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Abstract In this paper, two approaches to data mining of time series have been tested and compared.

Both methods are based on the wavelet decomposition of data series and allow the localization of important

characteristics of a time series in both the time and frequency domain. The first method is a common

method based on the analysis of wavelet power spectra. The second approach is new to the applied field of

urban water networks and provides a qualitative description of the data series based on the cubic spline

wavelet decomposition of the data. It is shown that wavelet power spectra indicate important and basic

characteristics of the data but fail to provide detailed information of the underlying phenomena. In contrast,

the second method allows the extraction of more and more detailed information that is important in a context

of process monitoring and diagnosis
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Introduction

In the past decade wavelet analysis has become a mature approach to localize important

characteristics of time series at once in both the time and frequency domain. Applications

to process monitoring and diagnosis include fault detection (e.g. Luo et al., 1998, Rosén

and Lennox, 2001) and data reconciliation (e.g. Tona et al., 2005). For a complete over-

view of applications of wavelet-based methods for process monitoring we refer to Gane-

san et al. (2004). While most wavelet applications deliver a numeric output (a reconciled

or filtered signal, statistics), Bakshi and Stephanopoulos (1994) provide a method to

obtain a qualitative description of time series following wavelet decomposition, which is

improved for robust inflection point detection in Villez et al. (in preparation). In Flehmig

et al. (1998) and Akbaryan and Bishnoi (2000), other wavelet-based approaches are pre-

sented for qualitative interpretation of data. As operators typically spend a large pro-

portion of their time to the monitoring of trends in process measurements (Yamanaka and

Nishya, 1997) while their reasoning or knowledge is of a qualitative nature, automated

extraction of qualitatie information has large potential in the context of fault detection

and isolation. Indeed, information about trends may be addressed to the operator only in

case of abnormal behaviour so to reduce the time spent by operators on the proofing of

normal data. As a result, anomalies can be focused on which will likely result in a faster

reaction to and analysis of abnormal situations. Reported applications of wavelet-based
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methods aim at process monitoring and diagnosis (Akbaryan and Bishnoi, 2001, Rubio

et al., 2004 and Flehmig and Marquardt, 2006) and process data mining (Stephanopoulos

et al., 1997). Alternative methods to obtain qualitative descriptions of trends are based on

piece-wise polynomial fitting (Dash et al., 2004, Charbonnier et al., 2005), PCA-based

clustering (Wang and Li, 1999) or neural networks (Rengaswamy and Venkatsubrama-

nian, 1995, Maurya et al., 2005). In view of model structure discrimination, polynomial

fits are used by Vanrolleghem and Van Daele (1994). B-spline smoothing is used by

Schaich et al. (2001) for the same purpose.

While the interpretation of wavelet spectra has become common for time series anal-

ysis, the use of qualitative methods for time series analysis has a limited coverage in the

literature. It is therefore unclear which of these methods is best for time series analysis. In

this paper, two state-of-the-art methods will be compared, being wavelet power spectrum

analysis (see e.g. Torrence and Compo, 1998) and wavelet-based qualitative description of

trends as described originally by Bakshi and Stephanopoulos (1994), following the modifi-

cations of Villez et al. (submitted). While classical wavelet spectrum analysis indicates

where important features in a series are situated in the time and frequency domain, this

does not provide information on the type or shape of the identified features. It will be

shown that explicit information regarding the first and second order behaviour of a series

can be extracted and leads to additional relevant information about the studied series.

Following this introduction, the data set and applied methods are described in

materials and methods. Results and discussion are given in separate sections, where after

conclusions are drawn.

Materials and methods

Data description

Drinking water is supplied to a residential neighbourhood of 20.500 inhabitants in the

Quebec City area from five groups of wells distributing water to three pressure zones with

average water use of 1,050, 4,050 and 600 m3/d in the lower, intermediate and high press-

ure zone respectively. Of these groups, four are located in the lower pressure zone, while

one is located in the intermediate zone. All groups of wells have a proper local distribution

network, but are all connected to a booster station which fills a storage tank (6,800 m3)

located in the high pressure zone. During periods of low water demand, all excess well dis-

charges are pumped to the latter tank. During periods of high water demand, the water tank

supplies peak demand to all three zones. The data used in this study are flow measurements

from the outlet of this storage tank from November 15th, 2002 to February 1st, 2003 at one

minute intervals. One expects low flow rates during the filling of the tank, since it should

only supply the high pressure zone but, unfortunately, a flaw in design permits water

released from the tank to be pumped back, leading to high energy costs. The daily water

demand pattern from such a residential neighbourhood is expected to show two peaks: one

in the morning (breakfast, showers) and one in the evening (supper, dishwashing, clothes

washing, baths/showers) altered with low flow rate periods in-between, the night time flow

rates being the lowest. Weekday patterns should differ from weekends and seasonal

patterns would be expected for longer data sets.

