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What makes up an organism’'s metabolome?
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Measuring and interrogating the metabolome
NMR spectroscopy

Mass spectrometry
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Overview

1. Introduction to environmental metabolomics
2. Workflows

0 Direct infusion mass spectrometry (standardised)

0 Data processing (relatively standardised)
0 Metabolite annotation and identification (not standardised)

3. Examples
0 Endogenous metabolites
0 Xenobiotics within organisms

4. Where next?



Metabolomics and Environmental stress

What are the effects of these stressors on living
organisms?

Can we develop novel information-rich approaches for
environmental regulation?
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Water pollution
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Environmental monitoring

» Environmental quality assessed (traditionally)
by measuring pollutant levels

» European Union has list of ca. 40 priority
pollutants

EU WFD (Water Framework Directive, 2005)

- shifted environmental quality assessments towards integrative
biological effects monitoring

- currently based on assessment of the composition &
abundance of fauna and flora

Need for high throughput, mechanism-based testing strategies to
determine environmental health



What can molecular biomarkers offer?

Ecological relevance
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Complexity of what we are trying to measure!

Uptake, metabolism
& effect of

xenobiotics on

organism health

RN/ Chemical signalling

(exometabolome)
Endogenous metabolites

(>10,000 forming endometabolome)

* Biodiversity: 1000's of species, 1000's of metabolomes
 Microbiomes too!



Overview

2. Workflows

0 Direct infusion mass spectrometry (standardised)



Non-targeted vs. targeted metabolomic studies

METABOLIC PROFILING
or NON-TARGETED ANALYSIS

* (Semi)-quantitative detection of a wide
range of metabolites

e NMRor GC-MS or LC-MS

« Data acquisition without a priori knowledge
of biologically interesting metabolites

*  Metabolite identification requires post data
acquisition
« Discovery/hypothesis generating

sono0a | |

0n00 4

TARGETED ANALYSIS

Quantification of a smaller number of
(related) metabolites for

— generally less than 20
LC-MS/MS
Metabolite identity already known

— no further metabolite identification
required

Hypothesis testing




Generic workflow
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Why Direct Infusion Mass Spectrometry (DIMS)?

Non-targeted high-throughput screening approach
No selection bias due to LC or GC column, yet has high analytical sensitivity

Potentially low(er) cost than LC-MS
— Higher sample throughput (few min / sample)

— Potential savings on consumables

Extremely high reproducibility of m/z data (ppm errors; very small compared to

those of LC retention time data)
But only measures m/z (putative annotation of compounds only)

Potential for ion suppression (but much less of an issue with nano-electrospray

ionisation (nESI) than with normal flow rate ESI)



Sample introduction using Triversa chip-based

nanoelectrospray system

e Fully automated
e No sample carry-over

e Stable nanoelectrospray (RSDs of few %) ﬁ Ad\flﬂ“

BioSciences



FT-ICR, Orbitrap and Q Exactive mass spectrometers

Orbitrap
spectrometer

Triversa
nanoelectrospray
lon source

Linear ion trap (LTQ)
mass spectrometer

LTQ Orbitrap

ELECTRON CORPORATION




DIMS pipeline

DIMS Experiment
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SIM-Stitching
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> €= - 590
30 Mz

 Collection of multiple adjacent SIM windows that are stitched together

e An optimized strategy for wide-scan DIMS that increases dynamic range but
maintains high mass accuracy (ca. 3000 m/z measurements, root mean square
mass error of 0.16 ppm and max abs mass error of 0.29 ppm)

* Increases metabolome coverage

e Now applied in other research fields, e.g. petroleomics and organic chemistry *

Southam et al. Anal Chem. 79:4595-4602 (2007 ) * Chainet et al. Anal. Chem. 2012, 84 (9):3998-4005
Weber et al. Anal Chem. 83:3737-43 (2011) * Kujawinski et al. Annual Reviews of Marine Science. 2011, 3: 567-599



Optimized SIM-stitching parameters

Table 1. Parameters for DI SIM-stitching implemented ona LTQ FT Ultra (FT-ICR)

parameter LTQ FT Ultra
AGC target 1 x 10°
SIM scan range m/z 100°
overlap of SIM scans m/z 30 (m/z 15 removed from each end)
time for SIM scan (transients) 155 (10)
total range m/z 7T0—590
total number of overlapping SIM scans 7
total acquisition time per sampleb 2min 15 s

% Scan mode: wide SIM. I*Irlcll.lding a 30 s start delay of dummy scans.

