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ABSTRACT

This paper serves as a problem statement of the issues surrounding uncertainty in wastewater

treatment modelling. The paper proposes a structure for identifying the sources of uncertainty

introduced during each step of an engineering project concerned with model-based design or

optimisation of a wastewater treatment system. It briefly references the methods currently

used to evaluate prediction accuracy and uncertainty and discusses the relevance of uncertainty

evaluations in model applications. The paper aims to raise awareness and initiate a

comprehensive discussion among professionals on model prediction accuracy and uncertainty

issues. It also aims to identify future research needs. Ultimately the goal of such a discussion

would be to generate transparent and objective methods of explicitly evaluating the reliability

of model results, before they are implemented in an engineering decision-making context.
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CH-8600, Dübendorf, Switzerland

E-mail: Marc.Neumann@eawag.ch

A. Shaw

Black & Veatch, 8400 Ward Parkway,

Kansas City, MO 64114, USA

E-mail: ShawAR@bv.com

K. Villez

Laboratory of Intelligent Process Systems (LIPS),

Purdue University, 480 Stadium Mall Drive,

West Lafayette, IN 47906, USA

doi: 10.2166/wst.2009.225

1929 Q IWA Publishing 2009 Water Science & Technology—WST | 60.8 | 2009



INTRODUCTION

Over the past 40 years, there has been a tremendous

increase in the amount of knowledge the engineering and

scientific communities have acquired in the field of

wastewater treatment. This increased understanding has

led us to shift our design approaches from using “rules of

thumb” like F/M ratios and BOD loading rates, to more

accurate methods such as minimum sludge age and

detailed influent characterisation. This increased knowl-

edge has also resulted in our ability to construct

mathematical models that describe the main processes

that take place in wastewater treatment. In turn, the

implementation of these models to engineering projects

and the drive for their validation has deepened our

understanding of the same processes. By applying these

new tools we have improved our designs, made our plants

more efficient and been able to comply with increasingly

stringent regulations.

In spite of the advances we have made to date, our

approach to plant design and optimisation still implies that

we work in a well defined field (Gujer 2006). For example,

we select one or two ‘typical’ flow and load scenarios,

assumed to capture the conditions a plant will experience

and size the plant to meet an average effluent standard. To

account for the unpredictability of the influent wastewater

and the much larger variability that the plant encounters,

we are forced to incorporate safety factors in our design and

build redundant systems on site (US EPA 1993; WERF

2003b). These semi-arbitrary safety factors are lumped

expressions of the individual sources of uncertainty under-

lying any treatment process. This lumping of uncertainty

often results in overly conservative solutions. Most of the

existing design guidelines do not incorporate explicit and

objective methods for the evaluation of uncertainty. As a

result, the risk associated with any engineering decision

during a design, upgrade or optimisation project is

accounted for implicitly through a combination of adhering

to local or international guidelines, rules of thumb and the

experience of the design engineer.

In the current regulatory environment of extremely

low effluent nutrient standards (e.g. Chesapeake Bay

area) and increased demands for operational efficiency,

a new approach is required that provides us with an

understanding of the main sources of uncertainty associated

with each process (Gujer 2006). Moving away from lumped

uncertainty safety factors should help us maximise existing

plant capacity and avoid over-sizing new plants. A new

approach should provide us with an objective way of

discussing and evaluating risk and must allow the stake-

holders involved in a particular project to discuss risk and

who will assume it, openly.

Models can greatly assist us in the development of an

objective, peer accredited methodology for evaluating

process design and compliance risk. The way the models

are formulated provides us with a structure which allows

the identification and evaluation of the sources of uncer-

tainty. They can thus provide the framework for the

inclusion of uncertainty evaluations in plant design,

upgrade and optimisation projects.

This paper summarizes the presentations and discus-

sions held during the WWTmod2008 workshop on ‘Model

accuracy: dealing with uncertainties’ (Belia et al. 2008). The

workshop was organised in response to the increasing need

of the engineering community to discuss uncertainty in

model-based design and optimisation projects. This discus-

sion was focused on identifying answering the question:

how can we use the current modelling tools together with

uncertainty analysis to develop a methodology that results

in more efficient designs and explicit risk assessments?

