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Abstract 22 

Accurate predictions of future conditions of sewer systems are needed for efficient 23 

rehabilitation planning. For this purpose, a range of sewer deterioration models has been 24 

proposed which can be improved by calibration with observed sewer condition data. 25 

However, if datasets lack historical records, calibration requires a combination of 26 

deterioration and sewer rehabilitation models, as the current state of the sewer network 27 

reflects the combined effect of both processes. Otherwise, physical sewer lifespans are 28 

overestimated as pipes in poor condition that were rehabilitated are no longer represented 29 

in the dataset. We therefore propose the combination of a sewer deterioration model with 30 

a simple rehabilitation model which can be calibrated with datasets lacking historical 31 

                                                      
∗ Corresponding author: Eawag, Überlandstrasse 133, P.O. Box 611, CH-8600 Dübendorf, 
Switzerland., phone: +41-58-765 5055, fax: +41-58-765 5389, E-mail address: 
christoph.egger@eawag.ch 

 



3 

information. We use Bayesian inference for parameter estimation due to the limited 32 

information content of the data and limited identifiability of the model parameters. A 33 

sensitivity analysis gives an insight into the model’s robustness against the uncertainty of 34 

the prior. The analysis reveals that the model results are principally sensitive to the 35 

means of the priors of specific model parameters, which should therefore be elicited with 36 

care. The importance sampling technique applied for the sensitivity analysis permitted 37 

efficient implementation for regional sensitivity analysis with reasonable computational 38 

outlay. Application of the combined model with both simulated and real data shows that 39 

it effectively compensates for the bias induced by a lack of historical data. Thus, the 40 

novel approach makes it possible to calibrate sewer pipe deterioration models even when 41 

historical condition records are lacking. Since at least some prior knowledge of the 42 

model parameters is available, the strength of Bayesian inference is particularly evident 43 

in the case of small datasets. 44 

Keywords: Deterioration model, rehabilitation model, data management, survival 45 

selection bias, likelihood, Bayesian inference 46 

Nomenclature 47 

Symbol  Description  

a Unit used for year 

t  Pipe age 

kτ  Age of pipe k  at the last available inspection 

kD  Age of pipe k  when the dataset used for 
inference was lastly updated 

kR  Age of pipe k  when rehabilitation started 
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mi ,1,=   
Index of condition states (1=best, m= worst) 

τkc  Condition state (CS) of pipe k  observed at its 
age τ  

)(tC  
Condition state of a pipe at its age t  

iT  
(Random) pipe age at transition from CS i  to 
CS 1+i  

it  Realization of iT  

00 ,tT  
Pipe age at construction 

( )tSi  
Survival function, probability that a pipe 
section of age t  is in CS i or better 

iλ  Rate of pipe replacement rehabilitation ( 1a − ) 
if a pipe is in condition state  i  

θ Parameter vector of the likelihood functions 
)(1 θL  and )(2 θL  

jΜ  Hyperparameter, mean of the prior of jθ  

jΣ  
Hyperparameter, standard deviation of the 
prior of jθ  

N  
Number of pipes of a sewer network with 
condition records used for model parameter 
inference 

expN
 

Number of pipes built per year 

reh
iP

 
Probability that a pipe in CS i  is rehabilitated 
within one year 
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1 Introduction 48 

Reliable forecasts of sewer network conditions facilitate proactive, far-sighted sewer 49 

asset management which in turn furthers an optimal balance between (future) expenses 50 

and system performance. Generally, sewer pipe conditions are related to different aspects 51 

of system performance. They constitute potential health and environmental hazards as a 52 

result of leaking pipes (Rutsch et al., 2008) as well as flooding and other hazards due to 53 

collapsing and malfunctioning pipes (Saegrov, 2005). Hence, given a specific, desired 54 

service level, knowledge about future sewer pipe conditions allows strategies for 55 

maintenance, surveillance and rehabilitation of sewers to be adjusted (Kleiner, 2001), 56 

and better estimates to be made for future operational and investment costs. 57 

A wide range of models has been developed aiming to predict pipe deterioration. An 58 

overview of deterioration models differing in their mathematical approaches, 59 

requirements on data and mode of calibration is given by Kleiner and Rajani (2001), 60 

Rajani and Kleiner (2001) and Tran (2007). Tran (2007) classifies sewer deterioration 61 

models into (i) deterministic, (ii) artificial intelligence and (iii) statistical types, while 62 

Ana and Bauwens (2010) and Tran (2007) conclude that statistical models relying on a 63 

probabilistic relationship between model input and output data are the most feasible and 64 

most frequently applied approaches. This is basically due to the complexity of the 65 

processes responsible for sewer deterioration and the impossibility of making sufficient 66 

mechanistic parameters available over time and space. The most basic data needed to 67 

describe deterioration are condition records and corresponding pipe ages. Other 68 

explanatory variables, such as diameter, laying depth, etc., may also be relevant (Ana et 69 

al., 2009; Müller, 2002).  70 

Unsuccessful model calibration is often attributed to a lack of suitable data for this 71 

task as discussed in Ana and Bauwens (2010) and Schmidt (2009). If datasets lack 72 
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historical records, they represent the combined effect of deterioration and rehabilitation. 73 

Consequently, model calibration requires the use of a model that accounts for all of these 74 

processes. It was demonstrated by Scheidegger et al. (2011) that naively calibrating a 75 

deterioration model on the basis of such data leads to a significant overestimation of 76 

physical lifespans. Datasets without historical records are common in practice because 77 

operators are primarily interested in the current state of the sewer network and are 78 

unaware of the usefulness of data about its deterioration history. Lack of the following 79 

information hinders the calibration of sewer deterioration models: 80 

(i) Condition records of sewer pipes which have been replaced by new ones. 81 

The corresponding records are discarded from the database and replaced by 82 

the new information. 83 

(ii) Condition ratings of renovated or repaired sewer pipes from the time before 84 

such action. The repaired or renovated pipes are reassessed. On the basis of 85 

this reassessment, the condition rating prior to repair or renovation is 86 

overwritten by a new (and usually better) condition rating. Thus, certain 87 

records must be excluded from the analysis.  88 

(iii) The renovation or repair of a pipe is not recorded. The pipe is consequently 89 

assigned a better state in the subsequent condition assessment.   90 

When a sewer deterioration model is calibrated without accounting for rehabilitation, 91 

cases (i) and (ii) lead to a ‘survival selection bias’, since pipe rehabilitation depends on 92 

the pipe condition so that slow-aging pipes are overrepresented in the dataset. The data 93 

actually available suggests longer physical lifespans. Case (iii) causes a bias simply 94 

because the condition of a pipe was improved without recording the improvement. To 95 

our experience, sewer systems which underwent extensive rehabilitation in the past are in 96 

very good overall condition including older parts of the system. The datasets comprise 97 
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often very few records of pipes in poor condition. This indicates that the sewer 98 

population is affected by the selective effect of rehabilitation. In the present paper, we 99 

address the lack of historical data according to cases (i) and (ii). Similar issues have been 100 

addressed in the context of failure prediction in water supply networks (Le Gat, 2009; 101 

