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a b s t r a c t

This paper is concerned with the application of Kalman filter based methods for Fault Detection and
Identification (FDI). The original Kalman based method, formulated for bias faults only, is extended for
three more fault types, namely the actuator or sensor being stuck, sticky or drifting. To benchmark the
proposed method, a nonlinear buffer tank system is simulated as well as its linearized version. This
vailable online 9 March 2011
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method based on the Kalman filter delivers good results for the linear version of the system and much
worse for the nonlinear version, as expected. To alleviate this problem, the Extended Kalman Filter (EKF) is
investigated as a better alternative to the Kalman filter. Next to the evaluation of detection and diagnosis
performance for several faults, the effect of dynamics on fault identification and diagnosis as well as the
effect of including the time of fault occurrence as a parameter in the diagnosis task are investigated.
rocess control
on-linear systems

. Introduction

Fault Detection and Identification (FDI, Isermann & Ballé, 1997)
eals with the timely detection and diagnosis of anomalies in
rocesses or systems and has gained attention since the 1990s.
everal philosophies have been adopted in the past, leading to a
ide range of available tools (Venkatasubramanian, Rengaswamy,
Kavuri, 2003; Venkatasubramanian, Rengaswamy, Kavuri, & Yin,

003; Venkatasubramanian, Rengaswamy, Yin, & Kavuri, 2003). A
ough classification of methods can be made according to whether
he applied methods are deductive or inductive in nature. A typi-
al deductive method will be based on first-principles knowledge
hile inductive methods are based on recognition of patterns in
rocess data sets, with roots in statistical theory (e.g. Principal
omponent Analysis) or Artificial Intelligence (e.g. Artificial Neu-
al Networks). Deductive methods, due to their assumption on
vailable first principles knowledge, tend to be more rigorous and
ccurate in nature. However, the cost of accurate knowledge or

odels may be prohibitive so that only inductive methods may

e achievable in practice. Quite naturally, hybrid approaches are
pplicable, e.g. when first principles knowledge is available to some
xtent but not for the whole system. Another way of categoriz-
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ing FDI methods may be based along the internal representations
used. For sure, quantitative representations are the most popu-
lar. The Kalman filter adopted for FDI in Prakash, Patwardhan, and
Narasimhan (2002) and further extended in this work is a quan-
titative method in the deductive category. Principal Component
Analysis is a quantitative method in the inductive category (Joliffe,
2002). A smaller segment of FDI methods is based on qualitative
representations. Examples of such methods in the deductive cat-
egory are Signed Directed Graphs (SDGs, Maurya, Rengaswamy,
& Venkatasubramania, 2004) and qualitative reasoning (Forbus,
1984; Kuipers, 1994). In the inductive category, a large variety of
time series trending methods is available (e.g., Akbaryan & Bishnoi,
2001; Bakshi & Stephanopoulos, 1994; Charbonnier, Garcia-Beltan,
Cadet, & Gentil, 2005; Dash, Maurya, & Venkatasubramanian, 2004;
Flehmig, Watzdorf, & Marquardt, 1998; Villez, 2007), yet little con-
sensus exists on their respective strengths and weaknesses.

The presented work is a result of an ongoing project on state
awareness for complex systems. The ultimate aim is to install tools
for proper identification of potentially harmful situations in safety-
critical systems. This aim fits into a larger vision on design of
resilient systems, i.e. systems that only degrade gradually or grace-

fully when subject to series of harmful events (Rieger, Gertman, &
McQueen, 2009). In this contribution, we focus on the extension
and critical evaluation of an existing method for Fault Detection
and Identification (FDI) which is based on the Kalman filter. This
methods finds itself in the deductive-quantitative section of the FDI

dx.doi.org/10.1016/j.compchemeng.2011.01.045
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
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Fig. 1. Scheme of the simulated tank system.

ethods. This method has been tested successfully for fault detec-
ion and diagnosis (Prakash et al., 2002). In particular, the method
as been shown to allow proper detection and diagnosis of biases in
ifferent actuator and sensor locations as well as correction of the
n-line model predictive control (MPC) scheme for identified faults
Prakash, Narasimhan, & Patwardhan, 2005). However, using only
ias faults and the assumption on linearity may be considered lim-

ting. This study therefore concentrates on (1) the extension of the
ethod to allow the separate identification of stuck behavior, stic-

ion, bias and drifts in sensors and actuators and (2) the evaluation
f the method on both a non-linear system as well as its linearized
ersion. As such, the simulation study allows to evaluate whether
he method is applicable for non-linear systems. In what follows,

aterials and Methods will be explained first. Then, results will be
hown with broader discussions in separate sections. Finally, the
ost important conclusions are summarized in the last section.

. Materials and methods

.1. Benchmark simulations

Two models are used to benchmark the developed methods for
DI. Both are models of a buffer tank with a pipe connected at the
ottom of the tank and with one end open to the atmosphere. The
ipe is equipped with a valve. Fig. 1 shows a scheme of the system.
feedback PI controller adjusts the valve position to achieve the

etpoint for the tank level based on the measurement of the tank
evel. One of the models is a non-linear and more realistic version
f such a system. The other is the linearized version of this model,
btained by linearization around the nominal operating point. The
ollowing paragraphs explain the two models.

.1.1. Non-linear system
The open-loop system can be written as a Differential Algebraic

quation (DAE) with the tank level (h) as the dynamic state and
he outflow rate (qout) as the algebraic state. The valve position
v) is a manipulated input and the inflow rate (qin) a disturbance
nput. Because the algebraic equation can be solved analytically,
ne can rewrite the open-loop system model as a single Ordinary
ifferential Equation (ODE) (Appendix A). The steady-state nominal
peration is defined by the tank level (ho = 10 m) and valve open-
ng (vo = 50%), from which the corresponding steady state mean
nflow rate can be computed (qin,o = 5.36 m3/s). All simulations are
tarted with this steady state condition. All parameter values of the
onlinear model are listed in Appendix B.