The main objective of this paper is to serve as a problem

statement of the issues surrounding uncertainty evaluations

in wastewater treatment projects. The paper proposes a list

of items that need to be covered in any work that aims to

incorporate uncertainty evaluations into engineering pro-

jects. It also proposes an intuitive structure that allows clear

identification of the sources of uncertainty introduced

during a typical modelling project.

CURRENT RESEARCH

The incorporation of uncertainty evaluations in wastewater

engineering is far less advanced compared to other fields.

The academic and engineering communities have identified

the need in our field and have tried to address it by
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proposing methods for the quantification of model predic-

tion accuracy and uncertainty introduced during model

development and application. Most publications to date

deal with only a few of the sources of uncertainty in model-

based projects such as: wastewater influent and biokinetic

parameters (Bixio et al. 2002; Melcer et al. 2003; Sin et al.

2009); model structure (Neumann & Gujer 2008); sensor

and measurement accuracy (Rieger et al. 2005) or prediction

of future loads (Dominguez &Gujer 2006;McCormick et al.

2007). There are also several publications on the topic of

model prediction accuracy or goodness-of-fit evaluations

for model calibration (Ahnert et al. 2007), uncertainty

propagation (Benedetti et al. 2006) and incorporation of

uncertainty for specific design objectives (Bixio et al. 2002;

WERF 2003a; Neumann 2007). What is still lacking is

a broad, comprehensive discussion of the sources of

uncertainty and the evaluation methods applicable to

wastewater treatment projects.

The challenges highlighted in the introduction and the

needs identified in the brief literature review, point to the

need for the development of a comprehensive protocol that

incorporates uncertainty evaluations in model-based waste-

water projects. The goal of such a protocol would be to

generate transparent and objective methods of evaluating

the reliability of model results. The protocol must be easily

applicable and be scope-specific i.e. linked to the model

objective.

QUESTIONS THAT NEED TO BE ADDRESSED

A comprehensive discussion on the subject of uncertainty

and prediction accuracy must address several questions,

including:

1. What are the concepts and definitions that need to be

discussed so that a common language is established?

2. What are the sources of uncertainty?

3. What are the available methods, quantitative or quali-

tative, that can be used to evaluate model prediction

accuracy and uncertainty?

4. How much effort should be put into the assessment of

uncertainty and model prediction accuracy? Do all

model applications require the same degree of detail of

uncertainty evaluations?

* How much effort does one need to spend on data

collection and reconciliation?

* What is the appropriate level of calibration/validation

for a given task? Are dynamic solutions inherently

more accurate than steady state solutions?

5. What confidence levels are required for different model-

ling objectives? How do we quantify risk?

6. What is the added benefit of including uncertainty

evaluations in modelling projects?

* Could it provide a more objective way to determine

appropriate safety factors?

* Could it generate specific data requirements depend-

ing on project objectives?

* Could it provide calibration guidelines for each model

application?

7. How can uncertainty evaluations be incorporated into

design?

8. How do stakeholders (technical and non-technical)

communicate on the subject of uncertainty and risk?

It is beyond the scope of this paper to give answers to all

of the questions listed above. The following sections

summarize the presentations and discussions held during

the WWTmod2008 workshop on ‘Model accuracy: dealing

with uncertainties’.

TERMINOLOGY AND DEFINITIONS

The first step in establishing an applicable methodology or

protocol is to reach an understanding and agreement on

terminology. That is, what do we mean when using such

terms as uncertainty, accuracy, precision, confidence, error

and reliability? These terms have established definitions in

specific fields, e.g. in data quality management or chemical

analysis. However, when we expand their definition to

cover model quality, even for the most widely used terms

there appears to be a lack of consensus. For the benefit of

the readers, a selection of key terms and definitions has

been included in this paper. The list of selected definitions

has been compiled by the authors from different sources

(Taylor & Kuyatt 1994; Carstensen et al. 1997; Dochain &

Vanrolleghem 2001; ISO 15839 2003).
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Trueness of measurement

The degree of closeness of the expected value of a

measurement or estimate to an accepted reference value.