Southam et al. Anal Chem. 79:4595-4602 (2007 )
Weber et al. Anal Chem. 83:3737-43 (2011)
Southam et al. Nature Protocols (under review)




Overview

2. Workflows

0 Data processing (relatively standardised)



Data processing and quality assessment

DIMS Experiment
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Multi-step signal filtering

(1) SNR threshold

(>3.5) .I;tdﬂ_iii — .|.|_|.I_L|.l

— Lol Il i il
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peaks in 2-out-of-3 I | | I I || | I I | | I | | IJ
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m/z measurments

Samples

Payne et al., ] Am Soc Mass Spectrom. 20:1087-95 (2009 )



Handling missing values — k-nearest neighbour

e Compared missing value imputation methods; we found that k-nearest
neighbour (KNN) to be superior

e Uses samples with similar characteristics to impute the missing values

* [ntensity matrix:

Sample 1 | 100
Sample 2 | 100
Samples Sample 3 | 500

C"\le\lf\
Qalilipic

n

Sample 5 | 100

Hrydziuszko et al. Metabolomics 8:161-174 (2012 )



Batch (or drift) correction
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Kirwan et al. Anal Bioanal Chem 405:5147-5157 (2013)



Generalized logarithm (glog) transform

12r

PQN data with KNN

Glog'ed data
MV, no scaling
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Loadings plot dominated by very Most peaks now make some
few high intensity peaks contribution to the loadings plot

Glog transformation stabilises the technical variance of the peaks



Quality assessment

SIM-Stitching

(1) SNR threshold
(>3.5)

(2) Replicate filter
peaksin 2-out-of-3

(3) Sample filter
peaksin >50% of
biological samples

b = bl
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Median RSD (across 3 technical replicates)
calculated for each sample for QA/QC
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<

Normalisation (PQN)

<

Missing values (KNN)

<

Variance scaling (glog transform)

\

Statistical analysis

Parsons et al. Analyst 134:478-485 (2009)

Median RSD for each peak for QA/QC

Assess QC drift, median RSD for QA/QC,
reported




DIMS pipeline s [ 2 5] oo [ = [
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> dozen papers published - e s s
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Southam et al., Nature Protocols (under review)




Making workflow available...

Davidson et al. GigaScience (2016) 5:10

o m—— GigaScience Galaxy is intuitive to use and

highly flexible allowing non-
programmers to create

Galaxy-M: a Galaxy workflow for processing @ workflows
and analyzing direct infusion and liquid

chromatography mass spectrometry-based
metabolomics data

Accessibility, Standardisation
& Reproducibility

Robert L. Davidsc:nwr, Ralf 1. M. Weberh, Haoyu Liuz, Archana Sharma-Oates” and Mark R. Viant®

Abstract

Background: Metabolomics is increasingly recognized as an invaluable tool in the biological, medical and
enviranmental sciences yet lags behind the methodological maturity of other omics fields. To achieve its full
potential, including the integration of multiple omics modalities, the accessibility, standardization and reproducibility of
computational metabolomics tools must be improved significantly.

F Coiany

Results: Here we present our end-to-end mass spectrometry metabolomics workflow in the wWidge . o & 5 i viermaalany bhamac.k
Galaxy. Mamed Galaxy-M, our workflow has been developed for both direct infusion mass Spei s # sseme
and liquid chromatography mass spectrometry (LC-MS) metabolomics. The range of tools prelldliidl

processing of raw data, eg. peak picking and alignment, through data cleansing, e.g. missing| ™" * | Galaxy-M i =2
preparation for statistical analysis, e.g. normalization and scaling, and principal components : 1 mce we resentoue ando-and assspetromet metabckeics ipeline i Galaxy, the widly e el g, . =

R T ; : Get Data Gabany i inative 1o use and bhighly fexible alboning nen-programmers to create analysis pipelines Irem & broad and expandeiy | ynnamed history
associated statistical evaluation. We demonstrate the ease of using these Galaxy workflows Y spsmcima B e e . B
DIMS and LC-M5S datasets, and provide PCA scores and associated statistics to help other ug|fes e i, . g v oo, s v oo o SO b . morabos g, vl oo | | @ THE oy s sy ou o0
they can accurately repeat the processing and analysis of these two datasets. Galaxy and dal swusis e ety bosed sy A exsation, T pndes st uckme o2 || fman esmal surcs
pre-installed in a virtual machine (VM) that can be downloaded from the GigaDB repositony u sk Into
code, executables and installation instructions are available from GitHub. Workdlows