.1.2. Linear system
To obtain the second benchmark system, the nonlinear model
as linearized by means of evaluating the derivatives at the nom-
nal operating point (Appendix C). For this linearized system, the
se of the (linear) Kalman filter is theoretically optimal. The results
btained with this linearized system will function as a reference for
valuation of the results obtained in the non-linear case.
l Engineering 35 (2011) 806–816 807

2.1.3. Introducing faults and noise
To test the FDI strategy, several fault classes were simulated for

both systems. In this paper, we consider a fault type a kind of symp-
tomatic behavior, irrespective of its location. A fault class is defined
as the unique combination of fault location and fault type. The sim-
ulated fault types are stuck behavior, stiction, bias and drift. These
four fault types are introduced in two locations, namely the valve
position and the tank level measurement. This leads to 8 differ-
ent fault classes. Stiction, particularly in valves, has been shown to
be relevant in an industrial context (Choudhury, Thornhill, & Shah,
2005; Srinivasan & Rengaswamy, 2008). However, its identification
in a context where other faults are possible has not been considered
yet. With u(t) the valve position signal delivered by the controller,
uf(t) the corrupted valve position, tf the time of fault occurrence
and ı the fault parameter, the different models for the valve faults
are as follows:

No fault: uf (t) = u(t)

Stuck: uf (t) = uf (t − 1)

Stiction: uf (t) = u(t) |h(t) − hf (t − 1)| > ı

= uf (t − 1) |h(t) − hf (t − 1)| ≤ ı

Bias: uf (t) = u(t) + ı

Drift: uf (t) = u(t) + ı · (t − tf )
100 s

(1)

For the sensor, the equivalent models are obtained by replac-
ing u(t) and uf(t), with the true tank level, h(t), and the corrupted
tank level measurement, hf(t), respectively. It is noted here that the
bias and drift fault types are additive while the stuck and stiction
faults are non-additive. This has important implications for fault
identification as will shown further.

The resulting corrupted signals (uf(t), hf(t)) as well as the input
flow rate (qin,o) are subjected to white noise to obtain the actual
tank level measurement, the actual valve position and the actual
input flow rate (y(t), v(t) and qin(t)) as follows:

y(t) = hf (t) + e1, e1∼N(0, �2
1 )

v(t) = uf (t) + e2, e2∼N(0, �2
2 )

qin(t) = qin,o + e3, e3∼N(0, �2
3 )

(2)

Appendix B lists the applied values for the noise standard devi-
ations (�1, �2 and �3).

2.1.4. Simulated scenarios
To make sure that fault detection and diagnosis results are inde-

pendent of other faults, several short scenarios are simulated rather
than a single process history. Both the nonlinear and linear system
are simulated repeatedly for 200 s. This is done for combinations
of several fault scenarios, which describe the simulation of faults,
and setpoint scenarios, which describe the time profile of the tank
level setpoint.

Fault scenarios. All faults are introduced at 101 s in the simula-
tion. The stiction, bias and drift faults are introduced with three
different parameter values, namely 5, 10 and 15 % of the value at
nominal operating point. A faultless scenario is also simulated. A
total of 21 fault scenarios thus results. Table 1 summarizes these
scenarios and provides a fault class index (0–8) for all the fault
classes.

Setpoint scenarios. Each of the above fault scenarios is repeated

for two different setpoint scenarios. In the first scenario, SP1, a set-
point change of 10% is introduced at the start of the simulation (1 s).
In these cases, the controller dynamics have settled by the time that
the fault is introduced. In the other scenario, SP2, the same setpoint
change is introduced at 101 s in the simulation, along with the intro-
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Table 1
Simulated fault scenarios.

Fault class Fault type Fault location Fault parameter values

0 None – –
1 Stuck Valve –
2 Stiction Valve 5 − 10 − 15% · vo

3 Bias Valve 5 − 10 − 15% · vo

4 Drift Valve 5 − 10 − 15% · vo

5 Stuck Sensor –
6 Stiction Sensor 5 − 10 − 15% · ho

7 Bias Sensor 5 − 10 − 15% · ho

8 Drift Sensor 5 − 10 − 15% · ho

Table 2
Simulated setpoint scenarios.

Setpoint scenario Magnitude Time of change
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For the additive fault types (bias, drift), one can find the most
SP1 10% 1 s
SP2 10% 101 s

uced fault (if any). By means of these two setpoint scenarios, a
rude analysis of the effect of dynamics on the FDI performance
ecomes possible. Table 2 lists the different setpoint scenarios.

According to the above description, each fault scenario (21) is
ombined with each setpoint scenario (2). This leads to a total of
2 simulations for each of the two considered systems (nonlinear
nd linear).

.2. Fault Detection and Identification

.2.1. Fault Detection and Identification via the (linear) Kalman
lter (KF)

A Fault Detection and Identification (FDI) strategy based on the
alman filter is applied for both the linear and the nonlinear sys-

em. This FDI strategy is an extension of the method as in Prakash
t al. (2002). This original strategy allows to detect and identify
iases in multiple sensors and inputs and assumes exact knowl-
dge (structure, parameters) of the linear state-space model with
nown additive, Gaussian noise in inputs and outputs. The pro-
osed extensions include (1) that four fault types (stuck behavior,
tiction, bias and drift) are considered in the fault diagnosis method
ather than one (bias) and (2) that the time of fault occurrence is
onsidered a parameter of the fault as opposed to assuming that
he time of the fault detection is also the time of fault occurrence.
ig. 2 gives an overview of the whole FDI procedure. The individual
teps are described in the next paragraphs.

Fault detection. For detection, one continuously evaluates the
esiduals, r(k), between predictions by the Kalman filter and the
easurements. The Mahalonobis distance of these residuals to the

rigin is then computed, using the expected covariance matrix of
he prediction residuals, V(k), which is delivered by the Kalman
lter:

(k) = r(k)T · V(k)−1 · r(k) (3)

This distance follows a �2 distribution under assumptions of
inearity and Gaussian noise distributions and as long as the model

atches the system exactly. A fault detection test (FDT) for abnor-
al behavior is evaluated at each time instant using the 90%

onfidence limit (Fig. 2 – top box). A fault confirmation test (FCT)
ntegrates the last 10 FDTs each time a new FDT has been evaluated
nd signals an alarm if 3 out 10 FDTs were positive (Fig. 2 – middle

ox). This is slightly different from the original approach in Prakash
t al. (2002). In that work, the FCT is based on a joint check of all
esiduals within a time window after a positive FDT by means of
ne aggregate �2 statistic.
Fig. 2. Scheme of the applied Fault Detection and Identification strategy.

Fault Identification (Diagnosis). The original method in Prakash
et al. (2002) permits fast identification of biases by means of an
extension of the nominal state-space model. Indeed, the introduc-
tion of biases in linear systems results in a linear response which
can always be computed in advance up to a factor which depends
linearly on the magnitude of the fault. This means that an analytic
solution for the magnitude of the bias is available directly. In addi-
tion, the likelihood of a bias in a given location (actuator or sensor)
is easily computed. Diagnosis then simply finishes with the selec-
tion of the fault scenario with maximum likelihood. Two critical
remarks can be made with respect to this method. The first one is
that other, more complex, faults are not considered in the diagnosis
step. We therefore extend the method here for the faults described
above. A second remark with respect to the original method is that
the effect of the start time of the fault is not optimized in the search
for the correct fault type and location.