Expected values are obtained by averaging over repeated

measurements or estimates. Trueness is an expression of

systematic error.

Precision of measurement

The degree of similarity or closeness between repeated

measurements or estimates of the same variable, subjected

to the same sources of uncertainty. Precision is an

expression of random error and does not relate to the true

or specified value.

Confidence interval

Instead of estimating the parameter by a single value, an

interval or range likely to include the parameter is given.

How likely the interval is to contain the parameter is

determined by the confidence level.

Model prediction accuracy

An estimate of how close a model predicted quantity is to its

measured value. The difference between model predictions

and the corresponding measured values of a calibration or

validation data set, during a model run.

Model calibration

The (mostly iterative) adjustment of any model parameter

(physical, operational, kinetic, stoichiometric, settling,...) to

improve the fit to measured data.

Model validation

The comparison of the predictions of a calibrated model to

a different and independent data set not used for

calibration.

Uncertainty

The degree of lack of knowledge about a system or process

or degree of inability to exactly describe its existing state

and/or behaviour.

Uncertainty can be further classified by its nature

and level as detailed below (Walker et al. 2003; Refsgaard

et al. 2007).

Nature of uncertainty

Reducible—Uncertainty that can be reduced with further

research/efforts. (e.g. experimental determination of

kinetic parameters).

Irreducible—Uncertainty due to the inherent variability of

a system that cannot be reduced with any further

research/efforts (e.g. rainfall, toxic spills).

Level of uncertainty:

Quantifiable uncertainty can be quantified and described

in a statistical sense and can be attributed to uncertain-

ties surrounding measurement and sampling errors,

probabilities, etc.

Scenario uncertainty can be described with qualitative

estimations of possible outcomes that may develop in the

future. Realistic assumptions about relationships and/or

driving forces within the model can be established. It is

not possible, however, to derive the probabilities of the

scenarios taking place.

Recognized ignorance is the state where fundamental

uncertainty is acknowledged to exist and the scientific

basis is insufficient to develop functional relationships,

statistics, or scenarios.

Total ignorance is defined as the state where a deep level

of uncertainty exists. It is unknown what is unknown.

Figure 1 shows a schematic representation of the

levels of uncertainty ranging from full knowledge of all

outcomes (determinism) to a complete lack of knowledge

(indeterminacy).

SOURCES OF UNCERTAINTY

To date most researchers have classified the sources

of uncertainty from the perspective of where they are

located in a generic model (Walker et al. 2003; Refsgaard
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et al. 2004). Thus, they identify three or four main areas

that introduce uncertainties to model predictions: model

inputs, i.e. any type of data needed to perform a simulation

(e.g. influent flow, wastewater characteristics), model

structure (e.g. activated sludge model, clarifier model) and

model parameters. Uncertainty in the inputs is due to

random variations of the system (e.g. weather) and to errors

in the measurements (e.g. imprecise sampling and measure-

ment techniques). Uncertainty in the model is due to our

incomplete understanding of the modelled processes

and/or the simplified descriptions of the processes we

chose to include in our models. A fourth source of

uncertainty results from the implementation of the models

in software packages (e.g. numerical integration, bugs,

solver settings) (Yuan et al. 1997; Copp 2002; Reichert

2006). Table 1 shows the classification of the sources of

uncertainty based on the location of uncertainty as

mentioned above.

To provide a more intuitive method of identifying the

sources of uncertainty, it is proposed that the focus be

shifted from the location of uncertainty within the model to

when this uncertainty is introduced during a typical

modelling project. To aid this analysis, the typical steps of

a standard modelling project can be used (Langergraber

et al. 2004; Refsgaard et al. 2005; Sin et al. 2005; IWA

GMP-TG 2008). The five steps, shown in the first row of

Figure 2 are an intuitive sequence of tasks as suggested by

the IWA Task Group on Good Modelling Practice -

Guidelines for use of activated sludge models (IWA

GMP-TG 2008).

