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Abstract Wastewater treatment plants (WWTP) are notorious for poor data quality and sensor reliability

due to the hostile environment in which the measurement equipment has to function. In this paper, a

structured residual approach with maximum sensitivity (SRAMS) based on the redundancy of the

measurements is used to detect, identify and reconstruct single and multiple sensor faults in a single reactor

for high activity ammonia removal over nitrite (SHARON) process. SRAMS is based on inferences, which

are insensitive to the faults in the sensor of interest and sensitive to faults in the other sensors. It is used for

four types of sensor failure detection: bias, drift, complete failure and precision degradation. The application

of sensor validation shows that single and multiple sensor faults can be detected and that the fault

magnitude and fault type can be estimated by the reconstruction scheme. This sensor validation method is

not limited by the type or application of the considered sensors. The methodology can thus easily be applied

for sensor surveillance of other continuously measuring sensors and analysers.

Keywords Data reconstruction; fault detection and identification; nitrogen removal; sensor validation and

reconciliation; smart sensor

Introduction

Biological nitrogen removal from wastewater with high nitrogen loads can become a

major cost, particularly when the wastewater contains only small amounts of biologically

degradable carbon compounds (Abeling and Seyfried, 1992). The single reactor for high

activity ammonia removal over nitrite (SHARON) process in combination with the

anaerobic ammonium oxidation (Anammox) process has demonstrated its efficiency and

flexibility in the treatment of sludge digestion wastewater, which is characterised by high

concentrations of ammonia nitrogen. In comparison with conventional N-removal, the

coupled SHARON and Anammox processes in theory result in a 60% reduction of the

stoichiometrically required oxygen, while no carbon source needs to be added and sludge

production is negligible (van Dongen et al., 2001). The successful combination of the

SHARON and Anammox processes is, however, highly dependent on the control of the

nitrite/ammonia ratio in the effluent of the SHARON process (Volcke et al., 2005). How-

ever, the SHARON process is highly nonlinear, time-varying, fast-responding and sensi-

tive to disturbances such as hydraulic changes, influent composition changes and

equipment failures (Van Hulle et al., 2005). Although operators might be aware of poor

performance, they are in general unable to find the causes or to predict the performance

in time to correct the operation successfully due to the lack of any effective form of real-

time monitoring. Moreover, WWTPs are notorious for poor data quality and sensor

reliability due to the hostile environment in which the measurement equipment has to

function (Rosén et al., 2003). Regarding the aforementioned characteristics, the pursuit of

suitable strategies for fault detection and sensor validation is a crucial step in the devel-

opment of advanced process control systems for the SHARON process.
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To ensure correct operation of control systems, the measurement and control equipment

in WWTPs must be mutually consistent. For monitoring quality standards, a high accuracy

is needed, but only low demands are set on the time-scale. In control applications, on the

other hand, a high measuring frequency and a short response time are essential (Rieger

et al., 2003). Process operators obtain information on the current process conditions from a

range of sensor types. Hence, the accuracy of sensors is crucial to successful process con-

trol and monitoring, and the ability to detect sensor faults is very useful, especially in pro-

cesses that are monitored and controlled based on process information from many sensors.

Faulty sensors that are either completely or partially failing (hard fault or soft fault) pro-

vide incorrect information for monitoring and control. This can be detrimental to decision

schemes that are based on, or supported by, on-line measurements. A complete sensor fail-

ure disables access to the relevant measurement. Monitoring or control based on the

measurement is then infeasible. Bias, drift or precision degradation of a sensor signal, in

fact partial failure of the sensor, causes the accuracy and reliability of the measurement to

decrease, which may result in an erroneous control action and false perception of the per-

formance of the monitored system or component. Therefore, prompt detection of the occur-

rence and correct identification of the location of sensor faults and reliable reconstruction

(or recovery) of faulty sensors is of primary importance for efficient operation (Wang and

Chen, 2004). In this paper, a sensor reconciliation method using maximum sensitivity

based on the redundancy of the measurements is used to detect, identify and reconstruct

faulty sensors in a biological process.