Based on the above remarks, the following strategy is devised.
For all considered fault types, a grid search is executed to search
for the most likely time of fault occurrence. For each of the consid-
ered times, one fits the remaining parameters for each available
fault class (location, type). To this end, the considered times of
fault occurrence range from 50 samples before the time of posi-
tive FCT until time of positive detection in discrete steps (51 start
times total). After this optimization, the likelihood for each consid-
ered fault scenario (time of occurrence, location, type) is available.
From the set of fault scenarios, the one with maximum likelihood
is selected as the final result of diagnosis. Except for the fit of the
fault parameters, all steps are the same for all fault types (Fig. 2 –
bottom box). In the succeeding paragraphs, the applied strategies
for additive and non-additive faults are explained.
likely magnitude parameter values analytically. This is explained
in detail for the bias type in Prakash et al. (2002). In essence, the
method described the expected profile of the Kalman prediction
residuals for a given fault class (type + location) up to a constant
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Table 3
Combinations of simulated systems and applied Kalman filter.

Short-hand notation Simulated system Applied Kalman filter

L-KF Linear (linear) Kalman filter
K. Villez et al. / Computers and Ch

hich is proportional to the magnitude of the bias. Because of the
ssumption of linearity, the response of the system to a drift fault
s simply the sum of responses to biases of equal magnitude intro-
uced at each time following the start of the drift fault. As a result,
he system’s response to a drift is also additive and can also be
omputed upfront up to a factor reflecting the magnitude (speed)
f the drift. Furthermore, this means that the drift parameter and
he associated likelihood can be computed analytically. As such,
he inclusion of drift is the most straightforward of the proposed
xtensions.

For the non-additive faults (stuck, stiction), the situation is more
omplicated. Here, no analytical solution exists and one needs
o run the Kalman filter over the time series for each consid-
red parameter set for a fault scenario. For both faults, one thus
imulates the system under the proposed fault and evaluates the
ikelihood. For the stuck fault type, this is fairly easy since the time
f occurrence is the only parameter. It is computationally more
ntensive for the stiction fault type as one also needs to optimize
he stiction band parameter (Fig. 2 – bottom box – right). In our
ork, a grid search strategy is used with values ranging for the

tiction band parameters ranging from 0 to 25% in steps of 1%. For a
iven fault start time, the maximum likelihood is used to compare
ith other fault scenarios.

The above fault identification strategy is compared to two other
trategies, which are slight modifications of the above. In the first
trategy, the presence and the time of fault occurrence is assumed
o be known (actual time). Naturally, this is not realistic situation
ut the results following from this approach form a reference to
ompare with. A second approach is to assume that the fault started
t the time of fault confirmation (detection time). The detection time
s considered as the first time a fault is confirmed (first positive FCT)
fter the start of the fault. This can be considered a naive approach.
he third and most advanced approach is the complete approach as
escribed above (optimized time). The second and third approaches
oth require a detection for the execution of diagnosis. As a result,
hen detection fails, diagnosis fails as well. Evaluation of each of

hese three approaches is executed at the end of the simulation.
his makes sure that the same amount of information (samples) is
vailable each time.

.2.2. Fault Detection and Identification via the Extended Kalman
ilter (EKF)

For the nonlinear system, the above strategy is repeated with
he Extended Kalman Filter (EKF). In this case, the EKF is used
or fault detection and to obtain prediction residuals. To this end,
he state prediction equation is replaced by the original nonlin-
ar model. All other equations (covariance prediction, covariance
pdate and Kalman gain) are based on the linearization of the non-

inear model around the state estimate. The diagnosis part is left
nchanged except that for each sample in the data history, one
ses the corresponding linearized model as obtained by means of
he EKF in the fault detection step. Since these linearized models
re obtained under the fault-free assumption, one thus assumes
hat the presence of a fault has little effect on the linearized model.

.3. Combinations of simulated systems and applied Kalman
lters

Three combinations of simulated system and applied Kalman
lters are considered. The first combination consists of the appli-
ation of the (linear) Kalman filter to the linearized system. The

btained results are indicated as L-KF results. This is a reference
ase as the results are theoretically optimal. The second com-
ination consists of the application of the (linear) Kalman filter
o the nonlinear system. We use NL-KF for short-hand notation.
ecause of mismatch between the model used by the Kalman fil-
NL-KF Nonlinear (linear) Kalman filter
NL-EKF Nonlinear Extended Kalman Filter (EKF)

ter and the simulated system, one can expect poor results. The
third combination consists of the application of the EKF to the non-
linear system, using NL-EKF as short-hand notation. This is reduces
model mismatch by means of repeated linearization of the nonlin-
ear model around the estimated state. Table 3 gives an overview of
the described combinations.

2.4. Evaluation of FDI performance

To assess the performance of the tested strategies throughout
the simulation study, several measures are evaluated. These are
explained in the following paragraphs.

Total misclassification rate. The total misclassification rate is the
fraction of time over which the obtained outcome is equal to the
target outcome. For fault detection, it is assumed that the obtained
class is ‘normal’ before a positive FCT and ‘faulty’ as from a positive
FCT. Since all faults are introduced at 100 s in the simulation, the
target outcome is ‘normal’ for the first 100 samples and ‘faulty’ for
the last 100. For faultless scenarios, all (200) target outcomes are
‘normal’. For diagnosis, the total misclassification rate is the frac-
tion of the time during which the fault class is correctly identified
after execution of the diagnosis task. Here, the target outcome is
‘0’ (faultless) during the first 100 samples and the simulated fault
class index (1–8) in the last 100 samples. The fault diagnosis per-
formance is not evaluated for the faultless scenarios. With T the
target outcome and P the obtained class, the formula for the total
misclassification rate reads:

Total Misclassification Rate = 1
K

K∑
k

(T(k) /= P(k)) (4)

Type I and Type II error rates. For detection performance, the total
misclassification rate can be decomposed in two, namely the Type
I error rate and the Type II error rate. The Type I error rate is com-
puted as the time in which the system is truly in a normal state and
the obtained outcome is ‘faulty’ divided by the time in which the
system is truly in a normal state. In analogy, the Type II error rate
is computed as the time in which the system is in a faulty state and
the outcome is ‘normal’ divided by the time in which the system is
in a faulty state. The Type I and Type II error rates are only used for
evaluation of detection performance. The respective formulas are
as follows:

Type I Error Rate =

K∑
k

(T(k) /= P(k) & T(k) = ‘ normal’ )

K∑
k

(T(k) = ‘ normal’ )

Type II Error Rate =

K∑
k

(T(k) /= P(k) & T(k) = ‘ faulty’ )

K∑

(5)
k

(T(k) = ‘ faulty’ )

Each of the above performance measures are set up so that
a lower measure means better performance. These measures
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Fig. 3. Fault detection performance. The left panels correspond to SP1 scenarios (setpoint change at 1 s in the simulation) while the right panels correspond to the SP2
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cenarios (setpoint change at 101 s in the simulation). The top, middle and bottom
espectively. In each panel, performance measures are grouped per fault class (0–8
epresent the results for the linear system using the KF (L-KF), the nonlinear system

ay be considered crude as they do not take into account that
he impact of a fault may be influenced by process states and
he nature and location of the fault. However, they allow suffi-
iently for a comparative analysis between different methods and
trategies.

. Results

Simulations were executed as explained above for all fault
cenarios, for two setpoint scenarios (SP1 and SP2) and for two
ystems (linear and non-linear). The same Kalman based strat-
gy for FDI was applied in each simulation. For the linear system,
his strategy was applied with the (linear) Kalman filter (KF)
nly (L-KF). For the non-linear system, both the KF and the EKF
ere applied (NL-KF and NL-EKF). Fault classes 2–4 and 6–8
ere executed with different values for the fault parameter (see

able 1). For these classes, the obtained performance measures
ere averaged. The following paragraphs describe the obtained

esults.

.1. Fault detection

As discussed above, an alarm or detection is considered based on
he fault confirmation test (FCT). In all that follows, fault detection
efers to an alarm generated by means of the Fault Confirmation
est (FCT).

The detection performance measures are displayed for all simu-
ations in Fig. 3. At the top-left, one sees the total misclassification
ate for each evaluated combination of simulated system and
alman filter for the SP1 scenarios (setpoint change introduced at

he start). It can be seen that the misclassification rate is always the

orst when the KF is applied to the nonlinear system (NL-KF). The

arger misclassification rate is largely due to the effect of a large
raction of Type I errors (Fig. 3, middle-left). Clearly, application of
he KF to the nonlinear system results in a too sensitive fault detec-
ion method. This is due to mismatch of the linearized model and
ls display the total misclassification rate, Type I error rate and Type II error rate,
able 1). The light gray (left), dark gray (middle) and black (right) bar in each group

the KF (NL-KF) and for the nonlinear system using the EKF (NL-EKF), respectively.

the actual system. The misclassification results for the KF applied to
the linear model (L-KF) and the EKF applied to the nonlinear model
(NL-EKF) are similar (Fig. 3, top-left). Moreover, the Type I error
rates are exactly the same for the L-KF and NL-EKF cases. Type II
error rates show more variation (Fig. 3, bottom-left). Here, for each
fault class, the NL-KF case results in the best performance. This is
due to a high sensitivity of the statistical test. However, it is noted
that this also leads to very high Type I error rates, as shown earlier.
Overall, fault class 3 (valve bias) and fault class 7 (sensor bias) are
the easiest to detect. The worst Type II error rates are found for fault
fault class 5 and 6 (sensor stuck, sensor stiction). The Type II error
rates for the NL-EKF cases are always equal or lower than those for
the L-KF cases. This is explained as a slight increase in sensitivity
in the NL-EKF case. This follows from an inexact match of the lin-
earized form of the model which is used in the EKF. Because this
only affects the covariance estimates and not the state estimates,
this effect is not visible in the observed Type I error rate. Indeed,
one would expect a slightly larger Type I error rate for the NL-EKF
case if a larger number of repetitions of the same simulations were
executed.

At the right hand side of Fig. 3, one finds the equivalent results
for the case when the setpoint change is introduced simultane-
ously with the start of the fault (SP2). In doing so, the simulated
system is expected to exhibit dynamic behavior, irrespective of
the nature of the fault. This reduces the total misclassification rate
considerably for the NL-KF cases (Fig. 3 top-right). This improved
performance is explained as follows. In the first, faultless half of
each simulation, the system operates in its nominal operating point
which is also the point around which the Kalman filter model is lin-
earized. As a result, little mismatch exists between the simulated
system and the applied model during this time. As only this first

half of the simulation is used for evaluation of the Type I error rate,
results are comparable to the other cases (L-KF and NL-EKF, Fig.
3 middle-right). While this may be regarded as a positive result,
the advantage of this is minimal since engineered systems seldom
operate at a single nominal operating point at all times. In prac-
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ice, false alarm rates as for the SP1 scenarios should be expected,
s severe mismatch exists between the simulated system and the
pplied model (Fig. 3 middle-left).

When comparing the SP2 results with the SP1 results, one also
bserves improved performance for fault class 5 and 6, irrespective
f the simulated system or the applied filter. To investigate what
auses this difference, Fig. 4 displays the measurements and true
alues of the tank level for four simulated scenarios. The left pan-
ls correspond to SP1 simulations (setpoint change at 1 s) with fault
lass 0 (faultless, top) and fault class 6 (sensor stiction, bottom). The
ight panels repeat the same simulation yet for the SP2 (setpoint
hange at 101 s). Clearly, the presence of sensor stiction has no vis-
ble influence on the measurements of the tank level measurement
n the SP1 simulations (Fig. 4, top-left and bottom-left). Because
he tank level is at setpoint and in steady state, the demanded con-
roller action is practically the same in both cases. As a result, the
btained data series are indistinguishable. In contrast, the SP2 sim-
lations are visibly different (Fig. 4, top-right and bottom-right).

ndeed, it is due to the introduction of dynamics by means of a set-
oint change that one observes symptomatic behavior associated
ith the fault (oscillations). In contrast to the SP1 scenarios, the

ontroller attempts to displace the valve to achieve the setpoint,
eading to different behavior than predicted by the Kalman filter,
n turn leading to positive detection. This results in a lower Type II
rror rate for these classes (Fig. 3 bottom-right). As such, fault class
and 6 (sensor stuck, sensor stiction) represent a particular set of

ault types for which symptoms do not necessarily appear imme-
iately upon their introduction. One could expect similar results
or valve stuck and stiction behavior. In our particular case, this
oes not occur because of a relatively aggressive tuning of the inte-
ral time constant of the PI controller. Because of this, the integral
ction results in variations in the valve position signal which are
arge enough to always generate distinguishable time series (not
hown).