Uncertainty can be identified and evaluated at key times

during a project as suggested in the Harmoni-CA report

(Refsgaard et al. 2004) and shown in Figure 2. Figure 2 also

includes a list of items, for each project step, which need to

be selected or decided upon and which identify a location of

uncertainty. The figure therefore combines the traditional

location of uncertainty within the model with a project-step

oriented or sequential approach.

Table 2 includes the sources of uncertainty introduced

during a typical modelling project. It provides brief

explanations for each of the sources of uncertainty and

classifies them according to the nature of uncertainty as

reducible or irreducible. In addition, a proposed characteri-

sation of uncertainty on the basis of its level has

been included. Table 2 shows that each of the building

blocks of a plant model (influent, activated sludge model,

final clarifier model, etc) as implemented in a simulator

introduces uncertainties that can be identified and

evaluated.

QUANTITATIVE EVALUATION METHODS

As can be seen from Table 2, a significant number of the

sources of uncertainty associated with a wastewater

modelling project are quantifiable. Several methods exist

in the literature for the evaluation of uncertainty as well as

model prediction accuracy. Establishing objective methods

for the quantification of the prediction accuracy of a model

is very important if models are to be used as the framework

around which a protocol for uncertainty evaluations is to be

structured. The methods presented below are examples of

the most frequently used ways of quantifying model

prediction accuracy and uncertainty. The list needs to be

expanded to cover both quantitative and qualitative

methods that will allow the assessment of all the sources

Figure 1 | Levels of uncertainty.
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of uncertainty deemed important for a particular project.

Systematic procedures, together with their practical appli-

cation, should also be elaborated and proposed.

Evaluating model prediction accuracy

In cases where plant data are available, evaluations of

predictive quality of the model start with an assessment of

the model prediction error. This includes qualitative (visual,

graphical) and quantitative (statistical) comparisons of

model results with field observations. Most often the only

form of evaluation undertaken is visual comparison of time

series plots of the observations with the model predictions.

The simplest quantitative analysis is the generation of a

scatter plot of observations vs. model predictions or plots

of the residuals (measured value minus predicted value).

A more involved analysis may include the use of descriptive

statistics and more advanced goodness-of-fit measures such

as correlation coefficients. Examples of the statistical

coefficients typically used are shown in Table 3 (Ramaswari

et al. 2005; Ahnert et al. 2007 and Sin et al. 2008).

Typically, these coefficients will be calculated for the

model predictions that are the most important indicators of

plant performance for the specific modelling objective

(ammonia, nitrates, phosphates, MLSS, etc.). In this way,

an objective measure can be used to support subjective

evaluation methods such as visual inspection of data fits.

The use of statistical measures assists the comparison of the

prediction accuracy obtained in different modelling projects.

Currently there does not appear to be a consensus on

how to apply these statistical coefficients quantifying model

prediction accuracy to wastewater models nor has there

been an evaluation of their applicability at different value

ranges. An evaluation of the advantages and disadvantages

of each method along with suggested application guidelines

is required.

Although statistical comparisons provide an objective,

reproducible method for evaluating how well model

predictions fit measured data, caution should be exercised

when making judgements on how good a particular model

is based on statistical calculations. Statistical evaluations

provide very little insight into why model predictions

Table 1 | Location of uncertainty

Area Details Examples

Inputs Influent data Current and future predicted flow, COD, ammonia

Physical data Tank volume and geometry

Operational settings DO set points

Performance data Effluent data, reactor concentrations

Additional info Input from connected systems e.g. sewers, catchment

… …

Model Model structure Influent model, hydraulic model, aeration system model,
process models (biological, settling,…)

Interfaces between models Waste activated sludge pumped to an anaerobic digester; digester
effluent pumped to sludge treatment

… …

Model parameters Hydraulic Number of tanks in series

Biokinetic Maximum growth rate

Settling Settling coefficients

… …

Software (model technical aspects) Solver settings

Numerical approximations

Software limitations

Bugs

… …
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deviate from measured data and should be combined with

other assessments that are based on process expertise.

Evaluating uncertainty

As shown in Table 2, evaluating uncertainties for any

mathematical model begins by specifying the scope of the

model, which includes identifying the relevant sources of

uncertainty. Following this, each of the uncertainties that

are considered significant to the specific model application

can be evaluated and where possible quantified. In the

literature one finds several methods that can be used for the

quantification of uncertainty, a number of which have been

listed below.