Scheidegger et al., 2013). However, the proposed approaches are not readily transferable 102 

to the modeling of sewer pipe deterioration based on condition states. 103 

We introduce a likelihood function for parameter estimation which takes account of the 104 

fact that the observations used for inference refer exclusively to pipes which have not 105 

been rehabilitated in the past. To derive this likelihood function, we combine a sewer 106 

deterioration model with a rehabilitation model. This allows us to derive probabilities of 107 

current states affected both by deterioration and rehabilitation. Generally, our principal 108 

approach could be applied to describe deterioration of other infrastructure if conditions 109 

are measured on an ordinal scale. 110 

To account for the poor identifiability of such a combined model, we apply Bayesian 111 

inference for parameter estimation, which allows us to combine the data with prior 112 

knowledge of model parameters. This enables us to benefit from datasets despite their 113 

limited information content. 114 

In this paper we focus on the systematic error created by the lack of historical data. For 115 

the sake of simplicity we ignore explanatory variables in our model. These improve 116 

model predictions for specific pipe cohorts (Ana et al., 2009). Neglecting explanatory 117 

variables may cause a bias for individual pipes but not on average for the whole pipe 118 

population. However, an extension of the model with explanatory variables can easily be 119 

implemented. The effect of input data uncertainty has been discussed elsewhere 120 

(Scheidegger and Maurer, 2012).  121 
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The remaining parts of this paper are organized as follows: the general concept of the 122 

combined deterioration - rehabilitation model is introduced in Section 2. In Section 3, an 123 

example is given with specific distribution assumptions. In Section 4, the model behavior 124 

is analyzed. Model results from applications with real data are presented in Section 1. 125 

Finally, we discuss the potential of our approach and give an outlook on further research 126 

needs on this topic. 127 

2 Model description 128 

In this section, a general formulation of the combined sewer deterioration and 129 

rehabilitation model is proposed. We use a statistical deterioration model due the 130 

probabilistic nature of pipe deterioration. The combined model is designed to be 131 

calibrated by using only the last available observed condition states of sewer pipes which 132 

have not been rehabilitated so far. After calibration, the deterioration model can be used 133 

on its own for predicting future deterioration of the sewer pipes as it would happen 134 

without further rehabilitation. 135 

The condition of a pipe is described by an ordinal condition rating with m  condition 136 

states (CS). These condition ratings are usually determined on the basis of closed circuit 137 

television (CCTV) surveys (DIN EN 13508-1, 2013) and a coding system such as 138 

specified in DIN EN 13508-2 (2011). New pipes are always assumed to be in the best 139 

CS, 1=C . We denote the pipe age when the transition from CS 1≥i  to CS 1+i  140 

occurs as iT  and define the age at construction as 000 == tT . The random variable 141 

iT , 11 −≤≤ mi , is characterized by the probability density function 142 

),,...,|( 11 θ−iii tttp  that is parameterized with the parameters included in θ . The 143 

deterioration model is completely defined by these probability density functions for all i  144 

and the parameter values θ . Figure 1 illustrates the relevant variables for the 145 
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deterioration of a sewer pipe over the course of its lifespan introduced in Sections 2 and 146 

3. 147 

 148 

Figure 1. Time line of a deteriorating sewer pipe section introducing relevant variables of the 149 

proposed sewer deterioration model. The ages it  are realizations of the random variable . 150 

To infer the parameters statistically, a likelihood function for the observed variables 151 

has to be formulated. This function is the probability of observing the data, given a 152 

model and its parameters. As the model is completely defined by the probability density 153 

functions of the random variables iT , such a likelihood function can be derived from 154 

these densities. This will be done for the condition states at a given time in Section 2.1 155 

for the case where all historical data for parameter inference is available or where no 156 

rehabilitation has taken place so far. We refer to this likelihood as the unconditioned 157 

likelihood function. In Section 2.2, this function is extended by a rehabilitation model to 158 

make it suitable for inference with data when historical condition records are lacking. We 159 

call this likelihood conditioned likelihood function. 160 

iT
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2.1 Unconditioned likelihood function 161 

Since only snapshot observations of pipe conditions are available, the ages iT  are 162 

not observable. The CS of a pipe at age t  is )(tC . If a pipe is inspected at age τ , the 163 

data consists of the observed CS, τc . Therefore the likelihood for a single pipe k  must 164 

be formulated as the probability )|)(( θττ kk cCP = . Assuming that each pipe 165 

deteriorates independently of others, the joint likelihood )(1 θL  of all N  pipes becomes: 166 

)|)(()(
1

1 θθ ττ k

N

k
k cCPL ==∏

=
 

(1) 

In the following, we derive the likelihood for a single pipe. The index k  and the 167 

parameter vector θ  are then discarded if they do not have to be addressed explicitly. 168 

We derive the probability ))(( ττ cCP =  by integrating the joint probability density 169 

)|,...,( 11 θ−mttp  of the transition ages iT , 11 −≤≤ mi ,  170 

),,...,|()...,|()|()|,...,( 21111221111 θθθθ −−−− = mmmm tttpttptpttp  (2) 

over adequate sets of transition ages. We distinguish three cases, depending on 171 

whether the pipe at age τ  is in (1) the best condition state 1, (2) a condition state 172 

between 1 and m , or (3) the worst condition state m : 173 

(1) 1)( =τC : As τ>1T  the following applies:  174 
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1111 )()()1)(( dttpTPCP ∫
∞

=>==
τ

ττ
 

(3) 

(2) iC =)(τ  and mi <<1 : As ii TT <≤− τ1  we can write: 175 

1111211111
0

1

...),...,|(),...,|()...(...

)()1,)((

2

dtdtdttttptttptp

TTPmiiCP

iiiiiiii
t

ii

i

−−−−−

∞

−

∫∫ ∫
−

=

<≤=<<=

τ

τ τ

ττ

 

(4) 

(3) In case of mC =)(τ  the following applies: 176 

∑
−

=
− =−=≤==

1

1
1 ))((1)())((

m

i
m iCPTPmCP τττ  

(5) 

2.2 Conditioned likelihood function 177 

For parameter inference, we are restricted to exclusively using the condition data of 178 

pipes Nkk ...1, =  which have not been rehabilitated before having reached age kD . 179 

kD  is the age of a pipe k  at which the asset dataset was lastly updated (in the following, 180 

the pipe index k  is again discarded wherever possible). Sewer pipe rehabilitation is not 181 

independent of the CS. We therefore need to condition the likelihood introduced in the 182 

previous section by the fact that condition records used for inference refer exclusively to 183 

pipes which have not been rehabilitated before their age D , that is 184 

),)NR(|)(( θDcCP ττ = . (The event that a pipe has not been rehabilitated before 185 

reaching age D  is abbreviated by )(NR D ). According to Eq. (1), the joint likelihood 186 

)(2 θL  of all N  pipes becomes: 187 
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),)NR(|)(()(
1