A last observation made on the basis of the SP2 results is that
he Type II error rate is lower for fault class 1, 3, 5 and 7 (valve
tuck, valve bias, sensor stuck and sensor bias) than for the other
ault classes (valve stiction, valve drift, sensor stiction and sensor
rift). For the stiction type of faults, this is because of a relatively
ggressive tuning of the PI controller. Because of this aggressive
uning, the changes in valve position demanded by the PI con-
roller immediately after the setpoint change are large enough to
urpass the stiction band. Only as the controller actions settle, they
ecome smaller than the stiction band and corresponding symp-
oms appear. The lower the stiction band, the more pronounced
his effect becomes. As such, a lower stiction band is then expected
o result in a longer time to detect it. For the drift type of faults
fault class 4 and 8) this is because it takes a while before the
rift results in deviations of such magnitude that a positive FCT
esults.

.2. Fault identification (diagnosis)

In the following paragraphs, the results for fault identification
re shown. The overall misclassification rate is used as the mea-
ure of performance and is computed only over the second half of
he simulation, in which the faults are present. A rate of 1 means
hen that the assigned fault class is incorrect throughout this time
rame. A rate of 0 means that the fault is correctly identified as
ell as its time of occurrence. Again, the performance is eval-
ated for both setpoint scenarios, namely SP1 (setpoint change

t 1 s) and SP2 (setpoint change at 101 s). This also executed for
he three combinations of simulated system and Kalman filter
L-KF, NL-KF, NL-EKF), as before. Results are evaluated for fault
lasses 1 to 8, thereby excluding the faultless operation class. As
escribed above, three different approaches are evaluated. The first
l Engineering 35 (2011) 806–816 811

approach is to assume that it is known that a fault is present
as well as its time of occurrence (actual time). Thus, the results
only reflect on the ability to discern between fault types and
therefore serve as a reference. The second approach is to exe-
cute diagnosis only following a positive Fault Confirmation Test
(FCT) while assuming that the time of confirmation is also the
time of fault occurrence (detection time). The third and most elab-
orate approach is to perform a grid search for the most likely
time of occurrence over a time window ranging from 50 samples
before detection to the time of detection (optimized time). Natu-
rally this approach is computationally much more expensive than
the first two. The diagnosis task is always executed at the end of
the simulation.

3.2.1. Actual time: assuming the actual fault occurrence time to
be known

Fig. 5 shows the results for the fault identification (diagno-
sis) task. We discuss the results for the linear system and KF first
(light gray bars). The top panels in Fig. 5 represent the misclas-
sification rates for the reference cases where the fault presence
and time of fault occurrence are assumed known (Actual time). At
the top-left (SP1, see Table 2), one observes that the fault iden-
tification is perfect for fault class 1 to 4, 7 and 8 (see Table 1)
as the misclassification rate is zero. In contrast, fault class 5 and
6 are not classified correctly at any point (misclassification rate
is one). When comparing to the the top-right (SP2, see Table 2),
one sees in this case perfect classification is obtained for fault
class 5 and 6. As such, the presence of dynamics, like the ones
induced by the setpoint change in the SP2 scenarios is observed
to assist in obtaining a correct fault identification. Still, it is not
a complete surprise since the the setpoint scenario also affected
the detection performance and most dramatically so for fault class
5 and 6. Moreover, it was seen that the symptoms associated
with fault class 6 (oscillations) only appear in the SP2 case. It
is noted that since fault presence and time are assumed known
this observed effect is not confounded by effects of fault detection
performance.

Now we discuss the misclassification rates for NL-KF and NL-
EKF cases, still for the case of a known fault occurrence time (Fig.
5, top panels). The NL-KF results are given as dark gray bars; the
NL-EKF results as black bars. For the SP1 setpoint scenario, the NL-
KF results are the same except for fault class 1 and 8, where the
misclassification rate is higher than the L-KF result. Fault class 1
is never identified correctly, resulting in a misclassification rate of
1. Fault class 8 is identified correctly twice (of three instances),
resulting in a 33% misclassification rate. In the NL-EKF case, one
obtains perfect classification for fault class 8 (sensor drift) as in
the L-KF case. Thus, by means of accounting for nonlinearity with
the EKF, one regains the theoretically optimal result of the L-KF
case. For fault class 1 and 6, no and little improvement is observed
compared to the NL-KF case. For these fault classes, it does not
help to account for system nonlinearity by means of the EKF. In
addition, the misclassification rate for fault class 4 (valve drift)
becomes equal to one as opposed to zero in the L-KF and NL-KF
case.

The results for SP2 simulations with the NL-KF combination
indicate improvement of the misclassification rate for fault class
1, 3, 5 and 7. Note that the detection performance was also
better for these classes (Fig. 3). For fault class 6 (sensor stic-
tion), one out of three simulated instances is classified correctly,
leading to a 66% misclassification rate. For fault class 2, one

instance is not identified correctly, leading to a 33% misclassifi-
cation rate (as opposed to 0 for SP1 simulations). For the NL-EKF
case, SP2 results are the same as SP1 results, except for fault
class 6. Here, the misclassification rate is 0 for the SP2 instead
of 66% for SP1. Thus, one observes that the presence of dynam-
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Fig. 4. Tank level measurements for a faultless simulation (top) and

cs also generally has a beneficial effect on the fault identification
erformance. The results for fault class 2 and 6 for the NL-KF com-

ination contrast with this statement. This is attributed to the
ismatch of the linear model with the nonlinear system that is

imulated.
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3.2.2. Detection time: using the detection time as the time of fault
occurrence
In the middle of Fig. 5, one finds the panels corresponding to
the misclassification rates obtained when the fault start time is
assumed to be fault detection time (detection time). Again focus-
ing on the L-KF results first (light gray bars), one observes that
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he misclassification rate increases for some SP1 simulations (Fig.
, middle-left), compared to the results for a known fault occur-
ence time (Fig. 5, top-left). Indeed, for fault class 1, 2 and 4
valve stuck, stiction and drift) the misclassification rate is now
. Thus, assuming the wrong time of fault occurrence can lead
o erroneous fault identification results. For fault class 3 and 7
valve bias, sensor bias) only a slight increase of the misclassi-
cation rate results. This is because the detection is very quick,
hereby resulting in a detection time which is fairly close to the
ctual time of the fault. Fault class 5 and 6 remain to be diagnosed
rongly.