Methods

Numerous methods have been developed for fault detection and isolation (FDI). Gener-

ally, these methods fall into one of three broad categories: analytical redundancy, knowl-

edge-based methods and measurement aberration detection (Kourti et al., 1995; Dunia

et al., 1996; Qin and Li, 1999, 2001; Yoo et al., 2003, 2004). Whereas FDI is relatively

well established, sensor fault detection and validation is quite a new research area, which

is required in hostile wastewater treatment but has few application results (Rieger et al.,

2004). In this paper, we used a structured residual approach with maximised sensitivity

(SRAMS) for the detection and identification of faulty sensors using a normal, quasi-

steady state process model suggested by Qin and Li (1999).

Principal component analysis (PCA)

Sensor validation based on statistical models relies on the use of normal process data to

build process models (Qin and Li, 1999). Principal component analysis (PCA) models are

predominantly used to extract variable correlation from data. PCA decomposes the data

matrix (X), which contains m sensors and N samples for each sensor into a score matrix

T and a loading matrix P by singular value decomposition (SVD).

X ¼ TPT þ ~T ~PT ¼ X̂þ ~X ¼ ½T ~T�½P ~P�T ¼ �T �PT ð1Þ

where X̂ ¼ TPT is the model matrix and ~X ¼ ~T ~PT is the residual matrix. The

principal component subspace (PCS) is Sp ¼ span{P}and the residual subspace (RS) is

Sr ¼ span{ ~P}. A sample vector x can be projected on the PCS and RS respectively:

x̂ ¼ PPTx ; Cx [ Sp ð2Þ

~x ¼ ~P ~PTx ; ðI2 CÞx ¼ ~Cx [ Sr ð3Þ

x ¼ x̂þ ~x ð4Þ
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PCA uses the squared prediction error (SPE) as a fault detection index

SPE ¼ k~xk2 ¼ k ~Cxk2 ¼ xTðI2 CÞx # da ð5Þ

The detection limit for SPE can be determined with Q-statistics. If a sensor fails, which

breaks the normal correlation, the residual will increase above the detection threshold

(Qin and Li, 1999).

Sensor fault identification with SRAMS

If the normal process model is built as a PCA model, the model residuals are used to

detect sensor faults. In the presence of a sensor fault, the sensor measurement (x) will

contain the normal values of the process variables and the fault, that is,

x ¼ xp þJi f iðtÞ ð6Þ

where xp is a vector of normal sensor values, fi(t) [ R li is a vector of the fault magni-

tude and Ji [ Rnxli is a matrix of fault directions, li is the dimension of the fault. While

Ji ¼ ½00· · ·1· · ·0�T represents a single sensor fault in the ith sensor, Ji contains the corre-

sponding columns of the identity matrix to represent multiple sensor faults. Using

Equation (6), the model residual, e(t), can be written as follows

eðtÞ ¼ BxðtÞ ¼ BxpðtÞ þ BJi f iðtÞ ¼ epðtÞ þ BJi f iðtÞ ð7Þ

where B is the model matrix which is ~PT in the PCA model and ep(t) is the model

residual which contains measurement noise. A fault will cause the residual e(t) to

increase (Qin and Li, 1999).

When a sensor failure is detected, it is of primary importance to correctly identify the

faulty sensor. In this paper, we applied the structured residual approach with maximized

sensitivity (SRAMS) suggested by Qin and Li (1999). This generates a set of residuals

where one residual is most sensitive to one specified subset of faults, but insensitive to

others. For the case of a single sensor fault in the ith sensor, Eq. (7) becomes

eðtÞ ¼ epðtÞ ¼ bi f iðtÞ ð8Þ

where bi is the ith column of matrix B which represents the fault direction. By pre-multi-

plying a transformation matrix W to e(t), we can generate the following structured

residuals r(t)

rðtÞ ¼ WeðtÞ ¼ bi f iðtÞ ð9Þ

where the matrix W is designed so that each element of r(t) is insensitive to one particu-

lar sensor fault and sensitive to the other faults. Choose wi such that ri(t) is insensitive to

the ith sensor fault but most sensitive to the others. Mathematically, this is equivalent to

wi
max

j–i

X ðwT
i bjÞ

2

kbjk
2

ð10Þ

Geometrically, wi is chosen to be orthogonal to bi while minimising its angle to other

fault directions bj. To reduce false alarms, an exponential weighted moving average

(EWMA) is applied to the structured residual, the filtered structured residual (FSR).