= Al workflows

Conclusions: The Galaxy platform has enabled us to produce an easily accessible and reproducit News and updates

metabolomics workflow. More tools could be added by the commiunity to expand its functionalit
that Galaxy-M workflow files are included within the supplementary information of publicatio
metabolomics studies to achieve greater reproducibility. B UNIVERSITY®

June, 2015

BIRMINGHAM

Keywords: Metabolomics, Lipidomics, Workflow, Pipeling, Liguid chromatography mass spect
Fourier transform ion cyclotron resonance, FT-ICR, Galaxy project, Repraducibility

L

Davidson et al., Gigascience 5:10 (2016)



Overview

2. Workflows

0 Metabolite annotation and identification (not standardised)



Metabolite identification -
A BOTTLENECK IN METABOLOMICS

For metabolomics to be successful it is essential to derive biological
knowledge from analytical data - a view emphasised by a Metabolomics
ASMS Workshop Survey 2009 which found that the biggest bottlenecks
in metabolomics were thought to be identification of metabolites (35%)

and assignment of biological interest (22%)

http://fiehnlab.ucdavis.edu/staff/kind/Metabolomics-Survey-2009

© Birmingham Metabolomics Training Centre and University of Birmingham



Mass spectral data includes another level of

complexity
In one sample set there were
20 different "ion types"
Bt [MNH] [*2C N\c;“H]+ Protonated and deprotonated ions
- 3 * an + _ -
[13¢ M+H]" [M+H]* and [M-H]
[M-HCOOH] x Fragment ions
\ [M+Na]* [M-HCOOH]* and [M-NH;]*
/ Adduct ions
- [M+HCOOK]*, [M+HCOONa]*
1111111111111111 [M+3HCOONa]*
4444444 | oguz e o [M+NaCl+HCOONa]*
e | e o0 e | | (20T | e [M+3NaCl]f
/7 [M+Fe]?
FT Artefact [M+Cul?*
peaks

There is structure to the data - Apply RT, response correlation,
m/z difference to group metabolite features of same metabolite



Typical workflows for metabolite annotation
& identification (DIMS, LC-MS..)

Accurate m/z De novo structural
measurement and ion characterisation
type characterisation

Convert m/z to
molecular formula(s) -
apply 7 golden rules,

Match MS” data to
mass spectral

isotopic information database

t*

tch molecul
Maf;ﬂrmfae:: ar MS/MS or MS” data
metabolite(s) in acquisition (on-line )
chemical or metabolite - -
e Retention time
prediction?




MI-Pack - Metabolite Identification Package

Chemometrics and Intelligent Laboratory Systems 104 (2010) 75-82

Contents lists available at ScienceDirect = CHEMOMETRICS
B AND INTELLIGENT
. X i LABORATORY
Chemometrics and Intelligent Laboratory Systems i

journal homepage: www.elsevier.com/locate/chemolab —_

MI-Pack: Increased confidence of metabolite identification in mass spectra by
integrating accurate masses and metabolic pathways (a) Processing KEGG, simulated and experimental data
Ralf .M. Weber ®, Mark R. Viant *** Eree of paicpai iferances Bpermeria ond st ek e

Substrate
product
pairs

KEGG

2 Centre for Systems Biology, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom Compaunds

b School of Biosciences, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom

—_— | Sample filtering —‘|'

Experimental
peak lists

Final
experimental
peak list

Simulated Simulated
peak list random
peak lists

» Collect peak pattarmns

» Filter peak patterns

» Estimate errors associated with
peak differences for several
mass ranges

V
1}

1. Compouncs (as adducts) |
2. Direct/Indirect reactant pairs |
3 1
H

)

H

. Unigue transformations
(i.e. formula differences)

'
'

i * Peaks (m/zvalues)

P

1 « Observed peak differences
'

P

Additionally can use knowledge of
metabolic pathways

Transformation mapping (TM) algorithm
F ). Map transformations to observed peak differences, restricted by mass error surface
Il. Store potential direct and indirect reactant pairs
Mll. Map reactant pairs (MI-DB and MI-hDB) to observed potential reactant pairs by using transformations

o it I
] . Single-peak search v

: 1. Compare m/z values of all peaks to MI-DB and MI-hDB

1 Il. Record all matches with a mass error of < 1.0 ppm

I e e e o e e e ) e e e e e e e e e -

i direct ' drect A !
o »C O

q—@-.q—@—p mfz [malic acid + H]" [i acid + Na]™ [ inic acid + K]’
m/z135.02680 m/z 139.00018 m/z 156.98977

