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The potential for qualitative representation of trends in the context of process diagnosis and control is

evaluated in this paper. The technique for qualitative description of the data series is relatively new to

the field of process monitoring and diagnosis and is based on the cubic spline wavelet decomposition

of the data. It is shown that the assessed qualitative description of trends can be coupled easily with

existing process knowledge and does not demand the user to understand the underlying technique in

detail, in contrast to, for instance, multivariate techniques in Statistical Process Control. The assessed

links can be integrated straightforwardly into the framework of supervisory control systems by means

of look-up tables, expert systems or case-based reasoning frameworks. This in turn allows the design

of a supervisory control system leading to fully automated control actions. The technique is illustrated

by an application to a pilot-scale SBR.
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INTRODUCTION

Wavelet analysis has become a popular tool in the past

decade for joint analysis of characteristics of time series in

both the time and frequency domains. Applications in the

context of statistical process control relate to different

topics such as fault detection (e.g. Luo et al. 1998; Rosén &

Lennox 2001; Aradhye et al. 2003) and data reconciliation

(e.g. Tona et al. 2005). For a complete overview of

applications of wavelet-based methods for process moni-

toring we refer to Ganesan et al. (2004). This paper focuses

on the application of a wavelet-based method for qualitative

description of time series, originally devised by Bakshi &

Stephanopoulos (1994) and improved by Villez et al. (2007).

Alternatively to the method applied in this paper, Flehmig

et al. (1998) and Akbaryan & Bishnoi (2000) present other

wavelet-based methods for qualitative interpretation of

data. Typical applications of these methods aim at process

monitoring and diagnosis (Akbaryan & Bishnoi 2001; Rubio

et al. 2004; Flehmig & Marquardt 2006) or process data

mining (Stephanopoulos et al. 1997). Other ways to obtain

qualitative descriptions of trends are based on piece-wise

polynomial fitting (Dash et al. 2004; Charbonnier et al.

2005), PCA-based (principal component analysis) clustering

(Wang & Li 1999) or neural networks (Rengaswamy &

Venkatsubramanian 1995). The latter approach is applied in

Maurya et al. (2005) to obtain qualitative presentations of

principal scores. Qualitative representations of series are

also used for model structure discrimination, as in Vanrol-

leghem & Van Daele (1994) and Schaich et al. (2001).

doi: 10.2166/wst.2008.141
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The methods reviewed so far are inductive in nature. The

deductive research field twin, typically referred to as

Qualitative Physics (QP), is older. Among the early and

most important works in the field of qualitative modelling

and reasoning we count Forbus (1984) and Kuipers (1986).

An extensive overview of the early research in this field

is given by Bourseau et al. (1995). While the interpretation

of wavelet spectra has become common for time series

analysis and has been introduced into the context of process

monitoring, diagnosis and control, the use of qualitative

methods for such purposes in the context of waste water

treatment processes has not been evaluated extensively.

Therefore, the potential of the method to control an SBR

for nutrient removal is evaluated in this paper. Given

the ultimate aim of the project to create an integrated

system for monitoring, diagnosis and control for the SBR

system, attention is given to (1) the direct usefulness of

the technique for monitoring and diagnosis and (2) the

ability to couple the monitoring/diagnosis outcomes with a

supervisory controller.

MATERIALS AND METHODS

Data

The data set used in this paper consists of 100 complete

batches from a pilot-scale SBR setup, collected at the end of

2006 (Nov. 22–Dec. 20). The SBR under study has a

working volume of 64L and is fed with synthetic sewage

resembling domestic wastewater (Insel et al. 2006). The

length of one cycle is 6 hours, which consists of a 60min.

anaerobic phase, a 35 min. anaerobic phase, a 130min.

aerobic phase, an 80min. anoxic phase, a 30min. final

aerobic phase and a 60min. settling/draw phase. A total of

34L influent is added in the course of one cycle, of which

25.5L during the first 25min. of the anaerobic phase and

8.5L in the first 10min. of the anoxic phase. This operation

delivers a hydraulic residence time (HRT) of 12 hours,

which is typical for nutrient removal plants. The on-line pH

signal is sampled at a 2 second interval. In this study, the pH

trajectories in the first aerobic phase are analysed. See

Figure 1 for two typical trajectories.