2 θθ kk

N

k
k DcCPL ττ == ∏

=
 

(6) 

We rewrite the conditional probability ),)NR(|)(( θDcCP ττ =  using Bayes' 188 

theorem. This yields probabilities which permit easier interpretation: 189 

∑
=

=⋅=

=⋅=
=

=

m

j
jCPjCDP

cCPcCDP
DcCP

1
)|)((),)(|)NR((

)|)((),)(|)NR((
)),NR(|)((

θθ

θθ
θ

ττ

ττ
τ

ττ

τ

 

(7) 

),)(|)NR(( θττ cCDP =  is the probability that a pipe has not been rehabilitated 190 

before D  given ττ cC =)(  and θ . A model is required for this probability which we 191 

term the rehabilitation model. One possible rehabilitation model is introduced in Section 192 

3.3.1. The probability )|)(( θττ cCP =  is the likelihood as described by Eq. (1). 193 

3 Model example for three condition states 194 

3.1 Model assumptions 195 

In the following, an example of the model is described on the basis of the principles 196 

introduced in the previous chapter.  197 

For this example, the following assumptions are made: 198 

(i) Three condition states are used ( 3=m ) 199 

(ii) 1T  is Weibull distributed with the parameters shape α  and scale β : 200 
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αβ
α

ββ
α )/(

1

1
11

1)( tettp −

−









=  

(8) 

(iii) The time span 12 TT −  a pipe spends in CS 2  does not depend on the age of 201 

the pipe and is further assumed to be exponentially distributed. Given these 202 

assumptions, 2T  for given 1t  is exponentially distributed as well with the 203 

single parameter scale µ : 204 

)/)((
122

12
1)|( µ

µ
ttettp −−=  

(9) 

(iv) 0TRk ≥  is the age of pipe k  at which rehabilitation was established. 205 

(v) The applied replacement model introduced in Section 3.3.1 is parameterized 206 

by age-invariant, condition-state-dependent rehabilitation rates iλ . 207 

We would like to emphasize that we consider the combination of the processes 208 

deterioration and rehabilitation in a single model designed to improve the prediction of 209 

sewer pipe deterioration as the main innovation of our approach, and not the individual 210 

models themselves. Various stochastic deterioration models exist which describe the 211 

(random) variable iT  (Baur and Herz, 2002; Micevski et al., 2002; Mishalani and 212 

Madanat, 2002). They mainly differ in the distribution of iT  and may comprise further 213 

features such as the consideration of additional factors such as the pipe diameter and 214 

material. The suggested combinations of Weibull and exponential distributions have been 215 

used successfully to describe stepwise survival processes as done by (Mailhot et al., 216 

2000) for modeling subsequent breaks of water supply pipes. We abstained from using a 217 

simpler approach such as age or time invariant transition probabilities. These are not 218 
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appropriate to describe the aging of sewer pipes as discussed in Trujillo Alvarez (1995). 219 

This increases the mathematical efforts, but results in an applicable model.  220 

Our principal concept is flexible, and individual aspects of the combined model as 221 

suggested above can therefore be altered or substituted by other models in case they 222 

prove to be more suitable for a given case. 223 

3.2 Unconditioned likelihood function 224 

Having framed the model as outlined above, we can now specify the equations 225 

needed to calculate the unconditioned likelihood according to Eq. (1) with the parameters 226 

T),,( µβα=θ , which in turn is required to calculate the conditioned likelihood 227 

specified by Eq. (6). 228 

The probability )|)(( θττ cCP =  is calculated using Eqs. (3-5) and Eqs. (8-9) (the 229 

parameter vector θ  is discarded): 230 

αβτ
τ

ττ )/(
1111 )()()1)(( −∞ ==>== ∫ edttpTPCP  (10) 

( )
1

)/)((/
1

1

0

1212210 121

11

)|()()()2)((

dtet

dtdtttptpTTPCP

tt µτβ
α

τ

τ

τ

α

ββ
α

ττ

−−−

−

∞









=

=<≤==

∫

∫∫
 

(11) 

)2)(()1)((1)3)(( =−=−== τττ CPCPCP

 

(12) 
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3.3 Conditioned likelihood function 231 

The equations derived in Section 3.2 and the rehabilitation model proposed below 232 

enables us to calculate the conditioned likelihood )(2 θL  according to Eq. (6) with the 233 

extended parameter vector T),,,,,( 321 λλλµβα=θ . 234 

3.3.1 Rehabilitation model 235 

Pipe rehabilitation depends on various factors such as (i) condition state (ii) pipe 236 

age, (iii) lack of hydraulic capacity, (iv) coordinated rehabilitation projects involving 237 

other infrastructure than sewers and (v) budget restraints. However, we assume a simple 238 

model describing rehabilitation exclusively dependent on the CS which we suppose 239 

being the major driver for rehabilitation. Further factors could be included but would be 240 

intricate to identify based on the available information. Specifically, this model describes 241 

the CS-dependent probability reh
iP  that a pipe is rehabilitated within one year once 242 

rehabilitation started. We further assume that this probability is age-invariant. From this 243 

probability we derive a constant rehabilitation rate iλ  for each CS i using the following 244 

equation: 245 

( ) 1a1log −−−= reh
ii Pλ  (13) 

Formally, the rehabilitation model describes the functional survival of the pipes, i.e. the 246 

probability that a pipe with age t  has not been rehabilitated. Therefore, the rehabilitation 247 

rate can be interpreted as a hazard rate. In a first step, we consider the probability 248 

),)(|)NR(( θτττ cCP =  that a pipe has not been rehabilitated before age τ  given 249 

ττ cC =)(  and θ . This probability depends on the  pipe ages iT  at which transitions 250 
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occurred, and on τ . If we knew the ages },{ 21 TT , we could specify the rehabilitation 251 

rate )(tλ  for this pipe at age t , τ≤≤ t0  as: 252 











≤≥
<≤≥

<≥
<

tTRt
TtTRt

TtRt
Rt

RTTt

23

212

11
21

,
,
,

0

=),,|(

λ
λ
λ

λ  

(14) 

The probability ),,,,|)NR(( 6:421 θRTTP ττ  that a pipe has not been rehabilitated 253 

before τ  given (i) τ , (ii) the ages },{ 21 TT , (iii) R  and (iv) ( )T3216:4 ,, λλλ=θ  can 254 

then be calculated: 255 
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e

e
e

TRT
TR

R

e
e

eRTTP

tttRt

tRt

R

tRt

R
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(15) 

Since the ages },{ 21 TT  are unknown and only )(τC  is given, we must multiply Eq. (15) 256 

by Eq. (2), the joint probability density of the ages iT  and integrate between the bounds 257 

of integration given in Table 1 for specific observed CS ττ cC =)( . To condition on 258 

ττ cC =)(  we divide by ))(( ττ cCP =  or respective the joint probability )|,( 21 θttp , 259 

see Eqs.(2, 8-9), integrated between the bounds given in Table 1. This yields260 

),,,c)C(|)NR(( θRτP τ ττ = : 261 
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1221

