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Abstract1

Fault detection and identification is challenged by a lack of detailed understanding of2

process dynamics under anomalous circumstances as well as a lack of historical data3

concerning rare events in a typical process. Qualitative trend analysis (QTA) techniques4

provide a way out by focusing on a coarse-grained representation of time series data.5

Such qualitative representations (QRs) are valid in a larger set of operating conditions6

and are thus provide a robust way to handle the detection and identification of rare7

events. Unfortunately, available methods fail when faced with moderate noise levels8

or result in rather large computational efforts. For this reason, this article provides a9

novel method for QTA. This leads to dramatic improvements in computational efficiency10

compared to the previously established shape constrained splines (SCS) method while11

the accuracy remains high.12

Keywords. batch process monitoring, change point detection, fault diagnosis, qualita-13

tive trend analysis, segmentation14
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Introduction15

One of the most challenging tasks within the field of process supervision and control is16

that of fault diagnosis. Amongst others, the successful execution of fault diagnosis is17

challenged with (i) small amounts of data corresponding to faulty process conditions,18

(ii) limited information about the root causes of recorded faults, and (iii) poor un-19

derstanding of process dynamics and causal relationships under abnormal conditions.20

Classic approaches to the fault detection and identification challenge have focused on21

defining normalcy by means of (a) first principles mechanistic models or (b) data min-22

ing methods. In principle, one can use such models to detect and interpret deviations23

from normal operation. This can be challenging however. E.g., typical observer-based24

methods require observability of a state or signature residual associated with each type25

of fault in order to identify its cause.1 Other observer-based methods assume that the26

fault symptoms can be described by linear functions of their magnitude.2 The usefulness27

of data mining methods is particularly limited when rare events are not present in the28

data used for fault modeling. In the light of these challenges, the so called qualitative29

approach to fault diagnosis is very interesting. In this case, one deliberately describes30

the process and/or its anomalies by means of coarse-grained qualitative simulation mod-31

els or qualitative features.3,4 The underlying idea is that such qualitative models and32

features can be extrapolated much further than a quantitative process model or data33

characterization. As such, limited assumptions need to be made regarding the process’34

behavior under previously unseen circumstances. In addition, this also means that a35

limited number of fault occurrences can still lead to an accurate, though imprecise,36

description of their behavior.37

A popular set of qualitative methods for fault diagnosis is referred to as qualitative trend38

analysis (QTA) by which a time series is divided into time windows, called episodes, on39

the basis of the signs of its derivatives. Note that the links between QTA methods and40
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classic segmentation methods have been rather weak so far.5 The use of the Viterbi41

algorithm in this article connects the two fields in a stronger fashion. In the case of42

QTA methods the sign of a measured signal and/or one or more of its derivatives are43

evaluated and used for further interpretation.4,6 The resulting segmentation is referred44

to as a qualitative representation (QR) and its constituting segments are called episodes.45

Within such episodes, the sign of the analyzed signal and/or one or more derivatives does46

not change. Most typically, the first and second derivative are of interest as changes in47

their sign can be identified easily by the human eye. Indeed, in most engineering ap-48

plications one attempts to replace a tenuous visual data inspection by an automated49

algorithm which mimics signal analysis as performed by the human eye. This also ex-50

plains why many QTA techniques are rooted in artificial intelligence research. Research51

of the previous century has resulted in a wide variety of QTA methods. A number of52

techniques is based on archetypal artificial intelligence techniques such as artificial neural53

networks7 or popular time series analysis techniques such as wavelet analysis or hidden54

Markov models8–11. These methods consists of a two-step procedure (see Fig. 1). In55

the first step, quantitative methods are used to obtain an abstraction of the data se-56

ries. This can be based on several bases such as the use of a lossless continuous wavelet57

transformation8,10; a classification neural network7; or the identification of piece-wise58

polynomial functions12,13. In a second step, the quantitative result is abstracted into a59

qualitative features. For instance, the signs of the wavelet coefficients are interpreted by60

a heuristic rule8, the quantitative neural network outputs are rounded to the closest tar-61

get class7, or the signs of the derivative of piece-wise polynomials are evaluated12. This62

second step, in contrast to the first, is typically based on intuition and is often lacking in63

terms of statistical rigor or global optimality. In addition, the information flow in these64

algorithms is one-directional, i.e., from the original data via an intermediate quantitative65

description of the data series to the qualitative representation. It is generally impossible66

to reverse these approaches, e.g., to simulate data in accordance with a hypothesized67
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QR. This also means that there is no joint likelihood function available for the qualita-68

tive representation and the original data. As such, these methods can be classified as69

discriminative methods14,15. Most importantly, this means the quality of the resulting70