Method 1: Wavelet power spectra

The first method used in this paper is based on the wavelet power spectra as described by

Torrence and Compo (1998). In this method, the original signal is decomposed by means

of a continuous wavelet transform. Practically, this means that the (finite) discrete time

series, x n, is convoluted with a daughter wavelet, c(j,s), being a scaled and dilated ver-

sion of the mother wavelet, c 0, for a determined set of scales, s, and all discrete time
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instants, k (1 to N):

Wðk; sÞ ¼
XN21

j¼0

xj�cð j; sÞ*
ð j2 kÞ�dt

s

� �
ð1Þ

where p indicates the complex conjugate and dt the sampling period.

In this work, the Morlet wavelet is used as the mother wavelet for the first method, as

in the authors’ experiences (e.g. Parent et al., 2006), this wavelet allows a crisp discrimi-

nation in the frequency domain. This wavelet is defined in the frequency domain as:

c0ðvÞ ¼ p21=4�HðvÞ�e2ðs�v2v0Þ
2=2 ð2Þ

where H(v) presents a heaviside step function (H(v) ¼ 1 if v . 0, H(v) ¼ 0 otherwise)

and v 0 is the non-dimensional frequency parameter of the wavelet, set to 6 so that the

wavelet function has zero mean and is localized in both time and frequency space (Farge,

1992). To obtain the daughter wavelet in Equation (1), the mother wavelet is dilated,

translated and normalized:

cð j; sÞ*
ð j2 kÞ�dt

s

� �
¼

dt

s

� �1=2

�c0

ð j2 kÞ�dt

s

� �
ð3Þ

For practical details and an efficient computation of the described convolution in the

Fourier domain, we refer to Torrence and Compo (1998). Of special interest are the stu-

died scales, given as follows:

sp ¼ s0�2p�dp; p ¼ 0; 1; ::::P ð4Þ

In our study, s 0, P and dp were set to 2, 14 and 0.125 respectively so that the studied

scales ranged from 2 times the measuring interval (period ¼ 2 minutes or approximately

0.0014 days) to 214 times the measuring interval (period ¼ 32,768 minutes or approxi-

mately 23 days) with intervals of 0.125 on a log2 scale. As the wavelet scale is not

necessarily the same as its equivalent Fourier period, the results have been analytically

adjusted for this discrepancy to allow a correct interpretation, following the discussion of

Torrence and Compo (1998). Future references in this paper to the term “period” indicate

the equivalent Fourier period, while scale remains the term for the wavelet period or

scale. Torrence and Compo (1998) also provide the cone of influence which defines the

region in the obtained spectrum where edge effects distort the wavelet power spectra in

such a way that interpretation becomes ambiguous.

Following the derivation of the wavelet coefficients, W(k,s), the powers are calculated

as the squared real part of the coefficients, jW(k,s)j2, and normalized by the overall var-

iance of the time series, jW(k,s)j2/s2. The given values are then a relative measure of the

power of a white noise process with the same overall variance. As such, wavelet spectra

are straightforward tools to assess non-stationarity, amplitude changes and dominant fre-

quencies of a studied process in time.

Method 2: Analysis of qualitative trends at different scales in wavelet decomposition

The second method, originally described by Bakshi and Stephanopoulos (1994) and

modified in Villez et al. (in preparation), essentially aims at the description of a time

series as a set of contiguous periods in which the series exhibits a constant sign of the

first and second derivatives, called triangular episodes. As the human eye cannot detect

discontinuities in the third derivative, such a presentation often confirms descriptions

given by human operators. Given that the presence of noise prevents the assessment of

such a description on the basis of the (discrete) first and second derivatives, the method
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can be regarded as a non-parametric adaptive smoother. The method consists of three

steps, being wavelet decomposition, qualitative trend identification at each scale and

assessment of relevant qualitative features. Each of these steps is described here below.