�riðtÞ ¼ g�riðt2 1Þ þ ð1 2 gÞriðtÞ ð11Þ

After a set of structured residuals has been generated, a decision about which sensor fails

has to be made. Qin and Li (1999) suggested four types of fault identification
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indices: (1) identification index based on exponential weighted moving average (EWMA)

filtered structured residuals (IFSR), (2) generalized likelihood ratio (GLR), (3) cumulative

sum of residuals (CSR) and (4) cumulative variances index (CVI). For the identification

index based on the EWMA-filtered structured residuals (IFSR), all structured residuals,

IiFSR(t) (i ¼ 1, 2, … , n), are smaller than one under normal conditions. Under the con-

dition of sensor i being faulty, the structured residual of the sensor i, Ii
FSR(t), remains

smaller than one while the other structured residuals, Ij
FSR(t), become larger than one.

IiFSRðtÞ ¼
�r2
i

wT
i Rewix2

að1Þ
ð12Þ

where �ri is the EWMA-filtered structured residual, wi is the transformation matrix, Re is

the covariance matrix of the residual, x(1) is the chi-square distribution with one degree

of freedom, and a is the confidence level. If a sensor i is faulty, r 2
i (t) is not affected by

the fault due to the specific structuring of the residuals in the SRAMS-method, whereas

otherwise the residuals r 2
j (t) will increase significantly since their sensitivity to sensor i is

maximised. On the other hand, a normalised cumulative variance index (CVI), which is

sensitive to a variance change such as found in a precision degradation fault, is calculated

as follows:

IiCVIðtÞ ¼
Vi
sumðtÞ

wT
i Rewix2

aðt2 tf Þ
¼

Pt
k¼tf

ðriðkÞ2 m̂ijÞ

wT
i Rewix2

aðt2 tf Þ
; i ¼ 1; 2; · · ·; n ð13Þ

where Vi
sumðtÞ is the cumulative variance, mij is the estimated mean change after a fault,

x(t-tf) is the chi-square distribution with t-tf degree of freedom and tf is the fault detection

time. If sensor i is faulty, IiCVI(t) will be less than one but other IiCVI(t) are larger than one

(Qin and Li, 1999).

The first three indices are similar in the sense that they are designed to filter high fre-

quency noise by a moving average, a forgetting factor approach, whereas the last index is

sensitive to variance-type of faults (Dunia et al., 1996). We selected the FSR and CVI

indices, which are used to detect the change of the mean and the variance. On the other

hand, it is important to isolate sensor faults from process changes or disturbances. If sen-

sor fault indices detect a faulty situation and all structured residuals are affected, it is

likely to be a process change or a disturbance.

Sensor fault identification and reconstruction

After a fault is detected, it is important to identify its source and apply the necessary cor-

rective actions to eliminate the abnormal condition. The procedure to restore normal con-

ditions by applying a corrective change in the data is called data reconstruction.

Logically, the procedure for identifying a fault by reconstruction for a given type of faults

is called data identification via reconstruction. Reconstruction of the normal data from

faulty measurements also leads to the estimation of the fault magnitude. Therefore, fault

reconstruction is presented first, followed by fault identification (Qin and Li, 2001). Since

the sensor fault direction has been identified, the best reconstruction can be used to esti-

mate the sensor fault magnitude fi(t) by minimizing the effect of the fault on e(t) in the

direction Ji, that is,

J ¼ ke*ðtÞk2 ¼ keðtÞ2 BJif iðtÞk
2 ð14Þ

A least square solution to this problem leads to

f̂iðtÞ ¼ ðBJiÞ
þeðtÞ ð15Þ
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where (·)þ is the Moore–Penrose pseudo inverse. The task of sensor reconstruction is to

estimate the normal values xp by eliminating the effect of a fault fi. A reconstructed value

xi is calculated by correcting the effect of a fault on the process data x:

xi ¼ x2 BJif̂iðtÞ ð16Þ

where f̂i is an estimate of the actual fault magnitude fi along the SRAMS direction. The

reconstructed value (xi) can then be used in the monitoring and prediction models instead

of the actual faulty measurements (Qin and Li, 2001).