QR cannot evaluated easily, except by comparing to the ground truth which is available71

in benchmark simulation studies but not in full-scale applications.72

The above methodological and empirical observations were the main motivation for the73

development of a globally optimal method for QTA based on shape constrained splines74

(SCS)16. The resulting accuracy was favorably compared to the previously available75

wavelet-based method studied in17. Interestingly, this method provides a joint likeli-76

hood for (i) the qualitative representation, (ii) a number of spline function coefficients,77

and (iii) the measured data. As a consequence, the applied model allows –in principle–78

to simulate data in accordance to any hypothesized qualitative segmentation. Because79

the information flow can be reversed, this method is labeled as a generative method14,15.80

An effective way of sampling the distribution described by the obtained likelihood func-81

tion is however not available yet. For this reason, a maximum a posteriori likelihood82

optimization has been applied so far.1683

This SCS method allows to obtain the best segmentation of an univariate time series into84

so called episodes which are characterized by a specific combination for the signal’s sign85

and one or more of its derivatives. These combinations of signs are known as primitives.86

The application of the optimization method requires that one knows the sequence of87

primitives of the analyzed data series. This means that only the locations in the data88

series where the primitive or shape changes are optimized. When the exact sequence of89

primitives is not known, one can execute the optimization for every candidate sequence90

and then select the best sequence based on a measure of fit. This allows to use the91

technique for batch process diagnosis based on qualitative information alone. While an92

excellent performance is reported, the SCS method is very slow as it solves the nonlinear93
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segmentation problem by means of a deterministic optimization scheme. E.g., up to94

20 hours were needed on a modern desktop computer for a one-time execution of batch95

fault diagnosis as studied in this article as well. The computational requirements do96

not scale well either with the length of the data series nor the number of identified97

episodes. As such, the SCS method represents an extreme approach to QTA in the sense98

that global optimality is traded off against high computational efforts. With the SCS99

method at one side (globally optimal but slow) and a number of alternative methods at100

the other (suboptimal yet fast) within the spectrum of the QTA methods, one begs to101

question whether an intermediate solution is available, possibly trading computational102

cost off against reasonable accuracy. The author contends that such method can be103

devised as a two-step procedure by combining an existing algorithm for univariate series104

smoothing, such as kernel regression, and a path estimation method, such as the Viterbi105

algorithm. The method based on such combination, further referred to as qualitative106

path estimation (QPE), has both discriminative and generative properties (see Fig. 1).107

Similar to the SCS method, one is again required to know which sequences of primitives108

are feasible.109

The next section describes the applied methods. This is followed by the description110

of the data set used for benchmarking. The results of this benchmarking study are111

presented and discussed in two following sections. The last section summarizes the main112

conclusions drawn from this study.113

Methods114

The following paragraphs describe the prerequisite concepts and terminology, the pro-115

posed method, and the applied performance metrics. Acronyms, notations, and symbols116

are listed in Tables 2-4.117
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General concepts and terminology118

Methods for QTA are developed to segment data series, mostly univariate time series,119

into so called episodes. These episodes are defined as contiguous and consecutive windows120

over the argument values of the data series within which the signs of the analyzed data121

series and/or their derivatives are judged constant. These episodes are characterized by122

a start point, an end point, and a so called primitive. The start point of one episode is123

the end point of the previous one (contiguity) and are further referred to as transition124

points. The primitive represents a unique combination of signs for the analyzed data125

series and/or its derivative. Most typically, one is concerned with the signs of the first and126

second derivatives resulting in so called triangular primitives.8 The primitives relevant127

in this study (A, B, C, and D) and their corresponding signs for the first and second128

derivatives are displayed in Fig. 2.129

A sequence of episodes is also known as a qualitative representation (QR). A sequence130

of episodes for which the primitives and their order are specified but the transition131

times are unknown is known as a qualitative sequence (QS). A QS corresponding to l132

episodes can be represented as a vector of primitives, q = (q1, q2, . . . , qt, qt+1, . . . , ql)
T .133