12216:421

1

1

2

2

1

1

2

2

),,(

),,(),,,,| )NR((
),,,c)C(|)NR((

dtdtttp

dtdtttpRTTτP
RτP o

u

o

u

o

u

o

u

t

t

t

t

t

t

t

t
τ

∫ ∫

∫ ∫
==

θ

θθ
θ

τ
ττ

 

(16) 

Table 1. Bounds of integration for }3,2,1{=τc  to be used for the integrals of Eq. (16). 263 

τc  ut1  ot1  ut2  ot2  

1 τ  ∞  
1t  ∞  

2  0  τ  τ  ∞  

3 0  τ  
1t  τ  

 264 

In the case of τ≥R , this probability is independent of )(τC  and we can write: 265 

1),|)NR(( =≥ θττ RP  (17) 

In the case of τ≤R  and 1, =τobsC , we obtain the following expression:  266 

)(1),,1)(|)NR(( ReRCP −−=≤= τλτττ θ  (18) 

If τ≤R  and { }3,2=i , we need further to consider that the transition(s) from CS 1−i  267 

to CS i  have taken place either before or after a pipe has reached age R , see Eq. (15). 268 
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The distinction between these cases is made in the numerators of Eq. (19-20) below. For 269 

example, the first summand in the numerator of Eq. (19) gives the joint probability 270 

),,,|2)C(),NR(( 1 θRTRτP ≤≤= τττ  that a pipe has not been rehabilitated before 271 

reaching age τ , and 2)( =τC  given that the first transition occurred when the pipe 272 

reached age R  or before. Similarly, the second summand gives the same probability 273 

given that the first transition occurred when the pipe section reached age R  or later. 274 

( ) ( ) ( )

∫ ∫

∫ ∫ ∫∫
∞

∞
−−−−

∞
−− +

=≤= τ

τ

τ

τ

τλλ

τ

τλ

τττ

0
1221

0
12211221

)|,(

)|,()|,(
),,2)(|)NR((

12112

dtdtttp

dtdtttpedtdtttpe
RCP

R

R

tRtR

θ

θθ
θ

 
(19) 

( )

∫ ∫

∫ ∫ ∫ ∫ ∫ ∫ −−−−−−−−−−−− ++
=

≤=

τ τ

τ τ τ
τλλλτλλτλ

τττ

0
1221

0 0
1221

)()()(
1221

)()(
1221

1

1 1

231221123223

)|,(

)|,()|,()|,(

),,3)(|)NR((

t

R R

t

R

R R t

tttRttRtR

dtdtttp

dtdtttpedtdtttpedtdtttpe

RCP

θ

θθθ

θ
 

(20) 

So far, we have described the probability that a pipe was not rehabilitated before age τ  275 

given the observed CS at that age. However, replacement of pipes and hence discarding 276 

of further pipe records may continue beyond pipe age τ  until the pipes reach age D . 277 

Thus, we need to consider the probability ),)(|)NR(( θττ cCDP =  that a pipe was 278 

not rehabilitated before age D  given that ττ cC =)(  and θ . To accommodate this fact, 279 

we assume that ττλλ >= tt ),()( . This assumption implies that decisions on pipe 280 

rehabilitation are made on the basis of the observed condition state τc . Thus, possible 281 

changes in condition states taking place at ages t , Dt ≤<τ  do not affect the 282 

probability of pipe rehabilitation. This assumption allows us to calculate the probability 283 

that a pipe was not rehabilitated in the interval between age τ  and D  by the following 284 
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expression (The event that a pipe has not been rehabilitated in the interval between age 285 

τ  and D  is abbreviated by ),(NRI Dτ ):  286 
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D
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i

D

i

i

D

R
i

)(
)(

)(
)(

1

),,,,)(| D),NRI(( θ  

(21) 

Finally, we calculate the probability ),,,,)(|)NR(( θDRcCDP ττ τ=  by multiplying 287 

Eqs. (17-20) by Eq. (21) respectively, which leads to the following general expression: 288 

),,,,)(|),NRI((),,,)(|)NR((
),,,,)(|)NR((

θθ
θ

DRcCDPRcCP
DRcCDP

ττττττ
ττ

ττ

τ

=⋅=
==

 
(22) 

Further formulations of Eq. (22) for τ≤R  and { }3,2=τc  are given by Eqs. (A.1–A.2) 289 

in the Appendix.  290 

3.4 Model calibration 291 

To estimate the model parameters, we use Bayesian inference (Bolstad, 2007; 292 

Congdon, 2006; Gelman et al., 2004). This enables us to include additional (prior) 293 

knowledge and therefore handle datasets of limited size and strength that lead to poor 294 

model identifiability with frequentist inference methods. Prior knowledge may be 295 

obtained by eliciting experts or from the results of previous studies. As Bayesian 296 

inference allows sequential updating of the posterior when new data becomes available, 297 

posteriors from precedent inferences are an optimal choice for the prior.  298 

Prior knowledge is described by a probability density function of the parameters θ . 299 

Generally, we assume that the prior for these parameters is distributed independently.  300 
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As there is no analytical form of the posterior distribution, numerical Monte Carlo 301 

Markov Chain techniques are applied for inference. These techniques enable us to take 302 

samples from the posterior. Statistical properties of the posterior distribution are then 303 

approximated from these samples. We used the algorithm of Vihola (2012) and the 304 

respective implementation by Scheidegger (2012) in R (R Core Team, 2012).  305 

4 Model behavior analysis using synthetic data 306 

In this section we analyze the model behavior to gain an understanding of the 307 

identifiability of the model parameters using synthetic data from the network condition 308 

simulator (NetCoS) (Scheidegger et al., 2011) (Section 4.1). We further address the 309 

sensitivity of the model with respect to changes in the specification of the prior (Section 310 

4.2). 311 

4.1 Model test using NetCoS 312 

NetCoS can be used to benchmark different deterioration models under specific data 313 

management strategies that result in different data availabilities. We did this with the 314 

proposed model and considered replacement as the exclusive rehabilitation measure. This 315 

does not provide a ‘proof’ of model goodness for real case applications which may 316 

involve highly variable deterioration and rehabilitation processes. However, it enables us 317 

to analyze the identifiability of the model. 318 

A synthetic dataset of a sewer network is generated by NetCoS using the parameters 319 

listed in Table 2. The first sewer pipes were installed 100 years ago and the network has 320 

been extended by 20exp =N  pipes annually up to the present. The simulation resulted 321 

in 2000 ‘active’ sewer pipes at the end of the simulation period and 1253 replaced pipes 322 

within the simulated period. Pipe replacement was introduced 73 years after the first 323 

pipes were laid. 324 
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Only data of the ‘active’ sewer pipes are used for the inference, i.e. all replaced 325 

pipes are discarded from the dataset. The priors of the parameters θ  are independently 326 

log-normally distributed with means Μ  and standard deviations Σ , see Table 2. The 327 

derivation of the prior of 3:1θ  is outlined in the first paragraph of Section 5.2. The prior 328 

of 6:4θ  is derived from similar data of a real sewer network as outlined in the second 329 

paragraph of Section 5.2. 330 

Table 2. Predefined parameter set used by NetCoS for data generation, as well as means Μ  and 331 

standard deviations Σ  of the prior of the log-normally distributed model parameters 332 