Formula "start” Formula "end” Peak-pair Tr on Type

O [C.H:0s + HI' [C4H,O, + Ma]* mfz3.97138 ~He-0-H +Na Diract
@  CHO+Nal  [CHO.+ K miz17.98959 +Hy - Na' + K Direct

[CHsOs + H]' [CaHsO4 + K] miz 21.96087 SO-H K Indirect




PutMetID - Conversion to molecular formula and
then metabolite

Apply RT, response correlation, m/z
difference to group features
of same metabolite

ORIGINAL PAPER " il casmomimatanuors

Systems biology Advance Access publication February 18, 2011

Automated workflows for accurate mass-based putative
metabolite identification in LC/MS-derived metabolomic datasets

Marie Brown', David C. Wedge?, Royston Goodacre?>, Douglas B. Kell®,
Philip N. Baker®, Louise C. Kenny®, Mamas A. Mamas'-®, Ludwig Neyses'-®
and Warwick B. Dunn!-2.3.7.%

15cheaol of Biomedicine, The University of Manchester, Manchester M13 9PT, 2Schocl of Chemistry, 2Manchester
Centre for Intel?rati\ﬂe Systems Biology, Manchester Interdisciplinary Biocentre, University of Manchester, Manchester
M1 7DM, UK, “Department of Obstetnics and Gynecology, Faculty of Medicine and Dentistry, University of Alberta,
2J2.01 WMC, Edmonton AE TEG 2R7, Canada, “The Anu Research Centre, Department of Obstetrics and
Gynaecology, University College Cork, Cork University Maternity Hospital, Cork, Ireland, ®Manchester Heart Centre,
Central Manchester University Hospitals NHS Foundation Trust, Manchester Royal Infirmary and 7 Centre for
Advanced Discovery and Experimental Therapeutics, York Place (off Oxford Road), Central Manchester University
Hospitals NHS Foundation Trust, Manchester Mi3 SWL, UK

Azsociate Editor: John Cuackenbush




Annotation vs. Identification

« Identification = two
orthogonal properties (RT,
MS/MS) compares to

http://www gigasciencejournal.com/content/2/1/13 (G]g él)EN - E
authentic chemical standard .
under identical analyfical
conditions The role of reporting standards for metabolite
annotation and identification in metabolomic
studies
° Annota'l'ion = One (or‘ mor’e) Reza M Salek'?, Christoph Steinbeck', Mark R Viant®, Royston Goodacre® and Warwick 8 Dunn®
orthogonal property match to prowon

The application of reporting standards in metabolomics allow data from different laboratories to be shared,
integrated and interpreted. Although minimum reporting standards related to metabolite identification were

databases (not necessarily
acquired under identical
analytical conditions)

Salek et al., Gigascience 2:13 (2013)



Four levels of confidence

Sumner et al. Proposed minimum reporting standards for chemical
analysis, Metabolomics, 2007, 3:211-221

Currently, four levels of metabolite identifications can be reported

Not defining how to perform metabolite identification but defining how
to report it

Level | Confidenceof Identity | Level of Evidence

. . Comparison of two or more orthogonal
Confidently identified P , , , , =
1 properties with an authentic chemical standard

compounds. analvsed under identical analvtical conditions.
Based upon phvsicochemical properties and/or
R Putatively annotated spectral similarity with public/commercial
) compounds spectral libraries, without reference to authentic
chemical standards.
Based upon characteristic phvsicochemical
2 Putatively annotated properties of a chemical class of compounds. or
B compound classes by spectral similarity to known compounds of a

chemical class.

Although unidentified and unclassified, these
4 Unknown compounds metabolites can still be differentiated and
quantified based upon spectral data.




Overview

3. Examples
0 Endogenous metabolites



Experimental design

Individual
Daphnia Measure Multivariate PLS
Chemical reproduct Measure :
productive metabolism regression to
exposures fithess determine
- =) =) whether
. o metabolites can
Cadmium of individual predict
Propranolol Daphnia reproductive

Dinitrophenol (DNP) : fitness

T -
Relative Abundance
- L]
= = =
@
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Metabolic biomarkers can also predict reproductive
fitness in response to all 3 toxicants

200 T T T T T T T T F W
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rz (CV) = 0.91

0r

using metabolic biomarkers

Predicted reproductive output

a0 | | | | | | | | |
o 20 40 al] B0 100 120 140 160 180 200

Measured reproductive output

Optimal PLS regression model: 49 peaks derived using forward selection



Which metabolites predict reproductive fitness?

