Department Aquatic Ecology

Eco-evolutionary interactions in space and time: the role of ECO-EVO-DEVO

Why this project?

The evolution of biological diversity is strongly facilitated by natural selection, both in space and time. Spatial environmental differences induce divergent natural selection, driving adaptive divergence and, ultimately, the evolution of reproductive isolation (i.e. ecological speciation). However, the propensity and degree of adaptive diversification may strongly depend on organismal dispersal and on geographic isolation (i.e. gene flow may counteract adaptive divergence and introduce novel genetic variation). Likewise, environments commonly fluctuate over time, giving rise to temporal shifts in selection.

Natural selection acts on the composite phenotype, which is the product of genetic variation and phenotypic plasticity. Hence, the determinants of phenotypic variation – and their mechanisms of inheritance (i.e. direct genetic and plastic effects, and transgenerational effects) – are of key importance for the evolution of biological diversity.

Our work here investigates the evolution of natural populations in response to interacting forces of selection and gene flow (in space and time), and the interactions between genetic variation, phenotypic plasticity (developmental plasticity) and transgenerational effects (in particular maternal investment in egg size) in diversification (an ECO-EVO-DEVO approach).

Study systems:

  • Threespine stickleback (Gasterosteus aculeatus) – in and around lake Myvatn, Iceland. Past work (by Räsänen) includes studies on lake-stream stickleback in the Misty lake, Canada.
  • Arctic charr (Salvelinus alpinus) – Dwarfed charr in complex of lava caves near Myvatn and resource polymorphic populations in multiple lakes across Iceland.

Approaches: Spatially and temporally replicated field surveys, population genetics, transcriptomics and laboratory rearing experiments.

Stickleback – Iceland:

  • Stickleback within lake Myvatn show phenotypic divergence in feeding morphology, body size, brain size and thermal performance across major habitat types within the lake. This divergence occurs in face of extensive gene flow (as reflected by microsatellite markers and lack of geographic barriers to dispersal).
  • At the same time, the stickleback population shows strong temporal fluctuations (across years) in population densities and phenotypic variation (e.g. age at maturation, body size and feeding morphology).
  • Recent rearing experiments indicate that this intra-lacustrine phenotypic divergence is due to a combination of direct genetic and plastic responses, as well as parental effects.
  • Stickleback across a pond complex (19 ponds) in the vicinity of lake Myvatn, show subtle phenotypic divergence and strong population genetic structure. Based on population genetic work, this divergence is likely strongly influenced by genetic drift in small populations, as well as different degrees of connectivity among ponds – mediated by seasonal flooding events.

Stickleback – Canada:

  • In the Misty lake system, the lake and inlet stream stickleback show extensive phenotypic and genetic divergence, whereas the lake and outlet stream stickleback show subtle divergence. Lake-stream divergence is facilitated by both genetic and plastic effects on phenotypes.
  • Intriguingly, there is an apparent lack of mating isolation between the lake and stream stickleback in the Misty system. This suggests that other mechanisms (e.g. temporal isolation or selection against migrants) maintain phenotypic and genetic divergence in this system.

Arctic charr – lava caves:

The cave charr present small (dwarfed) benthic phenotypes. The populations have small population sizes and show extensive population genetic structure across the caves and repeated parallel phenotypic divergence from the ancestral type of lake charr. Ongoing work on this system focuses on understanding evolutionary processes in small populations.

Arctic charr – lakes:

This work is ongoing, but first results (PhD thesis work of Samantha Beck) indicate that both egg size and variation in gene expression during juvenile development are key components of the evolution of resource polymorphism.



Räsänen, K.; Hendry, A. P. (2008) Disentangling interactions between adaptive divergence and gene flow when ecology drives diversification, Ecology Letters, 11(6), 624-636, doi:10.1111/j.1461-0248.2008.01176.x, Institutional Repository
Räsänen, K.; Kruuk, L. E. B. (2007) Maternal effects and evolution at ecological time-scales, Functional Ecology, 21(3), 408-421, doi:10.1111/j.1365-2435.2007.01246.x, Institutional Repository