T),,,,,( 321 λλλµβα=θ . The predefined values used for data generation correspond to the 333 

mode of the prior. 334 

Parameter Predefined values used 
for data generation j  jΜ  jΣ  

α 3.1 1 3.69 1.31 

β 56.8 2 60.3 12.2 

μ 15.6 3 23.6 13.3 

λ1 0.011 4 0.016 0.008 

λ2 0.068 5 0.095 0.048 

λ3 0.160 6 0.224 0.112 

Nexp 20   - - 

 335 

The results of the inferences are shown in Figure 2. The reduction of the variance of the 336 

parameter distribution between the prior and posterior reflects the knowledge gained 337 

from the inference. The poor identifiability of 1λ  is reflected by the almost identical 338 

shapes of the prior and posterior marginals. This can be explained by the low importance 339 

of the parameter, as discussed in Section 4.2. 340 
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Figure 3 shows distinct correlations between the model parameters 2,λβ ; 3,λβ  341 

and 3,λµ . The correlations suggest that faster deterioration of the pipes can be 342 

compensated by higher rehabilitation activity with regard to pipes in CS 2 and 3. Further 343 

insight into the importance and correlation of the parameters is gained by the sensitivity 344 

analysis discussed in Section 4.2. 345 

In Figure 4, the results of the inference are showed as survival functions expressing 346 

the probability of a pipe being in a certain condition depending on its age. In the case of 347 

m  condition states, the probability that a pipe is in CS itC ≤)(  is described by the 348 

survival function )1...(1),( −= mitSi , see Eqs. A.3 and A.4  in the Appendix. On 349 

average, the model can identify the survival function parameters, as indicated by the 350 

almost identical predefined and estimated mean survival functions shown in Figure 4. 351 

The results also indicate that considerably larger uncertainties are associated with )(2 tS  352 

compared to )(1 tS . This fact can be explained by (i) the rather uncertain prior of µ ,(ii) 353 

the great importance of 3λ  and (iii) the correlation between 3λ  and µ . 354 

In the supplementary material, results are provided from simulations using the same 355 

data but the unconditioned likelihood according to Eq. (1). These results illustrate the 356 

underestimation of pipe deterioration if the rehabilitation process is neglected. 357 
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 358 

Figure 2. Prior (dashed lines) and posterior (solid lines) marginal distributions of the model 359 

parameters θ . The vertical lines indicate the predefined parameter values used for data generation 360 

with NetCoS. 361 
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 362 

Figure 3. Scatter plot matrix of parameters sampled from the posterior by MCMC. All 363 

combinations of two-dimensional marginal distributions are given illustrating the correlations 364 

between the parameters. Warm colors denote regions of high probability density. 365 

  366 
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 367 

Figure 4. Predefined and estimated survival functions. The conditioned likelihood was used for 368 

inference. The gray shaded areas indicate the predefined survival functions based on the parameters 369 

in Table 2 used for data generation in NetCoS. The solid lines are the means of the estimated 370 

survival functions, and the dashed lines are the 10 % and 90 % quantiles based on the posterior 371 

distribution of θ . Good convergence is obtained if the conditioned likelihood is used. 372 

4.2 Model sensitivity to the prior 373 

A common way of obtaining priors is to elicit them from experts (O'Hagan et al., 374 

2006). Eliciting probability distributions is demanding and may be biased for a range of 375 

reasons (Tversky and Kahneman, 1974). There is also concern about the problem of 376 

specifying probability distributions precisely based on subjective beliefs (Rinderknecht et 377 

al., 2012). Given the evidence of the uncertainty of our prior and its insufficient 378 

description, we are concerned about the sensitivity of model outputs to the specification 379 

of prior probability distributions. Specifically, we are interested in identifying the most 380 

influential parameters specifying the location and variances of the prior distributions on 381 

model predictions. That indicates the parameters for which prior elicitation is critical. 382 
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4.2.1 Methods 383 

Prior knowledge of the model parameters θ  is described by (independent) 384 

probability distributions with mean Μ  and standard deviationΣ . The goal is to analyze 385 

the change in model output resulting from a change in the hyperparameters Μ  andΣ . 386 

Having specified adequate ranges for Μ  andΣ , we draw a sample of them, assuming 387 

that they are independent and uniformly distributed. Each sample represents one possible 388 

prior. We perform inferences with each of the generated priors in combination with one 389 

specific dataset and the likelihood as specified by Eq. (6), resulting in posterior 390 

distributions each associated with one prior. We calculate the specified model outputs 391 

from each of the posterior distributions. This yields samples of influencing parameters 392 

and model outputs. 393 

We use variance-based techniques for regional sensitivity analysis (Saltelli et al., 394 

2000) to explore the impact of changes in Μ  and Σ  on the model output derived from 395 

the properties of the posteriors. Different smoothing algorithms exist, allowing variance-396 

based sensitivity coefficients to be estimated on the basis of samples of influencing 397 

parameters and corresponding model outputs (Gasser et al., 1991; Seifert and Gasser, 398 

1996, 2000). We used Kernel Regression Smoothing with an Adaptive Plug-in 399 

Bandwidth algorithm implemented by Herrmann and Maechler (2011) in the statistics 400 

and graphics language and environment R (R Core Team, 2012). 401 

Using MCMC for inference is computationally demanding even for small datasets. 402 

To overcome this limitation, we apply importance sampling to extend the MCMC-based 403 

results for one prior to the others (Robert and Casella, 2010). This permits us to 404 

efficiently approximate posterior distributions for extensive realizations of priors on the 405 

basis of one or a few samples drawn from posteriors by MCMC with different priors. We 406 

calculate the effective sample size (ESS) for every posterior distribution generated by 407 
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importance sampling (Robert and Casella, 2010). The ESS is a useful measure for 408 

examining the worth of the samples generated by this technique. In cases of unacceptably 409 

low ESS, the respective samples were substituted by samples generated by MCMC. 410 

As the model output, we focus on the ages at which 50% of the pipes are transferred 411 

from CS 1 to 2  and 2  to 3, respectively. Another relevant property is the standard 412 

deviation of the pipe ages at these transitions. As the inference yields the distribution of 413 

θ , the model output also has a distribution. Therefore, we consider the mean and the 414 

standard deviation of 415 

(i) the age at which 50% of the pipes pass from CS 1 to CS 2  (median pipe 416 

age when CS changes from 1 to 2 ) 417 

(ii) the age at which 50% of the pipes pass from CS 2  to CS 3 (median pipe 418 

age when CS changes from 2  to 3). 419 

We further consider the mean of  420 

(iii) the standard deviation of the pipe age when CS changes from 1 to 2  421 

(iv) the standard deviation of the pipe age when CS changes from 2  to 3 .  422 

4.2.2 Results 423 

The sensitivity analysis is performed by using the same synthetic dataset used in the 424 

analysis discussed in Section 4.1. We refer our analysis to the prior specified in Table 2. 425 