For the SP2 scenarios (Fig. 5 middle-right, light gray bars), the
isclassification rate also increases when compared with the case
hen the fault occurrence time is assumed known. However, in

omparison to the equivalent SP1 results (Fig. 5, middle-left), the
isclassification rate is lower for fault class 2, 5 and 6. Thus, also

n this case a beneficial effect of the simultaneous setpoint change
nd fault is observed. It was discussed above that earlier detec-
ion results because demanded control actions make symptoms
ppear in the case of fault class 5 and 6 in the SP2 simulations.
or SP1 simulations, these control actions are not large enough
o make the symptoms appear. It is this same effect of intro-
uced dynamics which makes fault identification easier for fault
lass 5 and 6 in the SP2 simulations. A similar effect results for
iagnosis of fault class 2. For the SP1 simulations, the demanded
hanges in the valve position are so low that the stiction band
s never surpassed. As a result, the behavior is practically the
ame as for a stuck valve, leading to an erroneous classification.
or the SP2 simulations, this only happens for the instance with
he largest stiction band value (15% of nominal value). Interesting
nough, fault identification is thus easier for a smaller stiction band
arameter.

In the NL-KF case (Fig. 5 middle-left, dark gray bars), one
bserves that the misclassification rates for fault class 4 and 5 (valve
rift, sensor stuck) improve quite dramatically when compared to
hose for the L-KF case for some classes. This is as a result of the

odel mismatch between the simulated system and the applied
odel for the Kalman filter. As a result, the observed detection time

s much closer to the actual time of the fault occurrence which, in
urn, improves the fault identification performance. The same effect
ccurs to a lesser extent for fault class 2, 3, 6 and 8 (valve stiction
nd bias, sensor stiction and drift). The NL-KF results for the SP2
imulations (Fig. 5, middle-right, dark gray bars) show that the mis-
lassification rate is increased by large for fault class 4 and 8 (valve
nd sensor drift) and to a lesser extent for fault class 3 and 5 (valve
ias, sensor stuck). Here, we presume that this is due to a com-
ined effect of model mismatch and presence of normal process
ynamics, in turn due to the setpoint change at the the time of fault
ccurrence. However, as the Kalman filter model is inappropriate
or the nonlinear system, it is hard to pinpoint the exact reason with
ertainty.

For SP1 simulations in the NL-EKF case (Fig. 5, middle-left,
lack bars), the positive effect as observed in the L-KF case for
he SP1 simulations is not observed. Naturally, this because the

odel mismatch is significantly reduced in this case. Indeed, the
KF accommodates to a large extent for model nonlinearity. It is
herefore not so surprising that the result are very similar to the
-KF case. Only for fault class 2 (valve stiction), an improvement
s observed. This is due to a correct identification of the fault class
or the instance with the lowest magnitude (5% of nominal value)
or the stiction band, in turn due to a detection time closer to the

ctual time of fault occurrence. Similar observations hold for the
P2 simulations (Fig. 5 middle-right, black bars). Also in this case,
he NL-EKF results are practically the same as the L-KF results. This
ncludes fault class 2 now. This is because the presence of dynam-
cs results in earlier detection times which also happen to be closer
Fig. 6. Kalman prediction residuals for a valve drift and optimized profiles for the
valve drift and sensor drift fault classes.

to each other, as opposed to the results for the corresponding SP1
simulations. Note that these results do not suggest the it would be
beneficial to use the (linear) Kalman filter for the nonlinear system.
As discussed above already, Type I error rates are so high that such
an approach cannot be recommended at all.

3.2.3. Optimized time: searching the time of fault occurrence as
part of the FDI strategy

The results for complete proposed FDI strategy, including opti-
mization of the fault occurrence time, are shown in the bottom
panels of Fig. 5. Once more, we discuss the L-KF results for the SP1
scenarios first (Fig. 5, bottom-left, light gray bars). Compared to the
corresponding results obtained when assuming the detection time
as the actual time of fault occurrence (Fig. 5, middle-left), misclas-
sification rates are lower for fault class 2, 3, 6 and 7. Even more, the
original perfect classification performance obtained when assum-
ing the fault occurrence time to be known (see Fig. 5, top-left), is
recovered for fault class 2, 3 and 7 (valve stuck, valve bias and sen-
sor bias). For fault class 6 (sensor stiction), the result even improves.
For fault class 1, 4 and 5, the inclusion of the fault occurrence time
as a parameter does not improve the results in comparison with
the case for the fault occurrence time assumed to be the detection
time. For fault class 8 (valve drift, sensor drift), the misclassifica-
tion rate increases when compared to the case for the detection
time assumed to be the fault occurrence time.

The situation improves again for the SP2 simulations (Fig. 5 top-
right). Now the perfect classification result in the case where the
fault occurrence time is assumed to be known is recovered for fault
class 1, 2, 3, 5 and 7 (valve stuck, stiction and bias; sensor stuck
and drift). A very low misclassification rate results for fault class 6
(sensor stiction). Clearly, the dynamic response due to controller
action has a beneficial role on fault diagnosis. However, the mis-
classification rate remains high for fault class 4 and 8 (valve drift,
sensor drift). This is therefore investigated in more detail.

For the SP1 simulations of fault class 4 (valve drift), all three
instances are classified as fault class 8 (sensor drift). For fault class
8 (sensor drift), only the instance with the largest drift parameter
is classified correctly. The other two instances are classified as fault

class 4 (valve drift). Interesting enough, the fault identification pro-
cedure thus leads to considerable confusion between fault 4 and 8.
Fig. 6 demonstrates why this happens. The Fig. shows the prediction
residuals for the valve drift instance with largest drift parameter
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accumulated drift attains 15% of nominal value in 100 s). The opti-
ized profiles are shown for a valve drift and a sensor drift. As can

e seen, these two profiles are fairly similar and both fit the residu-
ls really well. Because of this similarity between the two profiles,
t is generally hard to discriminate these faults in a noisy situation.
n our simulation study, this leads to an erroneous result for 5 out
f 6 of drift instances.