1. Methods used to characterize and prioritize uncertainty:

* data quality evaluations

* expert elicitation

* parameter estimation

* sensitivity analysis

* techniques developed for specific applications (the

Numerical, Unit, Spread, Assessment and Pedigree

(NUSAP) method, the uncertainty matrix)

* …

2. Methods aiming to increase the quality of information:

* quality assurance

* extended peer review

* stakeholder involvement

* …

3. Methods used to quantify and propagate uncertainty in

model calculations to evaluate uncertainty in model

outcome:

* Gaussian error propagation

* Monte Carlo simulation

* Inverse modelling (multiple model simulation)

* Scenario analysis

* …

A detailed discussion of these methods is beyond the

scope of this paper. However, it is important to highlight

Figure 2 | Typical modelling project steps including the instances where model uncertainty and prediction accuracy should be identified and evaluated (adapted from Refsgaard et al.

2004 and IWA GMP-TG 2008).
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Table 2 | Nature and level of uncertainty introduced during each step of a typical modelling project simulating the liquid train of a wastewater treatment plant

Typical modelling project steps Details of each step Nature and source of uncertainty Level of uncertainty

Project definition Objectives Design, operation, training The required prediction accuracy of the
model is decided at this stage of the project.
This will define which of the uncertainty
items listed below will be taken into account

N/A

Context and framing The boundaries of the system to be
modelled. Biological treatment only,
whole plant or sewer and river

Requirements Level of model prediction accuracy,
what type of data

Data collection
and reconcilliation

Influent data Flow rate, concentrations, influent
characterisation data, data from other
models and other systems like sewers

Irreducible: due to the inherent variability of
the real system like weather, unexpected
demographic changes, unexpected factory
shutdowns

Quantifiable,
scenario, recognised
ignorance

Reducible: due to data collection e.g.
sampling method, location, frequency,
accuracy of sensors, accuracy of analytical
techniques

Quantifiable

Physical data Process flow diagram, active (effective)
tank volumes, clarifier surface areas,
flow splits

Irreducible: due to the unpredictable and
dynamic behaviour of structures like splitters
to flow changes

Scenario

Reducible: due to e.g. unknown true volume
constructed or operational depth of
structures

Quantifiable

Operational settings Controller set-points, valve positions,
pumped flows

Irreducible: due to the unpredictability of
operator decisions

Quantifiable, scenario

Reducible: due to actions different from
planned or changes not logged, e.g. a change
in set-points, incorrect controller set up e.g.
scales different between field and
control room

Recognised ignorance,
quantifiable

Performance data Effluent data and reactor concentrations
such as MLSS (when not used as
controller set-points)

Irreducible: due to the inherent variability of
the real system e.g. response of microbial
consortium

Quantifiable,
scenario, recognised
ignorance

Reducible: due to data collection issues Quantifiable

Additional information Equipment failures Irreducible: e.g. due to unexpected
equipment failures

Quantifiable,
scenario, recognised
ignorance
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Table 2 | (continued)

Typical modelling project steps Details of each step Nature and source of uncertainty Level of uncertainty

Plant model set-up Influent model Influent dynamics, characteristics,
influent fractions

Reducible: due to simplifications of influent
dynamics (applying a generic diurnal pattern
to average vs. constructing a dynamic profile
of the whole sewer system), due to
simplifications of influent characteristics
(fixed ratios for influent fractions)

Scenario

Biological model Model structure: processes (conversion,
separation), calculation of composite
variables, type of mathematical
expression used to describe processes
(Monod vs. enzymatic kinetics)

Irreducible: due to the inherent variability of
the real system

Recognised ignorance

Reducible: due to simplifications in model
structure e.g. processes not included,
processes included in simplified form (one
step vs. two step nitrification), due to the
choice of mathematical description of
processes

Quantifiable

Model parameters: fixed, a priori chosen,
calibrated, time varying

Reducible: due to our lack of knowledge of
the appropriate value

Quantifiable, scenario

Hydraulic model Model structure: transport and mixing
processes, number of trains, number of
tanks in series