The possible variations of the hyperparameters Μ  and Σ  are defined by the ranges 426 

shown in Table 3, which correspond to a deviation of +/- 50 % from the hyperparameters 427 

specifying the given prior. Our analysis is based on 10,000 randomly sampled priors, 428 

given that Μ  and Σ  are independently and uniformly distributed within the intervals. 429 
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Table 3. Lower and upper limits ba,  of the hyperparameters Μ  and Σ . See also Table 2. 430 

Parameter Hyperparameter Lower limit a Upper limit b 

α 1Μ  1.84 5.53 

1Σ  0.65 1.96 

β 2Μ  30.2 90.5 

2Σ  6.12 18.4 

μ 3Μ  11.8 35.4 

3Σ  6.66 20.0 

λ1 
4Μ  0.008 0.023 

4Σ  0.004 0.012 

λ2 
5Μ  0.048 0.142 

5Σ  0.024 0.071 

λ3 
6Μ  0.111 0.335 

6Σ  0.056 0.168 

 431 

The results in terms of relative sensitivity coefficients relating to the model 432 

outcomes specified above are summarized in Table 4. In general, high sensitivity 433 

coefficients associated with specific hyperparameters reflect either (i) high importance of 434 

the corresponding parameters, (ii) low identifiability of the corresponding parameters, or 435 

(iii) a combination of both. In turn, low sensitivity coefficients indicate low importance 436 

and/ or good identifiability. From the results shown in Table 4 we can see that the 437 

hyperparameters defining the locations of the model parameters 2,, λµβ  and 3λ  have 438 

relative sensitivities higher than 0.1 and can be labeled as important. Furthermore, the 439 

standard deviation of the median pipe ages when CS changes from 1 to 2  is also 440 

sensitive to the standard deviation of the prior of 2λ  ( 5S ), and similarly, the standard 441 

deviation of the median pipe age when CS changes from 2  to 3 is sensitive to the 442 

standard deviation of the prior of 3λ ( 6S ). From this sensitivity analysis we can 443 
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conclude that prior knowledge of the means of the model parameters 2,, λµβ  and 3λ  444 

as well as the standard deviations of 2λ  and 3λ  have a decisive influence on the 445 

outcome of the parameter inference. All other hyperparameters are of minor sensitivity 446 

and importance.447 
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Table 4. Relative sensitivities of model results to the hyperparameters Μ  and Σ   of the prior distributions of the model parameters T),,,,,( 321 λλλµβα=θ . 448 

Relative sensitivities >0.1 are highlighted. 449 

Model result 

Relative sensitivities 

α β μ λ1 λ2 λ3 

1Μ  1Σ  2Μ  2Σ  3Μ  3Σ  4Μ  4Σ  5Μ  5Σ  6Μ  6Σ  

Mean of the median pipe age when 
CS changes from 1 to 2  0.003 0.001 0.362 0.040 0.067 0.010 0.004 0.002 0.247 0.029 0.049 0.001 

Standard deviation of the median 
pipe age when CS changes from 1 to 
2  

0.017 0.003 0.087 0.001 0.002 0.008 0.006 0.056 0.138 0.155 0.073 0.065 

Mean standard deviation of the pipe 
age when CS changes from 1 to 2  0.027 0.005 0.333 0.045 0.085 0.013 0.003 0.002 0.194 0.024 0.060 0.001 

Mean of the median pipe age when 
CS changes from 2 to 3 0.008 0.001 0.315 0.035 0.216 0.034 0.002 0.001 0.096 0.011 0.113 0.001 

Standard deviation of the median 
pipe age when CS changes from 2 to 
3  

0.019 0.004 0.110 0.002 0.012 0.042 0.004 0.018 0.052 0.037 0.350 0.132 

Mean standard deviation of the pipe 
age when CS changes from 2 to 3 0.017 0.003 0.245 0.029 0.312 0.050 0.001 0.001 0.029 0.003 0.147 0.001 

 450 
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5 Model application 451 

5.1 Data 452 

The data for the practical application discussed in the present chapter derives from a 453 

utility in which systematic, extensive rehabilitation of the sewer network was introduced 454 

in the mid-eighties and has continued to the present. We used a subset of the data 455 

comprising more than 6700 pipes made of spun concrete with diameters of 800 mm or 456 

less. For this group of pipes, only replacement was applied as a rehabilitation measure. 457 

The utility aims to replace pipes which are in CS 2  and 3 due to their structural deficits 458 

within few years. Condition records of sewer pipes replaced in the past are no longer 459 

available. Pipe conditions are rated according to VSA (2007) which is based on DIN EN 460 

752 (2008). The rating system comprises five condition levels assessed on the basis of 461 

CCTV records (DIN EN 13508-1, 2013) as specified in DIN EN 13508-2 (2011). We 462 

aggregated pipes in the two best and two worst condition classes to one condition class 463 

respectively. This was done (i) to avoid identifiability problems, and (ii) due to the 464 

intricate prior elicitation which becomes more demanding as more condition states are 465 

considered. The age and condition distributions shown in Figure 5 indicate a very good 466 

overall condition of the sewer network, including older parts. This is due to the extensive 467 

rehabilitation. 468 
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 469 

Figure 5. Condition and age distributions in absolute and relative fractions of the real case dataset 470 

used for inference. Pipe conditions are rated according to VSA (2007), which comprises five 471 

condition classes. The two best and two worst condition classes are aggregated to CS 1 and CS 3, 472 

respectively. 473 

5.2 Prior elicitation of model parameter distributions 474 

Prior knowledge of the parameters ( )Tµβα ,,3:1 =θ  defining the aging behavior 475 

were elicited from seven engineers with expertise in the assessment of sewer conditions 476 

and rehabilitation (Arreaza Bauer, 2011). The methodologies for expert elicitation and 477 

aggregation of several expert opinions to one (inter-subjective) prior were used as 478 

applied by Scholten et al. (2013) for water supply mains. Specifically, partial pooling 479 



33 

(Gelman and Hill, 2009) was used for aggregation. The prior distributions of 3:1θ  are 480 

based on elicited 5, 25, 50, 75 and 95 % quantiles of 1T  and 2T  of concrete sewer pipes 481 

irrespective of any further pipe characteristics and influencing factors such as 482 

construction period, diameter, traffic load, etc. Results from the individual interviews are 483 

shown in Figure B.1 in the Appendix and further described by Arreaza Bauer (2011). 484 

The prior parameters are assumed to be independently log-normal distributed with mean 485 