Results and discussion

Labscale SHARON reactor

A lab-scale SHARON reactor was constructed in the BIOMATH lab (Van Hulle et al.,

2005). The reactor is a 2 l continuously stirred tank reactor (CSTR) without biomass

retention. The pump flow rate of the synthetic influent determines both the hydraulic resi-

dence time and the sludge residence time (SRT), since both residence times are equal and

defined as the ratio of the volume to the flow rate. The reactor is aerated through a

pumice stone using air from a compressor (1 bar over pressure) and the controlled operat-

ing temperature is 358C. In the reactor, the dissolved oxygen (DO) and pH are measured.

The pH is controlled through Labview software by addition of acid (HCl) and base

(NaHCO3). The data used for the sensor validation were collected in the steady-state

operation period and consist of 10 variables: (1) HRT, (2) influent ammonium, (3) influ-

ent bicarbonate:ammonium ratio, (4) dissolved oxygen (DO), (5) pH, (6–7) dosage rates

of base and acid, and (8–10) daily measurements of ammonia, nitrite and nitrate in the

effluent.

We built a process model B using PCA with two principal components and designed a

matrix W with SRAMS. Filtered SPE and FSR are used to detect the sensor faults and

two indices of IFSR and cumulative variance index (CVI) with the 95% confidence level

are monitored to identify faulty sensors. Four types of sensor faults, including bias, drift,

complete failure and precision degradation, are introduced at time tf, where the abnormal

condition is caused by single and multiple sensor failures. The remaining measurements

are used to reconstruct the faulty sensor based on the redundancy of the measurements.

Table 1 summarises the four types of abnormal conditions detected and lists fault time

and detection time. In order to reduce false alarms due to dynamic transients, an EWMA

filter with a coefficient of r ¼ 0.90 was applied to generate the FSRs for all four faulty

cases. The CVI index is calculated based on the unfiltered structured residuals with a

moving window of five samples considering the hydraulic retention time.

A bias f(t) ¼ 2.0, which causes a shift in the measurement with a retained trend, is

artificially introduced to the measurement of the DO sensor at tf ¼ 50. Figure 1 shows

the sensor fault identification and reconstruction results. The sensor bias fault is detected

in the SPE plot with a quite long delay but is effectively detected in the FSRs within a

relatively short time. To make the detailed identification, two indices of IFSR and CVI are

shown in sub-plots (c) and (d) in the left pane, where a value above one indicates faulty

situations. The FSR can correctly identify the faulty sensor, namely sensor 4 (DO), as the

corresponding FSR is below the confidence limit, whereas CVI shows false identification

results of normal sensors since the CVI-method is not designed for bias fault identifi-

cation. In the right pane of Figure 1, the reconstructed sensor signal indicates that the

difference between normal and reconstructed sensor data is relatively small and can be

replaced in the faulty data. These reconstructed data allow the quality of the real data to
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be checked by looking at the difference. The estimated fault size shows that this is a bias

and how large the fault is.

The second fault type considered here (see Figure 2) was generated by introducing a

drift into the sensor measurements of DO at tf ¼ 50. Similar to the case of sensor bias

described above, good fault identification results were obtained for this sensor fault.

The reconstructed sensor signal indicates that the difference between the normal and the

reconstructed sensor trajectory is relatively large with an increasing offset. The estimated

fault size indicates that this is a drift fault, causing FSR to be more effective than CVI.