Reducible: due to the simplification of
transport and mixing processes in models,
inadequate spatial resolution (CSTRs vs.
CFD, selection of number of trains to model,
number of tanks in series)

Quantifiable, scenario

Model parameters: fixed, a priori chosen,
calibrated, time varying

Aeration system model Model structure: gas transfer processes,
mechanical system details

Reducible: due to the simplification of gas
transfer processes and aeration system

Quantifiable, scenario

Model parameters: fixed, a priori chosen,
calibrated, time varying

Clarifier model Model structure: separation processes,
calculation of composite variables and
type of mathematical expression used to
describe processes (1-D, 2-D, CFD
analysis)

Reducible: due to simplifications in model
structure e.g. processes not included,
processes included in simplified form as well
as due to the choice of mathematical
description of processes

Quantifiable, scenario

Model parameters: fixed, a priori chosen,
calibrated, time varying

Irreducible: due to inherently varying
biomass settling properties

Quantifiable, scenario

Reducible: due to our lack of knowledge of
the appropriate value
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Table 2 | (continued)

Typical modelling project steps Details of each step Nature and source of uncertainty Level of uncertainty

Controllers in plant
operations

Control loops, sensors, actuators, time
variation of set-points

Reducible: due to the oscillation of the
aeration system, time delays in control loops,
non-linearity of actuators

Quantifiable, scenario

Interfaces between
models

Use of one or several sets of state
variables, calculation of composite
variables

Reducible: due to the aggregation of state
variables

Quantifiable

Model technical
aspects

Numerics: solver selections &
settings, bugs

Reducible: due to numerical approximations
and software bugs

Quantifiable,
recognised ignorance

Simulators: limitations of simulation
platforms

Calibration &
Validation

Model parameter
selection

Selection of model parameters for e.g.
biological, separation models that need to
be adjusted

Model prediction error calculations.
Uncertainty analysis of calibration &
validation parameters

N/A

Model evaluation Assessment of model prediction error for
calibration & validation data sets through
the implementation of quantification
methods such as statistical coefficients

N/A

Simulation Alternatives
evaluation, future
“what-if” scenarios

Generation of model desired results
(probability distributions, statistics)

Post-calibration uncertainty analysis of
simulations (sensitivity and Monte Carlo
uncertainty analysis)

N/A
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that they are available and widely used in other fields.

During the development of the proposed protocol for the

inclusion of uncertainty evaluations in engineering projects,

these methods need to be assessed for their applicability in

the wastewater field. Further details and examples of the

implementation of the methods listed above can be found in

WERF (2003a), Refsgaard et al. (2005), Benedetti et al.

(2006) and Ahnert et al. (2007) among others.

THE RELEVANCE OF MODEL SCOPE AND

APPLICATION IN THE EVALUATION OF

UNCERTAINTY

Models canbeused inmultiple stages of a treatmentplant’s life

cycle: research, pre-design, detailed design, start up, process

optimization, plant performance analysis, process control,

plant upgrades, forecasting, education and training (students

and operators) and operator decision support. These different

applications require different levels of confidence in

model predictions and hence different levels of effort spent

on data collection, model calibration and uncertainty evalu-

ations. For example, a preliminary design project requires

results quickly and therefore steady state simulations and a

series of sensitivity analyses of the parameters where the

larger amount of uncertainty lies would suffice. A model

used for operational decision support will require fast, robust

andhighly predictive results. In this case adynamic calibration

and detailed uncertainty analysis may be required.

Because the monetary cost and time input increases

with increased requirements, it is important that the

engineering community reaches a consensus on the level

of confidence and effort required to achieve each project

goal. This will be dictated by the intended model application

(IWAGMP-TG 2008). One can surmise that increased effort

is required with increasing complexity of the modelling

objective. The development of a protocol that incorporates

uncertainty evaluations will provide quantitative measures

to the qualitative criteria discussed above.

CONCLUSIONS

As regulatory demands require plant owners to design and

operate processes close to their limits while at the same time

increasing energy efficiency and reducing greenhouse gas

emissions, identifying and quantifying the uncertainties

involved in a new design or plant upgrade becomes crucial.