3:1Μ  and standard deviations 3:1Σ . We selected log-normal distributions to describe the 486 

priors as the parameters 3:1θ  cannot be negative. The values for 3:1Μ  and 3:1Σ  gained 487 

by elicitation and subsequent aggregation of the individual expert estimates correspond 488 

to those used in the simulations discussed in Section 4.1, see Table 2. 489 

While using rather generic (inter-subjective) prior knowledge about sewer pipe 490 

deterioration, we formulated priors for the parameters ( )T3216:4 ,, λλλ=θ  based on 491 

information from the utility of the sewer network considered here. According to 492 

statements by employees of the utility, the rehabilitation activity was approximately 493 

constant in the period from the mid-eighties until the present. Given this evidence, we 494 

used data from current rehabilitation planning indicating which sewer pipes will be 495 

replaced within a planning horizon of five years. Table 5 shows the numbers and 496 

percentages of sewer pipes in CS i  which will be or have been replaced in this five-year 497 

planning period. The respective averaged percentages can be formulated as rehabilitation 498 

rates iλ  using Eq. (14) and setting the percentages equal to the probability reh
iP  that a 499 

pipe in CS i  is rehabilitated within one year. Since 6:4θ  are zero or positive, we assume 500 

the parameters to be independently log-normally distributed with means 6:4Μ  and 501 

standard deviations 6:4Σ . Since we have no reliable evidence for the uncertainty of 6:4θ , 502 
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we further assume that 2/6:46:4 ΜΣ = . The values obtained for 6:4θ  based on the 503 

numbers given in Table 5 can be considered as our best knowledge and hence as the most 504 

probable values. We therefore set these values equal to the modes of the log-normally 505 

distributed priors of the parameters 6:4θ  and derive from these the means 6:4Μ  and 506 

standard deviations 6:4Σ . The derived values for 6:4Μ  and 6:4Σ  are included in Table 5. 507 

Table 5. Total numbers of pipes in CS 3,2,1=i , percentages of pipes in CS 3,2,1=i  to be 508 

replaced within the planning period from 2011 to 2015 and hyperparameters 6:4Μ  and 6:4Σ . 509 

CS total number 
of pipes 

Percentages of pipes to be replaced (%) Hyperparameters 

2011 2012 2013 2014 2015 Mean j  jΜ  jΣ  

1 6383 0.3 0.4 0.5 0.6 0.3 0.4 4 5.70∙10-3 2.85∙10-3 

2 334 3.0 0.9 3.0 4.2 0.3 2.3 5 3.22∙10-2 1.61∙10-2 

3 4 50.0 0.0 0.0 0.0 0.0 10.0 6 0.15 7.36∙10-2 

 510 

5.3 Results of the inference 511 

Figure 6 shows both inferred survival functions and the mean of the survival 512 

functions as suggested by the prior. The estimated survival functions suggest a shorter 513 

residence time in CS 2  but a longer total physical lifespan (defined here as the age a 514 

pipe at transition to CS )3  compared to the prior. The resulting median physical lifespan 515 

of approximately 95 years appears to be realistic, knowing that strict quality control 516 

procedures are in place in this utility. Again, )(2 tS  is much more uncertain than )(1 tS  517 

for the possible reasons already discussed in Section 4.1. The figure illustrates further the 518 

estimated mean probability that a pipe with age t  is not replaced. This survival function 519 

represents the functional survival of the pipes. 520 
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Figure 7 shows prior and posterior marginal distributions of the model parameters. 521 

The low identifiability of 1λ  is also apparent here. The locations of both posterior 522 

marginal distributions of 2λ  and 3λ  are clearly shifted towards larger values. As it 523 

reveals from Table 5, only 5.0 % of the pipes are currently in CS 2  and 0.06 % are in 524 

CS 3. Thus, rather high replacement rates 2λ  and 3λ  do not necessarily imply that an 525 

unrealistically large number of pipes has been replaced. We admit that the prior of 3λ  is 526 

derived on the basis of very few records. It can be expected that more pipes, particular 527 

pipes in CS 3, are replaced until 2015 than indicated by Table 5 if further pipes are 528 

observed to be in CS 3 in this period. This would explain that the posteriors suggest 529 

higher rehabilitation rates than the priors. 530 

To show the relevance of considering pipe rehabilitation, we also performed an 531 

inference with the unconditioned likelihood function according to Eq. (1). Figure 8 532 

shows the corresponding estimated survival functions together with the mean of the 533 

survival functions as described by the prior. The effect of ignoring pipe rehabilitation is 534 

evident, as we obtain a completely unrealistic median physical lifespan of approximately 535 

440 years. The difference between Figure 6 and Figure 8 reflects the substantial 536 

rehabilitation carried out by the utility in the past. As a consequence only a relatively 537 

small number of pipes is in CS 2  and even less in CS 3. Rehabilitation leads to a 538 

selection effect on pipes (the worse the condition of a pipe the more likely is its 539 

replacement) so that slow-aging pipes are over-represented in the data. The fact that 540 

rehabilitation depends on the CS is further reflected by a more distinct bias of )(2 tS  541 

compared to )(1 tS . This is confirmed by the results obtained from the analysis with 542 

NetCoS, see supplementary material. 543 
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 544 

Figure 6. Mean of the prior and estimated survival functions. The conditioned likelihood was used 545 

for inference. The gray shaded areas indicate the mean of the survival functions described by the 546 

prior. The black solid lines are the means of the estimated survival functions and the dashed lines 547 

are the 10% and 90% quantiles based on the posterior distribution of θ . The white line describes 548 

the mean probability that a pipe with certain age is not rehabilitated based on the posterior 549 

distribution of θ . 550 
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 551 

Figure 7. Prior (dashed lines) and posterior (solid lines) marginal distributions of the model 552 

parameters θ .  553 
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 554 

Figure 8. Mean of the prior and estimated survival functions. The unconditioned likelihood was 555 

used for inference. The gray shaded areas indicate the means of the survival functions described by 556 

the prior. The solid lines are the means of the estimated survival functions and the dashed lines are 557 

the 10% and 90% quantiles based on the posterior distribution of θ . The estimated physical 558 

lifespan is unrealistically high. 559 

6 Discussion 560 

We introduced a sewer deterioration model to deal with missing historical records of 561 

sewer conditions. We approached the problem by conditioning the likelihood on the fact 562 

that we only use condition data from pipes that have not been rehabilitated. A 563 

rehabilitation model was needed to calculate the conditioned likelihood. We applied 564 

Bayesian inference to identify the model. Our results show that the proposed 565 

deterioration model copes satisfactorily with a lack of historical records of sewer 566 

conditions. We will discuss the results and the limitations of our model in more detail 567 

below. 568 
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6.1 Explicit consideration of past rehabilitation 569 

In practice, the availability of asset data is often less than optimal, and historical 570 

records of maintenance and rehabilitation are very often missing. We consequently 571 

developed our model to deal with two important shortcomings: (i) lack of historical data 572 

and (ii) small datasets. When rehabilitation is not considered adequately, the lack of 573 

historical data leads to a systematic overestimation of sewer life spans, as previously 574 

reported (Scheidegger et al., 2011; Schmidt, 2009). In this article, we show that this bias 575 

can be removed by combining the deterioration model with a rehabilitation model, and 576 

that parameters can be estimated when combining prior information with data via 577 