Oke, K. B.; Bukhari, M.; Kaeuffer, R.; Rolshausen, G.; Räsänen, K.; Bolnick, D. I.; Peichel, C. L.; Hendry, A. P. (2016) Does plasticity enhance or dampen phenotypic parallelism? A test with three lake–stream stickleback pairs, Journal of Evolutionary Biology, 29(1), 126-143, doi:10.1111/jeb.12767, Institutional Repository
Millet, A.; Kristjánsson, B. K.; Einarsson, Á.; Räsänen, K. (2013) Spatial phenotypic and genetic structure of threespine stickleback (Gasterosteus aculeatus) in a heterogeneous natural system, Lake Mývatn, Iceland, Ecology and Evolution, 3(10), 3219-3232, doi:10.1002/ece3.712, Institutional Repository
Seymour, M.; Räsänen, K.; Holderegger, R.; Kristjánsson, B. K. (2013) Connectivity in a pond system influences migration and genetic structure in threespine stickleback, Ecology and Evolution, 3(3), 492-502, doi:10.1002/ece3.476, Institutional Repository
Baker, J. A.; Räsänen, K.; Moore, J.-S.; Hendry, A. P. (2013) Genetic and plastic contributions to trait divergence between parapatric habitats: female life-history traits in threespine stickleback within the Misty Lake system, Evolutionary Ecology Research, 15(4), 473-487, Institutional Repository
Kotrschal, A.; Räsänen, K.; Kristjánsson, B. K.; Senn, M.; Kolm, N. (2012) Extreme sexual brain size dimorphism in sticklebacks: a consequence of the cognitive challenges of sex and parenting?, PLoS One, 7(1), e30055 (4 pp.), doi:10.1371/journal.pone.0030055, Institutional Repository
Räsänen, K.; Delcourt, M.; Chapman, L. J.; Hendry, A. P. (2012) Divergent selection and then what not: the conundrum of missing reproductive isolation in Misty Lake and stream stickleback, International Journal of Ecology, 2012, 1-14, doi:10.1155/2012/902438, Institutional Repository
Berner, D.; Kaeuffer, R.; Grandchamp, A. C.; Raeymaekers, J. A. M.; Räsänen, K.; Hendry, A. P. (2011) Quantitative genetic inheritance of morphological divergence in a lake-stream stickleback ecotype pair: implications for reproductive isolation, Journal of Evolutionary Biology, 24(9), 1975-1983, doi:10.1111/j.1420-9101.2011.02330.x, Institutional Repository
Hendry, A. P.; Hudson, K.; Walker, J. H.; Räsänen, K.; Chapman, L. J. (2011) Genetic divergence in morphology–performance mapping between Misty Lake and inlet stickleback, Journal of Evolutionary Biology, 24(1), 23-35, doi:10.1111/j.1420-9101.2010.02155.x, Institutional Repository
Raeymaekers, J. A. M.; Boisjoly, M.; Delaire, L.; Berner, D.; Räsänen, K.; Hendry, A. P. (2010) Testing for mating isolation between ecotypes: laboratory experiments with lake, stream and hybrid stickleback, Journal of Evolutionary Biology, 23(12), 2694-2708, doi:10.1111/j.1420-9101.2010.02133.x, Institutional Repository

Related student projects

Ph.D. theses

Antoine Millet (2013) Spatio-temporal environmental and morphological variation in a dynamic natural system, Lake Myvatn threespine stickleback. (Univ. of Iceland/Holar Univ. College, Iceland).

M.Sc. theses

Coralie Delrue (ongoing) Diet and temperature mediated phenotypic divergence in threespine stickleback from lake Myvatn, Iceland: phenotypic plasticity vs. genetic divergence. Holar Univ. College, Iceland

Tamara Diethelm. (2011) Maternal investment and maternal effects in threespine stickleback (Gasterosteus aculeatus) inhabiting contrasting temperatures”. Dept. of Biology, ETH-Zurich, Switzerland.

Matthew Seymour. (2011) Threespine sticklebacks (Gasterosteus aculeatus) in Belgjarskógur, Iceland: Phenotypic and genetic divergence at a small spatial scale. Holar Univ. College, Iceland.

Mike Senn (2010) Divergence in reproductive traits of threespine stickleback inhabiting contrasting temperatures. Univ. of Zurich, Switzerland.

Andrea Koopmans (2010) Divergence in functional morphology: diet and gill raker structure in threespine stickleback (Gasterosteus aculeatus) in Lake Mývatn, Iceland. Dept. of Environmental sciences, ETH-Zurich, Switzerland.

Vera Gräzer (2009) Adaptive Divergence in Reproductive Traits and Behaviour: Do Nest Site Choice, Maternal Investment & Parental Care Differ among three Ecotypes of Icelandic Threespine Stickleback, Gasterosteus aculeatus? Dept. of Biology, ETH-Zurich, Switzerland.

Matthieu Delcourt (2006) Reproductive isolation in threespine stickleback (Gasterosteus aculeatus). McGill University, Canada.