This is especially evident during final bid selection pro-

cesses, when plant owners have to select a design from a list

of proposals that involve different engineering approaches,

different processes and costs, all meeting the same objective.

One of the parameters that differentiate the bids, not

explicitly stated in the proposals, is the uncertainty in

each design and the risk that the engineers have assumed in

each of the proposed solutions.

Historically the uncertainty involved in predicting the

performance of wastewater treatment plants has been

addressed through the incorporation of safety factors

which are essentially lumped expressions of all the sources

of uncertainty. The implementation of models provides

practitioners with a structure which allows the systematic

identification and quantification of the majority of the

sources of uncertainty. It allows them to steer away from

semi-arbitrary safety factors, which often result in overly

conservative solutions. Instead, safety factors can be derived

from quantifications of the uncertainty in each model. This

new approach will provide stakeholders with the ability to

explicitly quantify uncertainties and include risk evaluations

in their decision making process. It should generate new

ways of assessing process performance such as confidence

intervals or probability curves which will lead to the

estimation of accurate design factors.

To initiate the discussion of uncertainty evaluation in

the wider engineering community, the work of academics in

the field of wastewater and elsewhere needs to be combined

with the needs of the engineers implementing modelling for

Table 3 | Statistical coefficients used to quantify model prediction accuracy

Coefficient Definition/formula

Residuals ri ¼ Ci
pr 2 Ci

ob

Mean of residuals (Bias) m ¼ 1
n

Pn
i¼1 ri

Root-mean-square of residuals (RMSR)
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Pn
i¼1 ðriÞ

2
q

Coefficient of determination R2 ¼ 12

Pn

i¼1
Ci

ob2Ci
pr

� �2
Pn

i¼1
Ci

ob2m

� �2

Where: N ¼ Number of prediction/observation pairs, Ci
pr ¼ model prediction at time

instant i, C i
ob ¼ observation (measurement) at time i, m ¼ mean of residuals, m ¼ mean of

observations.
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various applications. To this end the authors of this paper

are proposing a number of items that need to be discussed.

These range from reaching an agreement on terminology to

identifying the sources of uncertainty and the available

methods for their evaluation. The authors also note the

need for the development of a protocol that helps engineers

to include uncertainty evaluations in model-based design

and optimisation projects. Leveraging the power of models

can facilitate the difficult task of evaluating risk.

OUTLOOK

This paper outlines the issues surrounding uncertainty

in wastewater treatment and identifies the need for the

development of a protocol that incorporates uncertainty

evaluations in modelling projects. The goal of such a

protocol would be to generate transparent, peer accredited

methods of evaluating the reliability of model results.

The same methods could be used i) for model-based plant

design procedures, ii) to generate design factors and

iii) define data requirements. As a first step, the following

tasks need to be undertaken:

1. Establish the state of the art in the field of uncertainty

evaluation for wastewater treatment projects

2. Review the current practice in respect to assessing risk in

design, upgrade or optimisation projects

The work undertaken as part of the above tasks will

provide the engineering community with the necessary

information to be able to:

† Propose a set of terms and definitions and decide on a

common terminology.

† Propose a comprehensive list of the sourcesofuncertainty.

† Document and evaluate the existing methods for asses-

sing uncertainty.

† Identify gaps in current knowledge and define the devel-

opments required to provide adequate tools for prac-

titioners to implement uncertainty evaluations in projects.

† Incorporate knowledge on uncertainty evaluation from

other disciplines.

This will enable to complete follow-up tasks necessary

for the development of a protocol. These may include:

1. The development of new or the modification of existing

uncertainty assessment and evaluation methods.

2. The generation of transparent, peer accredited methods

to replace current safety factors with new design factors,

calibration requirements, data requirements, etc.

3. The development of a communication framework on

uncertainty to address the “non-expert” community

including regulators.

These are ambitious and demanding goals which have

important implications to the current practice of waste-

water treatment profession and industry. Any undertaking

to achieve these goals requires a multi-disciplinary collab-

oration and multi-stakeholder involvement ranging from

academia and consultants to regulators and professional

associations.
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