Bayesian inference. Two examples are used to demonstrate these points. 578 

In the first example, we applied the proposed model to a well-defined synthetic 579 

dataset generated on the basis of the same underlying models for deterioration and 580 

rehabilitation of the sewer network as were used for the inference. Very good compliance 581 

is obtained between the estimated survival functions and the predefined ones used for 582 

data generation. We would stress that other models that do not consider rehabilitation 583 

failed to reproduce the original parameter values for this idealized data generated by 584 

NetCoS as revealed by Scheidegger et al. (2011).  585 

We further applied the model to data of a real sewer network which underwent 586 

extensive rehabilitation in recent decades. Without considering these rehabilitations in 587 

the model, the data suggests extremely long and unrealistic physical life spans. However, 588 

the proposed model effectively compensates for the bias, resulting in realistically 589 

estimated life spans. 590 
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6.2 Model identifiability and limitations 591 

We did not succeed in estimating the model parameters by frequentist inference, e.g. 592 

by maximizing the likelihood. The main reason is that the available datasets do not 593 

contain enough information to estimate the rehabilitation rates independently of the 594 

parameters defining the deterioration. Thus, a Bayesian approach to include prior 595 

knowledge is needed for parameter inference. The use of expert knowledge on pipe 596 

deterioration has already been proposed by Herz (1995) and Kleiner (2001) in the case of 597 

scarce data and information availability. In this sense, we used an approach which allows 598 

us to exploit the best available (expert) information and to update this knowledge by 599 

inferences from data. 600 

In order to estimate the quantitative influence of the prior on the parameter 601 

inference, we performed a sensitivity analysis and identified the most influential 602 

hyperparameters. Knowledge about the importance of the hyperparameters may be useful 603 

when elaborating a concept for eliciting prior knowledge. Elicitation and quantification 604 

of prior knowledge was outside the scope of this paper and may be found in O'Hagan et 605 

al. (2006), Rinderknecht et al. (2011, 2012) and Scholten et al. (2013). We assume that 606 

the deterioration of sewer pipes does not differ fundamentally between similar sewer 607 

networks in similar regions. Thus, prior knowledge based on different expert opinions or 608 

datasets appears meaningful. However, we have experienced that the rehabilitation 609 

strategy may differ substantially between different utilities. Prior knowledge of 610 

rehabilitation thus needs to be acquired carefully for each individual case. 611 

By analyzing the model with the aid of synthetic data, we gained important insights 612 

into its behavior. However, the synthetic data probably do not reflect the variability of 613 

real data. So the results do not necessarily imply that the model will perform well in real 614 

life. Nevertheless, the model shows promising performance when applied to real data 615 
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lacking historical records. Even though we recognized a considerable shift in the location 616 

of the posteriors of model parameters defining the rehabilitation rates in relation to the 617 

priors, the available data gives no indication of possible deficits in the model structure.  618 

We implemented a very simple rehabilitation model, assuming age-invariant and 619 

exclusively condition-dependent rehabilitation rates. In reality, it is probable that the 620 

rehabilitation strategy and hence the rehabilitation rates vary over time. It is important to 621 

keep in mind that the model does not aim to identify past rehabilitation but to determine 622 

deterioration as accurately as possible from the available information. However, the 623 

rehabilitation model could be substituted by a more complex model if useful. Further 624 

insight into the deficits of the model structure may be gained by using NetCoS and 625 

introducing variability to the user-defined processes deterioration and rehabilitation 626 

driving the data generator. This would allow the supposed variability of real data to be 627 

emulated. Similarly, exceptional real cases comprising both extensive rehabilitation in 628 

the past and historical data may extend our knowledge of the model behavior. In this 629 

case, the results could be compared by using (i) the unconditioned likelihood (of the 630 

deterioration model alone) in combination with the dataset including the historical 631 

records, and (ii) the conditioned likelihood (of the combined deterioration-rehabilitation 632 

model) and the data without historical records.  633 

The proposed deterioration model may also be substituted by another one or 634 

extended by a range of additional features. These could include the incorporation of 635 

additional factors influencing deterioration, and consideration of more than one observed 636 

condition state per sewer line, allowing more accurate predictions and considerably 637 

extending its application. 638 
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7 Conclusions 639 

• If datasets lack historical records, sewer life spans are overestimated if the applied 640 

model does not account for the combined effect of deterioration and rehabilitation. 641 

The proposed combined deterioration and rehabilitation model effectively 642 

compensates for the bias in estimated life span. 643 

• The inclusion of prior knowledge is a necessity due to the limited information in the 644 

data and therefore the limited identifiability of the model parameters. Since at least 645 

some prior knowledge is available, the strength of Bayesian inference is obvious, in 646 

particular in the case of small datasets. 647 

• The analysis of model sensitivity to the prior revealed that the inference results are 648 

mainly influenced by the means and only partly by the standard deviations of the 649 

priors of four out of six model parameters. This result can facilitate the knowledge 650 

elicitation process from experts, since the elicitation of parameter uncertainty is more 651 

challenging than merely eliciting its mean.  652 

• The applied importance sampling technique for sensitivity analysis permitted an 653 

efficient implementation of regional sensitivity analysis with reasonable 654 

computational demand. 655 

• The approach presented here is flexible and allows individual aspects to be 656 

substituted and extended. Consideration of (i) more than three condition classes, (ii) 657 

two or more subsequently observed condition states per sewer pipe, and (iii) 658 

additional factors influencing pipe deterioration such as pipe material and diameter 659 

may be relevant to a broader range of applications.  660 
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Appendix B: Figures 787 

 788 

Figure B.1. Quantiles of pipe ages 1T  and 2T  for concrete pipes elicited from seven experts. The 789 

quantiles were partly elicited as single values and partly as ranges, see Arreaza Bauer (2011) and 790 

Scholten et al. (2013). In one case, only 1T  was elicited (second graph). In some cases, 2T  is 791 

smaller or equal to 1T , 12 TT ≤ . This is due to the difficulty of expressing quantities in form of 792 

quantiles and to neglecting a consistency check in the interview protocol to ensure that 12 TT > . 793 
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Supplementary material - additional results  794 

The figure below shows supplemental results of the example discussed in section 4.1 795 

in form of survival functions. The same data was used but using the unconditioned 796 

likelihood according to Eq. (1). The figure illustrates the bias obtained if the pure 797 

deterioration model is used in combination with data affected by both deterioration and 798 

rehabilitation. 799 

 800 

Figure 1. Predefined and estimated survival functions. The unconditioned likelihood was used for 801 

inference. The gray shaded areas indicate the predefined survival functions based on the parameters 802 

in Table 2 used for data generation in NetCos. The solid lines are the means of the estimated 803 

survival functions, and the dashed lines are the 10 % and 90 % quantiles based on the posterior 804 

distribution of θ . The estimated survival functions are biased suggesting considerably longer 805 

sojourn times in CS 1 and 2 . 806 
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