Transitions are only permitted between the following pairs of primitives: (A,B), (B,C),134

(C,B), (C,D), (D,A) and (A,D). Any other transition between primitives would imply a135

discontinuity of the 1st derivative which neither the SCS method or the proposed QPE136

method can deal with. The proposed method in this paper specifically addresses the137

search for optimal values for transition points in a QR given one of these QSs. As for138

the SCS method, this method can also be used to determine the most likely QS following139

optimization of the transition points in each QR.140
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Method: Qualitative Path Estimation (QPE)141

The newly proposed method is composed of a smoothing step to compute point-wise142

probabilities for primitives followed by application of the Viterbi algorithm for state path143

estimation. These two steps are joined by matching each primitive in a QS with a discrete144

state in a linear Markov chain, further referred to as a qualitative state. In the smoothing145

step, the information flow is one-directional from the original data to these point-wise146

probabilities (see Fig. 1). This is the discriminative part of the method. The point-wise147

probabilities are then further interpreted by finding the most likely sequence of so called148

qualitative states given the point-wise probabilities for these states and a Hidden Markov149

Model (HMM). This last step is optimal in the sense that the found sequence of states is150

the maximum likelihood sequence for the given point-wise probabilities and conditional151

to a given HMM. The information flow can be reversed as point-wise probabilities for152

the primitives can be simulated given a sequence of qualitative states and the HMM.153

This is thus the generative part of the method. The following paragraphs explain the154

method in mathematical detail.155

Qualitative state probabilities via kernel regression156

The first step of the QPE algorithm consists of kernel regression. This method is based157

on repeated fitting of a polynomial regression model in a moving-window approach. Con-158

sider an univariate data series consisting of nmeasurements, y(i), obtained at equidistant159

argument values, x(i). A standard kernel-based regression scheme18 is used to smooth160

this data series. Only the essentials are described in what follows.161

Practically, one fits a polynomial of second (quadratic) or higher degree in a window162
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around each data point, i, by means of weighted least squares (WLS):163

min
βi

J(βββi) =
∑

1≤h≤n

kh,i · (y(h)− f (zh,i,βββi))
2 (1)164

= (y − f (z.,i,βββi))
T ·Ki · (y − f (z.,i,βββi)) (2)165

with:166

zh,i = x(h)− x(i) (3)167

f (zh,i,βββi) =

o∑
d=1

βββi(d).z
d−1
h,i (4)168

Ki(h, i) =

⎧⎪⎪⎨
⎪⎪⎩
kh,i, if h = i

0, otherwise

(5)169

In the above, zh,i, is a distance measure between a given data point, x(h), and a refer-170

ence data point, x(i). Naturally, this distance is zero when h = i. The polynomial is171

represented by f(z,βββ) with z the independent variable and βββ the vector of polynomial172

coefficients. In this study, a quadratic polynomial is used (o = 3). The weights, kh,i,173

are fixed a priori and decrease with increasing absolute values for the distances, zh,i.174

To this end, so called kernel functions are popular. In this study, the tri-cube kernel is175

used:176

kh,i =

⎧⎪⎪⎨
⎪⎪⎩

(
1− | zh,iτ |3)3 , |zh,i| ≤ τ

0, otherwise

(6)177

The tri-cube kernel is symmetrical and leads to zero-valued weights for any absolute dis-178

tance larger than a critical value, τ , which is further referred to as the kernel half-width.179

Its application results in a moving window approach to the regression problem.180

The minimization in Eq. 2 is executed for every point, i, in the data series. As such,181

8



n vectors of polynomial coefficients result. The WLS-optimal coefficient values are ob-182

tained analytically as follows:183

β̂̂β̂βi = (zT.,i ·Ki · z.,i)−1 · zT.,i ·Ki · y = Ai · y (7)184

The corresponding derivatives of the estimated polynomial functions are evaluated in185

the corresponding window centers as follows:186

f̂
(a)
i =

∂af(z, β)