Qualitative representation of trends

The method used in this paper aims at the presentation of a

time series as a set of contiguous periods in which the series

exhibits a constant sign of the first and second derivatives,

called triangular episodes. A time series can then be

presented by a sequence of characters, i.e. a word, resulting

in a dictionary when sets of time series are analysed. The

sequences often confirm mental models stated by human

operators, which allows the addition of a meaning to each

word. Presence of noise prevents that the qualitative

presentation of a trend can be obtained by direct compu-

tation of (discrete) derivatives. The method therefore

consists of three steps: (1) wavelet decomposition into

band-pass signals, (2) qualitative trend identification at

Figure 1 | Effect of quadratic spline filtering on apparent extrema. Original (‘raw’) and scaled signals (p ¼ ‘0’…‘9’) are rescaled for reasons of clarity. (a) batch 5. (b) batch 7.
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each wavelet scale (frequency band) and (3) assessment of

relevant qualitative features. Each of these steps is described

below.

Step1: wavelet decomposition. The continuous wavelet

transform is used to decompose the signal. The (finite) time

series, xn, is convoluted with a daughter wavelet, c( j,s),

being a dilated version of the mother wavelet, c0, for a given

set of scales, s, and all time instants, k (1 to N):

Wðk; sÞ ¼
XN21

j¼0

xj·cðj; sÞ*
ðj2 kÞ·dt

s

� �
ð1Þ

where * indicates the complex conjugate and dt the

sampling period. For the purpose of qualitative represen-

tation of trends, the cubic spline wavelet is chosen (Bakshi

& Stephanopoulos 1994). The method is based in the

mother wavelet as defined by Mallat & Zhong (1992). The

applicable daughter wavelet in Equation (1) is then

obtained by scaling, translation and normalisation of the

mother wavelet. Torrence & Compo (1998) deliver practical

details and an efficient computation strategy of the

described convolution in the Fourier domain. Of practical

interest are the studied scales, noted as:

sp ¼ s0·2
p·dp; p ¼ 0;1;…P ð2Þ

In our study, s0, P and dp were set to 2, 9 and 1

respectively so that the studied scales ranged from 2 to 211

times the measuring interval (i.e. periods between 4 seconds

and approx. 68 minutes) with intervals of 1 octave. As

the quadratic spline (band-pass) wavelet is the derivative of

the cubic spline (low-pass) wavelet, the zero-crossings and

extrema in the detail (band-passed) signals indicate the

extrema and inflection points, respectively, in the corre-

sponding scaled (low-passed) signals. At the same time, the

quadratic spline wavelet filter does not add extrema or

inflection points to an analysed signal (see Figure 1). As a

result, the construction of a filter bank of cubic spline band

pass filters and their corresponding quadratic spline low

pass filters allows a straightforward assessment of the

qualitative representation of the low-passed signals at

each scale (see next paragraph). The latter property

and the efficiency of the constructed filter bank lead to

an accurate assessment of qualitative, semi-quantitative

and quantitative features of signals at different frequency

scales in a computationally efficient manner.

Step 2: triangular presentation at each scale. Qualitative

representations of the low-passed signals are constructed at

each scale. The identified extrema and inflection points now

define the boundaries of the maximal time windows in the

series in which the qualitative behaviour (sign of 1st and

2nd derivative) remains the same, called triangular episodes

(Cheung & Stephanopoulos 1990). Seven types of qualitat-

ive behaviour are possible (see Table 1). Episodes with zero

second derivatives (triangular primitives E, F and G) are not

common in practice since filtering often distorts the form of

linear parts of a signal in such a way that the second

derivative in the filtered signal is non-zero. As a result, the

resulting words are typically generated by a 2-letter alphabet

(U/D) in case the first order behaviour is of interest only or

a 4-letter alphabet (A/B/C/D) in case the first and second

order behaviour are both of interest. In this study, only the

first order behaviour was studied.

Step 3: assessment of relevant qualitative features. In

Figure 1b one can observe that at scale 9 a single maximum

results from (excessive) filtering while the representation at

scale 8 is more appropriate. In order to assess the true final

representation, the qualitative representations of a series are

jointly analysed by application of Witkin’s stability cri-

terion. For a detailed explanation and example we refer to

Bakshi & Stephanopoulus (1994).

RESULTS AND DISCUSSION

Qualitative representation of pH trajectories

A qualitative representation of the pH trajectories in the

first aerobic phase of the system under study was obtained

by means of the method described above. In Figure 2, each

horizontal bar corresponds to the qualitative representation

Table 1 | Overview of primitives for characterisation of signals in terms of 1st and 2nd

order behaviour (U: upward, D: downward)

Derivative: 1st þ 2 2 þ þ 2 0

2nd þ 2 2 þ 0 0 0

Primitive: Monotonic U D D U U D G

Triangular A B C D E F G
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of a single trajectory. Note that only the monotonic

primitives (upward/downward) were used for this study.

