Supplementary information to the article "Arsenic pollution of groundwater in Vietnam exacerbated by deep aquifer exploitation for more than a century", published in PNAS. doi:10.1073/pnas.1011915108

Weblink: www.eawag.ch/arsenic-vietnam

Quality Assurance and Quality Control (QA/QC)

The robustness of the chemical analyses was assured by intermittent analysis of certified reference samples (SLRS-4 River Water Canada, TM-28.2 Lake Ontario, SPS-SW2 Surface Water Level 2 and reference samples from the international interlaboratory quality evaluations ARS13-16, ARS17-20, and ARS21-24 (1). In addition, cross-evaluation between different analytical techniques applied in our laboratories in Vietnam and Switzerland were carried out, e.g. AAS versus ICP-MS (see results in Table S1 below).

The results of certified samples and cross-checking agreed within $\pm 5\%$. Calibration curves had r² >0.999 with the exception of Na and K where r² were 0.990 (ICP-OES). Standard deviations of triplicates were always <5%. The limits of quantification (LOQ, 10 x standard deviation of noise) were:

0.1 mg/L	for As, Cd, Co, Cr, Cu, Hg, Li, Ni, Pb, Sb, Se, U, and Zn
0.5 µg/L	for Al
1 µg/L	for B
5 mg/L	for Ba
0.01 mg/L	for Fe, Mn and Ammonium (NH_4^+ -N)
0.1 mg/L	for Ca, K, Mg, Na, Phosphate (PO_4^{3-} -P), and Sulphate (SO_4^{2-})
0.25 mg/L	for Nitrate (NO ₃ ⁻ -N)
0.5 mg/L	for Chloride (Cl ⁻) and Dissolved Organic Carbon (DOC)
1 mg/L	for Br and I
2 mg/L	for Si
12 mg/L	for HCO3 ⁻ (0.2 mmol/L)

Reference

 Berg M, Stengel C (2006) ARS21-24 arsenic reference samples Interlaboratory Quality Evaluation (IQE). Report to Participants, Eawag, Swiss Federal Institute of Aquatic Science and Technology, Dubendorf, Switzerland.

Table S1. Cross-correlations of selected parameters determined by various methods in our laboratories in Vietnam and Switzerland.

⁽¹⁾ Analyses conducted by the Swiss Federal Institute of Aquatic Science and Technology (Eawag), Dübendorf, Switzerland.
⁽²⁾ Analyses conducted by the Research Centre for Environmental Technology and Sustainable Development (CETASD), Hanoi University of Science, Vietnam National University.

Parameter	Analytical methods	Samples	Cross-correlation
Arsenic (A)	ICP-MS ⁽¹⁾ vs. AFS ⁽¹⁾	n = 216	$r^2 = 1.00$
Arsenic (B)	ICP-MS ⁽¹⁾ vs. AAS ⁽²⁾	n = 461	$r^{2} = 0.99$
Ammonium	Photometry ⁽¹⁾ vs. Photometry ⁽²⁾	n = 21	$r^2 = 0.98$
Calcium	ICP-OES ⁽¹⁾ vs. AAS ⁽²⁾	n = 21	$r^2 = 1.00$ $r^2 = 1.00$ $r^2 = 1.00$ $r^2 = 1.00$ $r^2 = 1.00$ $r^2 = 1.00$ $r^2 = 1.00$
Chloride	IC ⁽¹⁾ vs. IC ⁽²⁾	n = 21	$r^{2} = 0.99$

Iron	ICP-OES ⁽¹⁾ vs. AAS ⁽²⁾	n = 21	$r^2 = 1.00$
Magnesium	ICP-OES ⁽¹⁾ vs. AAS ⁽²⁾	n = 460	$r^{2} = 0.99$
Manganese	ICP-OES ⁽¹⁾ vs. AAS ⁽²⁾	n = 74	$r^2 = 1.00$
Silicon	Photometry ⁽¹⁾ vs. Photometry ⁽²⁾	n = 21	$r^{2} = 0.99$