∂za

∣∣∣∣
z=0, β=β̂i

= a! · β̂̂β̂βi(a+ 1) (8)187

Assuming that the measurements, y(i), are characterized by independent and identi-188

cally distributed measurement errors drawn from a multivariate Gaussian distribution189

with zero mean and covariance matrix, ΣΣΣy, then the above estimates for the polynomial190

coefficients and derivatives are distributed normally. The estimate of their mean corre-191

sponds to the above computed values while the expected variance-covariance matrix of192

the estimated polynomial coefficients in point i is computed as follows:193

ΣΣΣβββ,i = Ai ·ΣΣΣy ·AT
i (9)194

Without loss of generality, the measurement error covariance matrix is assumed diagonal195

and its diagonal elements, σy,i, are assumed to be invariant:196

ΣΣΣy(h, i) =

⎧⎪⎪⎨
⎪⎪⎩
σy,i = σy, h = i

0, otherwise

(10)197

The diagonal elements of the coefficient covariance matrix, Σβ,i, correspond to point-wise198

variances of the polynomial coefficients:199

σβββ(d),i = ΣΣΣβββ,i(d, d) (11)200
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Based on Eq. 8 and Eq. 11, the variance of the above-computed derivative estimates201

(Eq. 8) can thus be computed as follows:202

σf (a),i = (a!)2 ·ΣΣΣβββ,i(a+ 1, a+ 1) (12)203

The estimated distributions for the derivatives in x(i) can now be written as follows:204

f
(a)
i ∼ N

(
f̂
(a)
i , σf (a),i

)
(13)205

The probability that a derivative is positive (resp., negative) is obtained by integrating206

the probability mass from zero to infinity (resp., minus infinity to zero). As long as207

the measurement variances, σy,i, are non-zero, one can assume that the likelihood for208

zero-valued derivatives can safely be assumed equal to zero:209

Λ
(
f
(a)
i = 0

)
= 0 (14)210

Then, one can write the likelihoods for a positive, resp. negative, value for the derivative211

as follows:212

Λ
(a)
i (+) = Λ

(
f
(a)
i > 0|y

)
=

∫ +∞

u=0
exp

⎛
⎜⎝−

(
u− f̂

(a)
i

)2

σf (a),i

⎞
⎟⎠ (15)213

Λ
(a)
i (−) = Λ

(
f
(a)
i < 0|y

)
=

∫ 0

u=−∞
exp

⎛
⎜⎝−

(
u− f̂

(a)
i

)2

σf (a),i

⎞
⎟⎠ (16)214

The probability for a particular primitive, κκκ(i), in a given point, x(i), is then com-215

puted by computing the product of probabilities for individual derivatives. The relevant216
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probabilities in this work (cfr. Fig. 2) are computed as follows:217

Λ (κκκ(i) = A|y) = Λ
(1)
i (−) · Λ(2)

i (+) (17)218

Λ (κκκ(i) = B|y) = Λ
(1)
i (+) · Λ(2)

i (+) (18)219

Λ (κκκ(i) = D|y) = Λ
(1)
i (−) · Λ(2)

i (−) (19)220

Λ (κκκ(i) = C|y) = Λ
(1)
i (+) · Λ(2)

i (−) (20)221

These probabilities are computed in each point, x(i), leading to a series of probabili-222

ties for each possible primitive in a point i conditional to the entire series of data, y.223

These probabilities offer the advantage of a statistical assessment of qualitative states224

and, subsequently, qualitative representations. The computation of these probabilities225

is discriminative in nature. Indeed, the applied models do not permit simulation of data226

according to these probabilities. Note that Eq. 17-20 assume (erroneously) that the227

derivatives of different degree in a single point are uncorrelated. This could be improved228

by computing the qualitative state probabilities as integrals of multivariate Gaussian229

integrals rather than the product of univariate Gaussian integrals. However, this de-230

liberate approximation is more straightforward in most software packages and does not231

stand in the way of an effective algorithm, as will be shown below.232

Maximum likelihood path estimation via the Viterbi algorithm.233

To optimize the transition locations in a QS, the Viterbi algorithm is applied. This234

algorithm is an optimal method to estimate the most likely sequence of discrete process235

states given a series of uncertain and indirect observations generated by a stochastic236

discrete-time process. It is based on a HMM which is generative in nature as one237

can simulate feasible state sequences and corresponding (uncertain) measurements.19,20238