For example, the analysed trajectories of batches 13–17 are

represented as UD (upward/downward) sequences. Batches

7–9 exhibit an UDUD sequence. By simple listing of the

qualitative representations for all batches in the study, a so-

called dictionary is automatically generated, in which a

meaning is yet to be assigned to each entry. In this case, a

10-word dictionary results. In Table 2, the numbers of

batches (cluster size) for each observed type of qualitative

behaviour (cluster label) are given. Interestingly, the four

most populated clusters (40% of the assessed behaviours)

represent 70% of the batches. In addition, it is observed that

the corresponding qualitative behaviours are relatively

simple in nature (all sequences exhibit four characters at

most). A major part of the batches thus corresponds to a

limited set of relatively simple qualitative behaviours.

Diagnosis

Let us now try to provide diagnostic information to each of

the clusters (i.e. adding a meaning to the entries in the

dictionary). According to the operators, an UD presentation

(e.g. batches 17–19) corresponds to a high load situation

with an incomplete aerobic phase (incomplete nitrifica-

tion, i.e. the pH did not stop decreasing). An UDUD presen-

tation (e.g. batches 7–9) is related to a completed aerobic

phase (complete nitrification) under high load conditions

Figure 2 | Qualitative representations of 100 pH trajectories in the 130 minute aerobic phase. Dark shading indicates upward trends, light shading indicates downward trends.
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(i.e. after nitrification is completed the pH starts to rise

because of CO2 stripping). Interestingly, a high load is

diagnosed by the operators if the pH trajectory starts with

an upward trend (U), while downward trends (D) at the

start of the aerobic phase were related to low load

conditions. It is thus possible to diagnose the system

under study on the basis of qualitative representations of

the pH trajectories. In Table 2, the diagnosis given by the

operators is given for each observed representation together

with the frequency at which the observed representations

occurred. This table functions as the dictionary of the

qualitative representations of pH trajectories. As discussed

above, an accurate diagnosis with respect to the load is

possible for all observed behaviours. For some qualitative

representations, no unambiguous diagnostics concerning

the completion of the biological processes could be

assessed. This was either due to the operator not being

familiar with the observed pattern or due to the fact that

different diagnoses (complete and incomplete) were poss-

ible within the set of batches with the same qualitative

behaviour. Still, a complete diagnosis was possible for 83%

of the batches.

Adding diagnostics for unobserved situations

The framework of qualitative representation of trends

allows one to also consider imaginative representations of

trajectories and the assessment of corresponding diagnostics

and control actions, even if data of such sequences is not

available. Such an injection of knowledge into this data-

driven methodology reveals that the coupling of deductive

and inductive methods is practically feasible. In this study,

relatively simple sequences, such as ‘U’ and ‘DUDU’ were

not observed within the one month of SBR monitoring (see

Table 2). However, the operators of the studied system are

able to complete the diagnosis dictionary with unencoun-

tered sequences without the necessity of factual obser-

vations of these. Table 2 gives the completed dictionary for

the intended diagnosis and control system. Note that

complex sequences (starting with ‘UDUDU’ or ‘DUDU’)

were grouped into a single entry in the table so that an entry

exists in the table for all possible patterns ever to appear.

The proposed methodology for diagnosis of a batch can

be combined with the selection of an appropriate control

action. This combination leads to a generic diagnosis and

control system based on the assessment of qualitative repre-

sentation of trends (Figure 3). The raw signal is processed

to obtain the qualitative representation as proposed.

The resulting qualitative representation is then looked up

in the developed dictionary (as defined in Table 2) which

relates the qualitative representation to a table in which the

entries are defined as a possible combination of premises

and a corresponding (set of) control action(s). While this

appears feasible for simple control problems, more complex

problems may require the use of rule-based systems or case-

based reasoning. To start up and update any of these

inferencing systems, operators can assess the relations

between qualitative representations and diagnostics in a

straightforward manner as qualitative presentations of

trends are often concurring with their mental models in

many cases. It is especially interesting that (1) operators do

Table 2 | Qualitative representations, corresponding diagnostics and occurrence

Pattern Diagnostic information

Occurrence

(%)

Observation Dictionary Load Completion

– U 1 (high) 2 (incomplete) –

UD UD 1 2 16

UDU UDU 1 1 (complete) 20

UDUD UDUD 1 1 16

UDUDU 1 0 (unknown) 8

UDUDUD UDUDU… 1 0 6

UDUDUDU 1 0 2

D D 2 2 9

DU DU 2 1 4

DUD DUD 2 1 18

DUDUD DUDU… 2 0 1

Figure 3 | Overview of the diagnosis and control system.
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not need explicit knowledge on the mathematical details of

the applied technique to make such a control system work

and (2) the implementation of the technique does not

require explicit process insight. This stands in contrast with

the use of statistical models in process monitoring and

diagnosis, e.g. PCA. Given the complex relation between the

outcomes of such models (scores, statistics, cluster member-

ship) and the original data, interpretation of the model

outcomes and diagnostics is often difficult and requires a

good understanding of the modelling technique and the

process. Hence, qualitative presentations of trends offer a

straightforward way to avoid such difficulties.