Figure 3 shows the fault identification results of a precision degradation type fault in

the DO sensor. The FSR can detect this fault more effectively than the SPE plot. Since

Figure 1 (Left) Sensor fault detection and identification of DO sensor bias (a) SPE plot, (b) FSR, (c) IFSR,

(d) CVI, (Right) Sensor reconstruction of DO sensor bias (a) normal, faulty and reconstructed signals,

(b) fault size

Table 1 Summary of four fault scenarios and the detection results

Bias Drift Complete failure Precision degradation

Faulty sensor DO DO pH DO
Fault expression f1(t) ¼ b f2(t) ¼ a(t 2 tf) x3(t) ¼ c f4(t) ¼ n(0,s 2)
Fault size DO(t) þ 2.0 DO(t) þ 0.3*t pH(tf) þ 1.0 DO(t) þ n(0, 22)
Fault time (tf) 50 50 50 50
Detection time (t̂f ) 53 52 52 54

Figure 2 (Left) Sensor fault detection and identification of DO sensor drift (a) SPE plot, (b) FSR, (c) IFSR,

(d) CVI, (Right) Sensor reconstruction of DO sensor drift (a) normal, faulty and reconstructed signals,

(b) fault size
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this is a variance change, both IFSR and CVI have smallest values for the fourth sensor

(DO) identifying the correct sensor fault. The estimated fault size indicates that this is a

fault related to a variance change.

Multiple sensor fault case

We also tested the method for multiple sensor fault identification, where more than one

sensor is simultaneously faulty. As a simple case study, we applied the SRAMS method

to three nitrogen output variables, ammonium nitrogen (NH4-N), nitrite (NO2-N), and

nitrate (NO3-N) since there is enough redundancy between these three variables from

the stoichiometric reactions to reconstruct their values. Faulty data were simulated by

introducing precision degradation of NH4 and NO2 sensors at tf ¼ 50. The sensor vali-

dation and reconstruction results are shown in Figure 4. SPE and FSR allow the detection

and identification of the precision degradation of these two sensors. Similar to the results

of Qin and Li (1999), it was shown that CVI is most sensitive to variance changes. IFSR

showed false identification of a fault in the third sensor (NO3-N). In summary, as Qin

and Li (2001) previously showed, the unique index may not identify all kinds of faults

but combined indices can help identify the faulty sensors and fault types.

Figure 3 (Left) Sensor fault detection and identification of the precision degradation of the DO sensor

(a) SPE plot, (b) FSR, (c) IFSR, (d) CVI, (Right) Sensor reconstruction of the precision degradation of DO

sensor, (a) normal, faulty and reconstructed signals, (b) fault size

Figure 4 (Left) Sensor fault detection and identification of multiple faults, the precision degradation of NH4

and NO2 sensors (a) SPE plot, (b) FSR, (c) IFSR, (d) CVI, (Right) Sensor reconstruction of the precision

degradation (a) NH4, (b)NO2
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In this paper, only uncontrolled variables were subjected to sensor validation. Other-

wise, any errors related to controlled variables will be transferred to the manipulated vari-

ables during the sensor validation procedure. This may distort the sensor identification

method. If the controlled variables are used in sensor validation, it should be pointed out

that the success of sensor validation under feedback control relies on the fact that sensor

fault detection is achieved faster than the time constant of the feedback control loop.

If the faults are not significantly faster than the closed loop process dynamics, the feed-

back must be rigorously considered in the sensor validation model. On the other hand,

the integration of control performance monitoring and process monitoring could lead to

further fault discrimination among process faults, sensor faults and control performance-

induced upsets (Pranatyasto and Qin, 2001).

Conclusions

A sensor validation method is used to detect and identify single and multiple sensor faults

and to reconcile the failed sensor values in the SHARON process. Faulty sensors were

identified by tracking the filtered structured residuals and other indices against confidence

limits. The estimated fault magnitude allowed the generation of a reconstructed sensor

value, which can be used to develop more reliable prediction models. Also, the proposed

sensor validation method can be easily used for sensor surveillance of other continuously

measuring sensors and analysers. However, since it is difficult to reconstruct an uncorre-

lated variable from other variables, uncorrelated variables should be excluded from this

procedure when one uses the redundancy-based sensor value reconstruction. We are cur-

rently developing a real-time sustainable sensor validation system for WWTP.
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