Step 1: wavelet decomposition. The wavelet decomposition is performed as in the first

method (Equations (1) and (2)). The mother wavelet is however replaced with the cubic

spline wavelet. Following the work of Mallat and Zhong (1992) the mother wavelet is

defined in the Fourier domain as follows:

c0ðvÞ ¼
sin v=2ð Þ

v=4

� �4

ð5Þ

Quite interestingly for trend representation is that (1) the coefficients resulting from

the cubic spline wavelet filtering ( ¼ band pass filtering) indicate the extrema and inflec-

tion points in the original signal and (2) the corresponding low pass filter, defined as the

scaling function, does not add extrema or inflection points to an analysed signal because

of its smoothing properties. These two properties allow the construction of a filter bank

of cubic spline band pass filters and their corresponding low pass filters in such a way

that, at each scale, the qualitative trend representation can be determined straightfor-

wardly (see next paragraph). In addition, (3) the constructed filter bank is computationally

efficient. The former characteristics allow the use of the cubic spline wavelet for accurate

assessments of qualitative features of signals at different frequency scales.

Step 2: qualitative trend identification at each scale. After wavelet decomposition, the

qualitative trend representation is constructed. For this purpose, the extrema and

inflection points in a signal are identified. Following this identification, 7 types of

qualitative behaviour (triangular primitives) are identified (see Table 1). The qualitative

representation of a trend is then defined by the maximal time windows in which the

qualitative behaviour is the same (maximal time windows with a unique sign of 1st and

2nd derivatives), called triangular episodes (Cheung and Stephanopoulos 1990a,b). Note

that the episodes with zero second derivatives (triangular primitives E, F and G) are not

occurring often since filtering often distorts the shape of linear parts in a series so that

the second derivative in the filtered series is non-zero.

Step 3: assessment of relevant qualitative features. Given the qualitative representations

of a series at all scales, one needs to assess which features in these representations are

relevant. To do so, the corresponding essential points (maxima, minima and inflection

points) are connected over all scales. Then, going from coarser to finer scales, episodes

will be split into new episodes with more details. To assess whether such a split is

relevant, one uses Witkin’s stability criterion, a heuristic criterion originally developed

for Gaussian scale-space filtering (Witkin, 1983). This criterion defines that a split into

Table 1 Overview of primitives used to characterize signals on the basis of 1st and 2nd order derivative

(U ¼ upward, D ¼ downward)

derivatives primitives derivatives primitives

1st 2nd monotonic triangular 1st 2nd monotonic triangular

þ 2 U A þ 0 U E
2 2 D B 2 0 D F
2 þ D C 0 0 G G
þ þ U D
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new episodes is relevant if the mean range of scales over which the more detailed

episodes exist is larger than the range over which the coarser episode exist. For more

details and an extensive example we refer to Bakshi and Stephanopoulus (1994). In the

original method this criterion is applied to monotonic episodes only, i.e. time windows

with maximal extent in time in which no extrema lie. In this work, Witkin’s stability

criterion is first applied for monotonic episodes. Then, the criterion is again applied for

candidate triangular episodes. Villez et al. (submitted) show that this leads to a more

robust assessment of the relevant inflection points.

Results

Method 1: wavelet power spectrum analysis

In Figure 1, a contour plot of the relative power spectra is shown for the data collected

between November 15th, 2002 and February 1st, 2003. Over the whole period, high

powers are observed in bands at periods of 1 day and 1
2

day respectively, suggesting regu-

lar cyclic behaviour. This concurs with the apparition of two peaks in water demand

during each day. The fact that the peaks do not occur at a distance in time of 12 hours

leads to dominant powers at two distinct frequency bands. The wavelet power is gener-

ally lower at frequencies lower than 1
2

days, but remarkably, daily peaks in the wavelet

powers are seen for a couple of hours during the day. A closer look at the data

(not shown) revealed that a sharp increase of the water flow typically occurs during the

morning, indeed being a highly dynamic event during a short period during the day. At

longer periods, non-regular patterns are observed over the whole period, suggesting non-

stationary behaviour in these scales.