For the SP1 simulations (Fig. 5, bottom-left), the misclassifica-
ion rates for the NL-KF and NL-EKF case are very similar to the
-KF case. For instance, perfect or close to perfect performance is
chieved for fault class 2, 3 and 7 (valve stiction and bias, sensor
ias). Notable differences are that (1) for the NL-KF case, fault class
is classified perfectly and (2) for the NL-EKF case, fault class 8 is

lassified perfectly.
When comparing the SP2 simulation results (Fig. 5 bottom-

ight) with the SP1 simulation results (Fig. 5 bottom-left), one
bserves that misclassification rates in the NL-KF case improve for
ome classes, namely fault class 4, 5, 6 and 8 (valve drift, sensor
tuck, stiction and drift). For fault class 1, 5, 7 and 8 (valve stuck,
ensor stuck, bias and drift) perfect classification is obtained. In the
L-EKF case, large improvements are seen for fault class 5 and 6

sensor stuck and stiction). Perfect classification is now obtained
or fault class 5, 7 and 8 (sensor stuck, bias and drift). The L-KF and
L-EKF misclassification rates are fairly similar, both for the SP1
nd SP2 simulations. As such, it is clear that using the EKF for the
onlinear system enables to obtain a performance similar the L-KF
ase, which is theoretically optimal. However, this is not true for
he SP2 simulation of fault class 1. There, the NL-EKF results in mis-
lassification rate of 1, as opposed to 0 for the L-KF case. However,
his does not challenge the general observation above.

. Discussion

.1. On non-linearity

By means of the simulation study, the fault detection and
dentification performance was evaluated for a linear and non-
inear system and for several scenarios. For the linear system,
he theoretically optimal Kalman filter was used in the FDI strat-
gy (L-KF case). For the nonlinear system, the (linear) Kalman
lter (NL-KF case) and the Extended Kalman Filter (NL-EKF case)
ere used. However, it is stressed the EKF is only deployed in

he fault detection and confirmation step. In the diagnosis step,
he strategy assumes a linear yet time-variant model with the
ime-varying system matrices obtained from the EKF applica-
ion in the fault detection step. This means that those system

atrices are obtained under the assumption of a fault-free con-
ition, which is of course not true when an actual fault is

ntroduced.
Based on the fault detection results, it can be concluded that

sing the Kalman filter for a nonlinear system should be avoided.
ndeed, because of model mismatch the Type I error rate rose to

very high level when the controller setpoint was changed to a
oint different than the nominal one. This means that a lot of false
larms are expected with this approach. Fortunately, by application
f the EKF, the detection performance becomes very similar to the
heoretically optimal rates obtained in the L-KF case. As such, it can
e concluded that, for the purpose of fault detection, nonlinearity

n the nonlinear simulated buffer tank system can be tackled by
eans of the EKF.

A similar conclusion can be drawn for diagnosis. Also in this

ase, application of the EKF to the nonlinear system leads to sim-
lar results for the theoretically optimal case where the Kalman
lter is applied to the linear system. This is true despite the fact
hat the fault diagnosis step makes use of system matrices which
l Engineering 35 (2011) 806–816

are obtained under fault-free assumptions. As such, we conclude
that the introduction of the simulated faults does not change the
true dynamics of the system to the point that the diagnosis proce-
dure would break down completely. We reckon that such a positive
result may be lost upon introduction of more severe faults.

4.2. Importance of dynamics

At several times during the presentation of results, it was noted
that the SP2 scenarios, where faults and setpoint changes are
introduced simultaneously, lead to better detection and diagno-
sis performance compared to the SP1 scenarios, where a setpoint
change is introduced earlier and steady-state is achieved again at
the time of fault occurrence. This is particularly the case for the
stuck and sticky sensor fault classes. This effect was shown to be
due to the absence of symptomatic behavior in the SP1 scenarios.
Because the controlled process variables are at their setpoint and
in steady-state, no control action is warranted as long the setpoint
remains the same and in the presence of limited disturbances on
the process variable. As a consequence, Kalman prediction residuals
never become large enough to induce a fault detection. Moreover,
even if fault is detected, the symptoms may not necessarily reflect
the true fault well. For instance, a stiction problem in the valve lead
to results which are equivalent to a stuck problem, as was observed.
In such a case, the controller actions demanded are never large
enough to surpass the stiction band. In the SP2 scenarios, this prob-
lem does not occur. In this case, the memory function of the stuck
and sticky sensor fault alters the behavior of the controlled pro-
cess variable so that substantial deviations are observed between
predicted and measured values, also allowing for proper diagnosis.
Such benefit of inducing normal dynamics by means of a setpoint
change can be expected for non-additive faults like stuck or stic-
tion behavior. Although this was not observed for stuck valve and
valve stiction problems, it can be expected there as well in the gen-
eral case. In our case, this was not observed due to an aggressive
tuning of the controller. We further note that the simulated non-
additive fault types belong to a particular class of fault types which
can be described as a memory-function. It is our belief that the
presence of dynamics only has a positive effect on fault detection
and identification for such kind of faults. Other non-additive faults
do exist however for which we don’t expect such an effect. As an
example we indicate multiplicative faults which can be modeled as
deviations in the system matrices (of a linear model).

More generally, it can be concluded that for the set of faults con-
sidered in this work, dynamic behavior has an important effect on
diagnostic performance. Contrary to this statement, all FDI meth-
ods available today are passive, irrespective of their classifications
as inductive/deductive nature or quantitative/qualitative represen-
tation. Indeed, today’s state-of-the-art provides no methods which
actively modify the process dynamics so to obtain more informa-
tive data for the purpose of FDI. Given that our results show that
introducing dynamics can be beneficial for proper and fast fault
identification, a tremendous opportunity does lie ahead. The idea
that one can optimize the information content of on-line produced
data for better fault detection and diagnosis in a pro-active man-
ner has indeed not been investigated as of yet. As such, we aim to
investigate the on-line application of Optimal Experimental Design
techniques (OED, Vanrolleghem & Van Daele, 1994) for FDI in the
future which will lead to a broad set of new tools, which we tenta-
tively coin as Active Fault Detection and Identification (ActiveFDI)
methods.
4.3. Time of fault occurrence

When evaluating diagnostic performance, we compared three
approaches with respect to the time of fault occurrence. A first ref-
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rence approach assumed that one knows of the presence and time
f fault occurrence and therefore served as a reference approach.
second approach consisted of assuming that the time of fault

etection is the time of fault occurrence. In a third, the time of fault
ccurrence was considered a parameter to be estimated as part of
he diagnosis task. Generally speaking, the second approach leads
o worse results than the first and the third approach leads to bet-
er results than the second. It is therefore logical to conclude that
he consideration of the time of the fault is important to arrive at
orrect fault identification results. While this is not a surprise, it
s an aspect that has not been investigated thoroughly in previ-
us studies. Proper fault identification becomes difficult however,
s the fit objective function is a non-convex function of this time
arameter. In this work, we resorted to a grid search for the time of
ault occurrence. Unfortunately, this approach is computationally
nefficient.