Control

Given the assessed diagnostics over the 1-month historical

data set, the operators of the studied system were asked for

an appropriate action to be taken in order to optimise

operation in terms of effluent quality and plant economy

while safeguarding acceptable operation. In Table 3, these

are presented together with the % of batches for which they

would be taken. As can be seen, the operators would

increase the load to the system under low load conditions,

regardless of the explicit assessment of completion (i.e. all

ammonia is oxidised). This is not so surprising since none of

the low load observed conditions corresponded to the

diagnosis of an incomplete process. For the high load

conditions a more refined set of actions was suggested by

the operators. In case the biological processes are finished,

operators would reduce the air supply in the next cycle (by

reducing the aerobic phase length), while they would

increase the air supply (by extending the aerobic phase

length) if the biological processes are incomplete in the past

aerobic phase. In case the load is high and no accurate

assessment of the process completion is available, the

operators suggested not changing the operation without

further analysis. As a result, an automated adjustment of the

load and aerobic phase length is possible for 84% of the

batches.

Put otherwise, only 16% of the batches need to be

diagnosed by means of a more detailed investigation. We

note here that the location of the identified characteristics

(e.g. extrema) in time were not included as criteria for

diagnosis in this preliminary study.

From raw data to supervisory control: complete

procedure

In Table 4 the complete procedure by which the supervisory

controller can be established is given together with the

expected interaction with the operator in each step. Quite

interesting for implementationof sucha supervisorycontroller

is that no interaction is required in the complex step involving

the qualitative representation of trends. In other words, the

Table 3 | Diagnostics, associated control actions and occurrence

Diagnostic information

Load Completion Proposed automatic action Occurrence (%)

1 (high) 0 (unknown) No change, call operator 16

1 1 (complete) Reduce air supply 36

1 2 (incomplete) Increase air supply 16

2 (low) 0/1 Increase load, equal air supply 23

2 2 Increase load, increase air supply 9

Table 4 | From historical data to supervisory control: procedure

Step Description Operator interaction

1 Input of data Optional

2 Generate qualitative representation
of trends

No

3 Generate/update dictionary No

4 Add diagnostics to (new)
entries

Yes

5 Complete dictionary with unobserved
entries

No

6 Add diagnostics to unobserved
entries

Yes

7 Link control actions with
diagnostics

Yes

1530 K. Villez et al. | Qualitative representation of trends in process diagnosis and control Water Science & Technology—WST | 57.10 | 2008



end user does not need to understand the mathematical and

computational aspects of the underlying technique.

CONCLUSIONS

In this paper, the usefulness of a technique for qualitative

representations for diagnosis and control of an SBR for

nutrient removal was evaluated. Even if the trends of only one

variable (pH) and only one reaction phase of the SBR cycle

were studied, it could be shown that for a major part of the

batches an accurate diagnosis was possible on the basis of the

presentedmethodology. Control actions were associated with

all possible diagnoses. As every part of the running system can

be automated, a closed-loop diagnosis and control system for

the SBR plant under study is possible. A real-time implemen-

tation of such a system will be aimed for to fully validate the

controlperformance. It isnotedhere that theproposedcontrol

loop is a preliminary result and may require further improve-

ments on the basis of temporal information regarding the

identified episodes (start time, end time, time length) in the

inferencing steps, or, by addition of qualitative features in

multiple sensor trajectories,may further improve the perform-

ance of the intended control system.

Importantly, the well-understood behaviour of the pH

variable in aerobic conditions made straightforward devel-

opment of the controller possible. Future studies may focus

on or include sensor data and phases for which the

understanding is less complete to evaluate whether quali-

tative representation of trends allows (1) the retrieval of

new knowledge about the biological system and (2) the

assessment of diagnosis and control strategies with minimal

process knowledge available.

While the qualitative representation of trends is

essentially an inductive method, the qualitative nature of

its results can be coupled easily with deductive approaches

to diagnosis (e.g. expert systems, case-based reasoning).

Behaviours imagined by experts but not part of the data set

may take part in the premises of certain rules in an expert

system or may define artificial cases in a case-based

reasoning system. The possibility to diagnose future faults

that show little similarities with faults in historical data sets,

and the straightforward link between the outcome of the

technique and existing process knowledge, are considered

major strengths in comparison with quantitative methods,

e.g. PCA, which generally do not provide this opportunity.

However, a formal treatment of possible interaction

between the deductive and inductive framework of respect-

ively Qualitative Physics (QP) and qualitative represen-

tation of trends is lacking in literature up to today.
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