Method 2: qualitative description of trends

With the first method, a dominant cycle of 1 day is observed in the data. Based on this

observation, the data series is now split into sections of 1 day, each starting and ending at

midnight. A separate qualitative representation is assessed for each of these sections. To

reduce edge effects during filtering, the data was padded with anti-symmetric data at the

Figure 1 Contour plot of the wavelet power spectra from November 15th, 2005 to February 1st, 2006 and

for periods from 0.01 to 16 days. The shading legend is shown at the right hand side. The dashed line

shows the cone of influence
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left (y(start-k) ¼ 2y(start þ k)) and right side (y(end þ k) ¼ 2y(end-k)) of each sec-

tion. In Figure 2a the monotonic presentations (episodes with constant sign of the first

derivative) are displayed for each day in the studied period. Each horizontal bar rep-

resents the triangular episodes in a single day. The left and right ends of each rectangle

in this bar are the start and end points of the monotonic episodes. It is observed that a lar-

ger part of the days have the following pattern: D-U-D-U-D, which means two minima

and maxima are observed for these days. The maxima correspond with a peaking water

demand in the morning and evening while minima lie in between. For a few days, the

second maximum does not occur or is too weak to be accepted into the presentation.

Interestingly, these days occur between 21/12 and 6/1, corresponding to Christmas holi-

days. A significant part of the studied time series exhibit frequent changes in the qualitat-

ive behaviour (e.g. 17/12). Visual exploration (not shown) proved that this behaviour is

correctly identified (they are not stemming from an erroneous acceptance of noise as rel-

evant features) and showed that these patterns exhibited many step changes. The causes

of these (abnormal) step changes could however not be unambiguously linked to sensor

failure (incorrect measurement) or control failure (incorrect action). In addition to the

qualitative information (chronology of up/down episodes), the location in time of the

observed maxima and minima was shown to be relevant as well. It can be seen for

instance that the first maximum occurs later on 1/12 and 2/12 when compared to the days

just before and after. Remarkably, these two days are a Saturday and a Sunday. The same

delay of the first peak occurs for all the other weekend days in the studied period. Such

a delay is not observed for the second peak (evening). In addition to the weekend-related

delay of the first peak in the day, a similar effect is seen for all the days between 21/12

and 6/1, corresponding to Christmas Holidays. The observed weekend-effect thus also

applies to these holidays. It can thus be concluded that the water flow data exhibits a

distinct pattern in weekend days and holidays that reflects the behaviour of the city’s

population (Campos and Van Sperling, 1996).

In Figure 2b, the triangular presentations (episodes with constant sign of first and

second derivatives) are given. In addition to the extrema, inflection points are thus shown

Figure 2 Qualitative representations of time series by means of (a) monotonic primitives and (b) triangular

primitives. Each horizontal bar shows the representations of the data of a single day. Shading legends are

shown below the respective graphs
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as well in this graph. A single inflection point is observed between two extrema during

the larger part of the data set, indicating that the acceleration of the flow is typically

monotonically increasing or decreasing within each monotonic episode. In a few cases,

multiple inflection points occur within one monotonic episode. This happens almost

exclusively at night, after the second maximum (e.g. see 01/12). In other words, after the

second peak demand, the speed at which the demand decreases shows maxima and

minima (inflection points are the extrema of the 1st derivative) for some days.

Discussion

Two wavelet-based methods for mining of time series have been applied to a time series

of hydraulic data. In the first method, the signal is transformed into a power measure

over time and frequency. As such, relevant dynamics were observed primarily in the

scale of days and 1
2

days. Coarser scales seemed to be characterized by non-cyclic beha-

viour, while in more detailed scales, regular peaks in power were observed, suggesting

highly dynamic events during a limited time-window during most days. In the second

method, the resulting wavelet decomposition is further processed to obtain a qualitative

representation of the data. As such, relevant maxima, minima and inflection points are

identified and define the qualitative representation. By means of this method, typical

maxima in water demand in the morning and evening were detected. In addition, the

location in time was shown to be dependant on the type of day (working day, weekend

day and holiday). Also, inflection points were observed during some nights, indicating a

minimal decrease of the water demand during some days. Clearly, the qualitative presen-

tation of the data delivers interesting information regarding the behaviour of a city’s

population, which is not available from wavelet decomposition only. Conversely, the first

method showed that a daily cycle prevails in the studied time series, hereby leading to a

window definition for the qualitative representation. Wavelet power spectrum analysis

thus functions as an excellent pre-analysis step.

Conclusions

Two state-of-the-art approaches in time series analysis were applied to a time series for

which little knowledge was available. It was shown that the first method, wavelet power

analysis, indicates the location of major features in frequency and time, but not their type

or shape. Since the second method does not aim solely at the analysis of the amplitude of

the wavelet coefficients but also of their sign (First order behaviour) and changes over

time (Second order behaviour), more detailed information can be extracted by means of

qualitative description of trends. In the case presented, such information may be a helpful

tool for the design measurement campaigns, modelling of the system and on-line detec-

tion of system failures (e.g. leaks).
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