Putative annotation of 49-biomarker signature using MI-Pack

Metabolite identification confirmed by MS/MS of metabolite
sample compared to pure standard

Measured Empirical Mass error ] ]
lon form Putative metabolite name(s)
m/z formula(e) (ppm)
175.02480 C6H806 [M-H]- -0.08 Ascorbic acid (confirmed by MS/MS)
243.00911 C7H1007 [M+37Cl]- 0.01 Methylcitrate or homocitrate
258.05642 C8H15NO6 [M+37ClI]- 0.11 N-Acetyl-D-hexosamine
etc...

"Ascorbic acid has long been associated with fertility"
Luck et al., Biol. Reprod. 52, 262-266 (1995)

"We conclude that ascorbic acid is a leading nutrient in reproductive tissue functions
[in teleost fish]" Dabrowski & Ciereszko, Aquacult. Res. 32, 623-638 (2001)



Overview

3. Examples

0 Xenobiotics within organisms



Complexity of one exogenous (xenobiotic) compound

Non-targeted
metabolomics

Liver &
testes

NMR testes NMR liver
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Fenitrothion Metabolism (1)

Observed | Tissue | p-value Fold change Empirical Metabolite
m/z HD/SC | HD/LD formulae identification
261.99450 | Liver |1.10x101 |eo 24.83 | CgH,(NOPS | Desmethyl-
261.99444 | Testes | 2.61x10"2 | oo 33.82 |[M-HI fenitrothion
320.09224 | Liver |2.09x10'* |73.44 |15.32 |C;H;gN;OS | S-methyl-
320.09240 | Testes | 3.14x10° |9.82 |9.41 |[M-HI glutathione
100 — 302.08128
1(2%?65? 100 7 254.07796— GOS8
—~ an J CioH N,O5 320.09181
< 80 ~ 80 - S-methyl-GSH
@ = 272.08852 (parent ion)
% ] H,C o_ O 8 CmHu_Nsoe-\u C11H‘JBN3_OES-
g » OQN:©/S;P<O_CH3 @60 o= o=
< H,C o Desmethylfenitrothion _§ A N
E 40 OZNU C,H,NO,PS < 40 - 03 ) 0}
L C HNO; 261.99413 = o SR
® 20 - 152.03{1\? &£ o0 - }0 \_H,%O
r : .
0 : | : . 0 0 OHII.Il... | 1H
100 150 rmf2200 250 100 200 300 400
m/z
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Fenitrothion Metabolism (2)

Liver

r=0.893
p =1.7x10°10
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Findings from fenitrothion study

1) Endogenous metabolism: fenitrothion significantly disrupts
acetylcholine, disrupts key steroids, affects energy metabolism and

disrupts phenylalanine metabolism

2) Xenobiotic metabolism: O-demethylation observed as the major
route of fenitrothion detoxification in roach.

Southam et al., Environ Sci Technol 45:3759-3767 (2011)



Complexity of complex, uncharacterised mixture of
exogenous (xenobiotic) compounds

WATER SAMPLE TESTES SAMPLE
Waste water effluent (WWE) captured Fish testes extracts after exposures to:
on solid phase extraction: DIMS a) Control water; b) 50% WWE;

&) Contrel water; b) 100% WWE l ) 1009 WWE
;
Peak list expanded to account for: i
) Change ol xforns | DATA | Eromecissesany
ii) Phase 2 metabolism conjugate PROCESSING | [ 2 Control water; c) 100%
XENOBIOQTIC PEAKS l XENOBIOTIC
+ Calegory 2 melabolsed COMPARISON ——>{  PEAK
xenaoiatics
+ Category 3: xenobiotics l REMOVAL
Criteria: !
a) Peaks within £1 ppm accurate m/z | Original 3 class dataset |
b} Fold increase from contral to 100% WWE:
Te StES LCMS i) =2 fold in water samples
: i} =1.5-fold in testes samples

Paak idenfity validation ENDOGENOUS PEAKS
+ Category 1

Non-targeted !

metabolomics XENOBIOTIC METABOLOMICS
COMPOUND DATA

DISCOVERY INTERPRETATION




Xenobiotics and metabolised xenobiotics discovered in fish testes

Table 2 UHPLC-QTOF MS based identification of a selection of peaks computationally predicted as being of xenobiotic or metabolised xencbiotic crigin in the direct infusion MS datasets
(Tables 85, S4)

