

Suspected screening of organic micropollutants and degradation products in environmental matrices: general workflow and technological limitations

Margoum Christelle, Bados Philippe, Guillemain Céline, Coquery Marina, Miège Cécile Irstea, Freshwater systems, ecology and pollutions research unit, Lyon - Villeurbanne centre – France christelle.margoum@irstea.fr

Introduction

A reliable identification of suspected organic micropollutants at trace levels in environmental samples requires integrated analytical workflows based on liquid chromatography coupled to high resolution mass spectrometry. The challenge for suspected screening strategy is **to develop a systematic and generalizable workflow**, based on the acquisition of general information on suspected compounds, with spectral and chromatographic data and on the confrontation of the acquired data to libraries or software tools. Such analytical strategy was already successfully applied to identify degradation products of selected micropollutants in waste waters during tertiary ozonation processes, in constructed wetlands downstream waste water treatment plants and also in surface waters from agricultural watersheds.

Materials and methods

A combined targeted and suspected screening strategy has been applied to various waters samples:

1 - Waste waters from treatment plants (pharmaceuticals, hormones, pesticides)

2 - Surface waters from agricultural watersheds (pesticides, veterinary drugs)

© Irstea

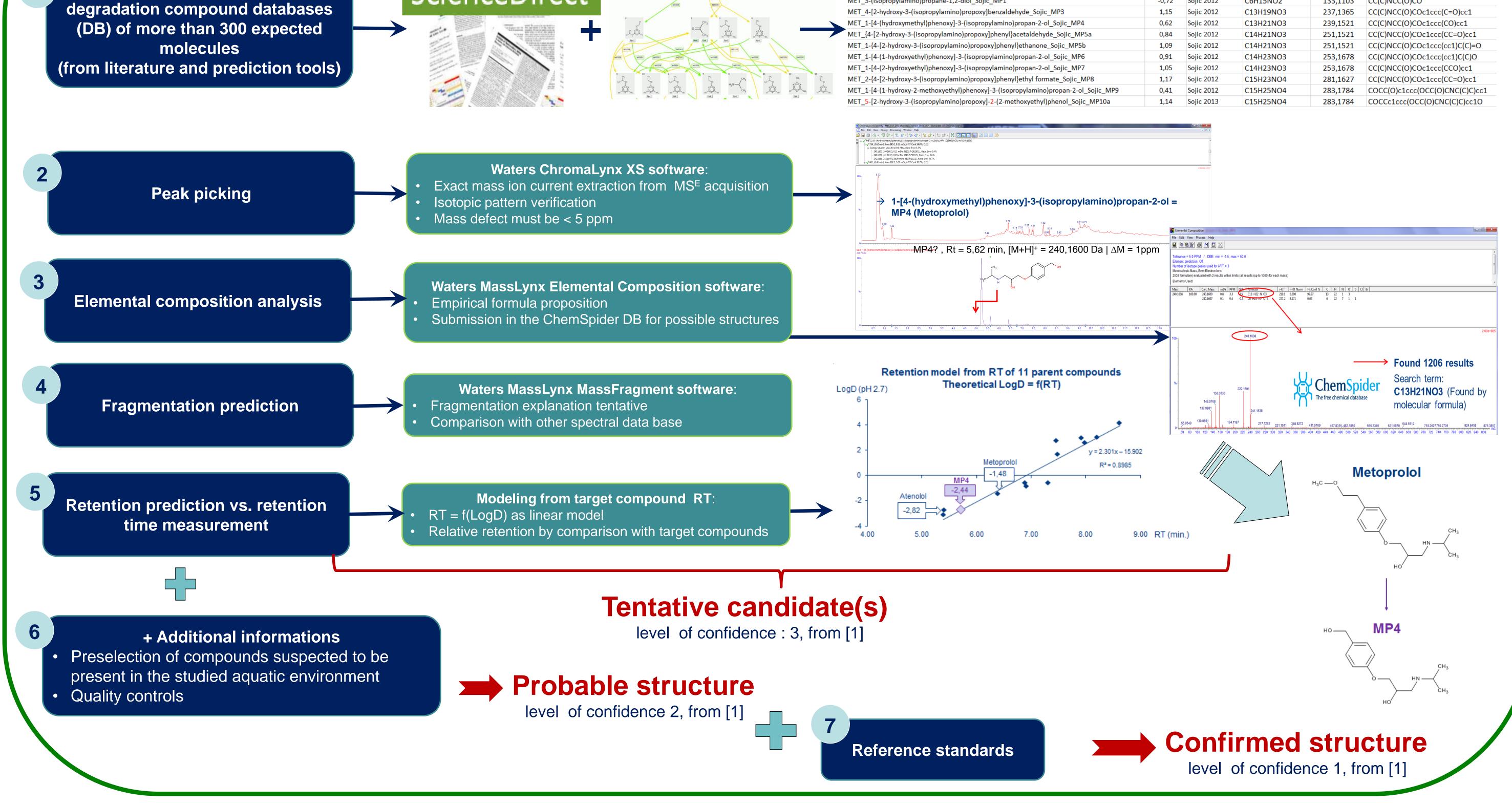
Analytical procedure

- Direct injection of filtered waters
- Analysis of parent and transformation products with a Waters ACQUITY H-Class UPLC system coupled to a Xevo G2 S QTOF-HRMS

- Separation on a C18 HSS-T3 column (100 x

- 2.1 mm, 1.8 µm Waters)
- Data acquisition and processing with
 TargetLynx and ChromaLynx (MassLynx
 4.1 software)

© Waters


- **MS^E** acquisition mode (Data Independent Acquisition mode): low and high collision energy levels, sensitivity mode: resolution at 20000 (for 556,2771 Da)

General workflow– the case study of metoprolol degradation in constructed wetlands

eawag Biocatalysis/Biodegradation Database

Name	LogP	Reference (Author/year)	Empirical Formula	Mono isotopic mass (Da)	SMILES
Metoprolol	1,48		C15H25NO3	267,1834	COCCc1ccc(OCC(O)CNC(C)C)cc1
MET_1-amino-3-[4-(2-methoxyethyl)phenoxy]propan-2-ol_Chen_2012_M1	0,36	Chen 2012	C12H19NO3	225,1365	COCCc1ccc(OCC(O)CN)cc1
MET 3-(isopropylamino)propage-1 2-diol Solic MP1	-0.72	Solic 2012	C6H15NO2	133 1103	

Conclusions

Development of a successful analytical workflow of screening strategy to identify degradation products in environmental case studies

→ Limitations:

- sample preparation: needs for sensitivity AND exhaustivity
- data acquisition: differences between HRMS techniques and data formats → difficulty to share analytical databases
- data treatment: time consuming \rightarrow need for new software tools
- data storage: problem of data size
- confirmation ONLY with reference standards

References

[1] Schymanski E., et al. (2015). Non-target screening with high-resolution mass spectrometry: critical review using a collaborative trial on water analysis. Analytical and Bioanalytical Chemistry: 1-19.

NonTarget 2016

Ascona, Switzerland,

29.May – 03.June, 2016