in Lake Kivu: safely, environmentally soundly and with optimal yield. Report commissioned by W+S Beteiligungs AG.
  • Tietze, K., and A. Lorke (2003), Lake Kivu methane project - feasibility study. Pilot station project. Data environment, 66 pp.
  • Tietze, K., and E. Maier-Reimer (1977), Recherches mathématiques-physiques pour la mise en exploitation du gisement de gas méthane dans le Lac Kivu. Rapport final, Bundesanstalt für Geowissenschaften und Rohstoffe, Hannover.
  • Wüest A., Jarc L., Schmid M. (2009) Modelling the reinjection of deep-water after methane extraction in Lake Kivu