UHPLC-QTOF MS validation Waste water effluent Testas extract
Name Confirmation  m/z Peak intensity m/z Extract Peak intensity g Peak ppm
type — - phase — : modification error
Dilution  Effluent Dilution  Effluent in testes
water water exposed
Chloroxylenol RT 155.02697 628 8,967 155.02696 Lipid 0 2731 1.6 < 1077 Nonc —(,033
Chlorophene RT & MS/MS  217.04252 0 47,570 217.04279 Lipid 0 23202 52 x 107° None (.897
Chlorophene |:l3C‘.) RT & MS/MS  218.4591 1157 12,637 218.04614 Lipid 0 3754 20 x 107 None 0.704
Triclosan RT & MS/MS  286.94392 0 49,887 366.90074 Polar 0 3917 91 x 107" +S0y4 —0.011
Triclosan sulfate MS/MS 366.90064 0 104,673 None (.286
Triclosan (*"Cl) RT & MS/MS  288.94099 0 58,851 368.89780 Polar 0 4271 87 x 107% 480, —0.019
Triclosan sulfate (”C]) MS/MS 368.80768 0 07.743 None (0.333
Triclosan (2 x ”C]) RT & MS/MS  290.93798 0 22,895 370.89480 Polar 0 1551 27 x 107 480, 0.003
Triclosan sulfate (2 x 'Q'I“JC]) MS/MS 370.89481 0 31,430 None —0.024
Linear alkylbenzene sultonate (LAS) metabolite | MS/MS 357.14504 0 200627  387.15539  Polar 68 925 25 x 1077 +0CH;-H —1.553
Linear alkylbenzene sulfonate (LAS) metabolite | MS/MS 327.13410 D 20,880 [M-H]  to (0.413
[M + OAc]

Pcalks were confirmed with standard compounds utilising UHPLC-QTOF MS rctention times (RT), tandem mass spectrometry (MS/MS), or both (Table §7). The g valucs correspond to p valucs
that has been FDR corrected

Southam et al., Metabolomics 10:1050-1058 (2014)



Overview

4. Where next?



Reflect on current status...

Metabolomics workflows, both analytical and
computational, are improving and there is increasing
trend towards harmonisation

Metabolomics community is generally in favour of
open access / data sharing eftc.

Yet metabolite identification remains a huge
challenge

How do we accelerate research into metabolite
identification?



Focus on Model Organism Metabolomes

Existing expt'al
observations from
literature (text mining)

Predicted metabolism:

genome wide metabolic
reconstruction

New expt'al data:
more exhaustive

analytical methods
Comprehensive database ’ (Martin Jones talk)
of 1000's of identified

metabolites for each

Model O International

IV\o0Qei Ui yumam
Metabolome (open access)

N coordination: new
Metabolomics Society

Task Group




Daphnia Deep Metabolome Annotation Project
(Martin Jones' talk this Thursday)

« Multi-platform characterisation: extensive extraction &
fractionation chemistries, chromatography (LC, GC,...), detectors
(mass spectrometry, NMR spectroscopy...)

e Databases: new local database, mzCloud, and Metabolights

« Part of University of Birmingham's Technology Alliance Partnership
with Thermo Fisher Scientific

Thermo

SCIENTIFI1C



@i rmetabolites MDPI

Communication

The Time Is Right to Focus on Model
Organism Metabolomes

Arthur S. Edison !, Robert D. Hall 2, Christophe Junot 3 Peter D. Karp * Irwin J. Kurland ?,
Robert Mistrik ®, Laura K. Reed 7, Kazuki Saito ®, Reza M. Salek ?, Christoph Steinbeck 9
Lloyd W. Sumner '” and Mark R. Viant -*

Metabolites 2016, 6, 8; doi:10.3390/ metabo6010008



Environmental Metabolomics @ University of Birmingham

| Martin Jones
Dr Ulf Sommer
. Dr Jaspreet Sihra
(L & Dr Adam Hines
5 :' ' Dr Andrew Southam
| Dr Nadine Taylor
Dr Ralf Weber
~ Tom Lawson
Dr Cate Winder
- Dr Warwick Dunn
: Prof Charles Tyler (Exeter)
~ Prof Elizabeth Hill (Sussex)
~ Prof Kevin Chipman
= Dr Michael Cunliffe (Plymouth)
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