Several strategies may be considered to obtain a more efficient
trategy. One may consider a reduced window for the time of fault
ccurrence, thereby reducing computational demands. This may be
ased on further analysis of the prediction residuals obtained in the
ault detection step. Also, one could optimize fault class and fault
ime independently in a two-step procedure, rather than jointly.
his can be iterated if necessary. As a third alternative, one may seek
o an alternative parameterization so that the problem becomes
onvex or even linear in the parameters. The implementation and
valuation of such alternatives are considered for further research.

. Conclusions

In this work, a nonlinear buffer tank system was considered
o evaluate and benchmark a set of Kalman based techniques for
he task Fault Detection and Identification (FDI). The original tech-
ique, based on the conventional Kalman Filter was extended for
more types of faults, namely stuck, sticky and drifting behav-

or, in addition to the original bias type of fault. This was shown
o work well for a linearized version of the full non-linear model,
oth for fault detection and diagnosis. An exception to this was
bserved for for faults which act as a memory function, like stuck
nd sticky behavior in the sensor. In this case, it was shown that
he introduction of dynamics by means of a setpoint change leads
o benefits in terms of detection and diagnosis performance. It is
ased on these observations, that ActiveFDI is considered an inter-
sting area for future research. The same KF strategy as well as an
quivalent strategy based on the Extended Kalman Filter (EKF) were
pplied to the fully non-linear version of the system. In this case,
ault detection results turned out much worse when using the KF.
sing the EKF was shown to effectively tackle this problem, as the

heoretically optimal performance for the linear system was recov-
red. For fault diagnosis, this was not the case. While it helps to use
he EKF-strategy, the fault identification results were not as good
s for the theoretically optimal linear case. In our paper, we also
nvestigated the effect of considering the time of fault occurrence
s a parameter of the fault models. This leads to increased compu-
ational demand but was shown to be more fruitful than assuming
he fault detection time as the time of fault occurrence. Following
his observation, strategies to decrease the computational burden
ssociated with this time parameter have been proposed for further
nvestigation.
cknowledgment
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Appendix A. Nonlinear tank model

Writing the mass balance over the tank system results in an
Ordinary Differential Equation (ODE) which relates the tank level
(h) with the inflow and outflow rates (qin, qout) as follows:

dh(t)
dt

= 1
Atank

· qin(t) − 1
Atank

· qout(t) (6)

In addition, an algebraic equation follows from the pressure bal-
ance, equating the hydrostatic pressure at the bottom of the tank
to the pressure losses over the valve and tube. This equation reads
as follows:

� · g · h(t) = 2 · f · � · Ltube

�2 · D5
tube

· qout(t)2 + � · g

Cv(v(t))2
· qout(t)2

= ˛ · qout(t)2 + ˇ
1

Cv(v(t))2
· qout(t)2

˛ = 2 · f · � · Ltube

�2 · D5
tube

ˇ = � · g

Cv(v(t)) = Cv,max

�
· e−v(t)·ln(1/�)

(7)

We assume that the friction factor, f, is constant, corresponding
to a turbulent flow regime. As a result, the algebraic equation can
be solved analytically for qout as a function of tank level, h, and valve
position, v:

qout(t) =
√

� · g · h(t)

˛ + ˇ · Cv(v(t))−2
(8)

This equation can be plugged into Eq. 6 so that the nonlinear
system can be written as a single ODE:

dh(t)
dt

= 1
Atank

· qin(t) − 1
Atank

·
√

� · g · h(t)

˛ + ˇ · Cv(v(t))−2
(9)

It is this equation which is solved for the nonlinear tank simu-
lations.

Appendix B. Nonlinear model parameters

Symbol Description Value Unit

Atank Tank cross-sectional area 5 m2

Atube Tube cross-sectional area 0.0491 m2

Dtube Tube diameter 0.1 m
Ltube Tube length 5 m
g Gravitational constant 9.81 m s−2

Cv,max Valve coefficient 20 m4 N−1/2

�v Valve rangeability 50 –
f Friction coefficient 0.0125 –
P Controller gain 0.3 %/m
�I Controller integral time constant 5 s
ho Nominal tank level 10 m
vo Nominal valve opening 50 %
qin,o Nominal inflow rate 5.36 m3/s
�1 Standard deviation tank level measurement 0.1 m
�2 Standard deviation valve position 0.5 %
�3 Standard deviation inflow rate 0.0536 m3/s

Appendix C. Linearized tank model

The EKF implementation to track the dynamic state variable of

the nonlinear system makes use of the linearized version of the
model developed in Appendix A. To this end, the model is linearized
at each time step around the state estimate at that time step. The
same linearized model is also used to simulate the linearized ver-
sion of the system as well as for implementation of the Kalman
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lter. In those two cases, the linearization is executed around nom-
nal operating point. To linearize the model, first rewrite the model
s follows:

dh

dt
= 1

Atank
· qin(t) − 1

Atank
·
√

� · g · h(t)

˛ + ˇ · Cv(v)−2

= 1
Atank

· qin(t) − 1
Atank

· qout(t)

(10)

Deviation variables are introduced as follows:

h∗(t) = h(t) − ho

v∗(t) = v(t) − vo

q∗
in

(t) = qin(t) − qin,o

(11)

The value for qin,o(t) is set equal to the the outflow, qout,o(t),
omputed from Eq. (8) with ho and vo given. This means that the
perating point always presents the equilibrium point correspond-
ng to ho and vo:

qin,o(t) = qout,o(t)

=
√

� · g · ho(t)

˛(t) + ˇ · Cv(vo(t))−2

(12)

The model is then linearized around the operating point as fol-
ows:
dh∗

dt
= 1

Atank
· q∗

in
(t)

− 1
Atank

·
(

∂qout

∂h

∣∣∣
o

· h(t)∗ + ∂qout

∂v

∣∣∣
o

· v(t)∗
)

∂qout

∂h

∣∣∣
o

= 1
2

·
√

� · g

˛ + ˇ · Cv(vo)−2
· h−1/2

o

∂qout

∂v

∣∣∣
o

=
√

� · g · ho · (˛ + ˇ · Cv(vo)−2)
−3/2 · ˇ · Cv(vo)−3 · ∂Cv(v)

∂v

∣∣∣
o

∂Cv(v)
∂v

∣∣∣
o

= − Cv,max

�
· ln

(
1
�

)
· e−vo ·ln(1/�)

(13)

This model can now be rewritten as:

dh∗

dt
= ˚ · h∗(t) + �v · v∗(t) + �q · q∗

in
(t)

˚ = − 1
Atank

· ∂qout

∂h

∣∣∣∣
o∣ (14)
�v = − 1
Atank

· ∂qout

∂v

∣∣∣
o

�q = 1
Atank
l Engineering 35 (2011) 806–816
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