Once more, only the essential elements are discussed here.239
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The Viterbi algorithm is theoretically optimal for segmentation when the process state240

evolves in time according to a first-order Markov process. Concretely, the expected241

likelihood for the process state at time i given likelihoods for each possible state at time242

i− 1 is written as follows:243

Λ (s(i) = t | i− 1) =

q∑
p=1

Ti(t, p) · Λ (s(i− 1) = p | i− 1) (21)244

In words, the likelihood that the process is in target state t at point i is a linear com-245

bination of the likelihoods of each possible predecessor state at time i − 1. This linear246

combination is defined by the transition likelihoods, Ti(t, p), which determine the likeli-247

hood that the process will be in a target state t at time i conditional to the process being248

in the predecessor state p at time i− 1. Eq. 21 thus delivers a one step ahead prediction249

for the likelihoods, which are only dependent on the likelihoods for the directly preceding250

time point.251

The above predictive model is completed with a sensor model. To make this possible,252

each Markov process state is matched with a primitive in the qualitative sequence, q,253

so that q(t) indicates the primitive associated with the t-th discrete state of the linear254

Markov chain. This results in the following equivalence for (a) the likelihood of observed255

data conditional to the Markov state and (b) the likelihood of the same data conditional256

to the primitive associated with the considered Markov state:257

Λ (y(i) | s(i) = t) = Λ(y(i) | κκκ(i) = q(t)) (22)258

In addition, the likelihood of a data point, y(i), conditional to the likelihood of a primi-259

tive at time i is set equal to the likelihood of said primitive conditional to the likelihood260
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of the data point. More specifically, one writes:261

Λ (y(i) | κκκ(i) = q(t)) = Λ (κκκ(i) = q(t) | y(i)) (23)262

The above equation inverts the dependence relationship between likelihoods. Indeed,263

the likelihood of a data point conditional to a qualitative state is considered equal to the264

computed likelihood of the qualitative state conditional to the observed data point. As265

such, this implicitly assumes that the prior likelihood for any measurement is uniform266

and that each qualitative state is equally likely a priori.267

To make the Viterbi algorithm application possible, it is necessary to equal the con-268

ditional likelihood of a primitive to a single data point equal to the above-computed269

probability of this primitive to the whole data series as found in Eq. 17-20:270

Λ (κκκ(i) = q(t) | y(i)) = Λ (κκκ(i) = q(t) | y) (24)271

This approximation is rather severe and therefore deserves extra attention. By means of272

Eq. 24, one deliberately ignores autocorrelation effects on the estimates of derivatives and273

the subsequent point-wise probabilities for the primitives. In addition, one assumes that274

the probabilities for the primitives are independent of each other while, in reality, they275

are not. Ignoring such autocorrelation is necessary however for the Viterbi algorithm to276

be applicable. Despite this approximation, the resulting method works remarkably well277

as will be shown below.278

The sensor equations, Eqs. 22-24, can now be summarized as:279

Λ (y(i) | s(i) = t) = Λ (κκκ(i) = q(t) | y) (25)280

Given the above model, consisting of a first-order Markov process (Eq. 21) and an –281
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assumed memoryless– Markov sensor (Eq. 25), one can compute the most likely sequence282

of states by means of the two-pass Viterbi algorithm. The first forward pass, consists283

of computing the most likely predecessor states for each possible target state, t, at each284

time point, i. One finds the most likely predecessor state, p, which maximizes the sum285

of the product of (i) the corresponding transition likelihood and (ii) the probability of286

most likely path of states leading to state p at time i− 1:287

max
p

Ti(t, p) · Λpath (s(i− 1) = p) (26)288

Consider pM the selected most likely predecessor, then the most likely path leading to289

state t at the ith has the following likelihood:290

Λpath (s(i) = t) = α · Λ (y(i) | s(i) = t) ·Ti(t, pM ) · Λpath (s(i− 1) = pM ) (27)291

with α a normalization factor. The maximizing value of p, pM , is recorded for each time292

i and target state t, resulting in an n× l matrix, P:293

P(i, t) = pM |i,t (28)294

The forward pass of the Viterbi algorithm is initiated by providing a preset likelihood295

for each state at point i = 0:296

Λpath (s(0) = t) = πππ0(t) (29)297

with πππ0(t) representing the a priori probabilities for the state, t, at point i = 0.298

The backward pass of the Viterbi algorithm starts by selecting the final state in the299

estimated path, spath(n), as the value for t which maximizes the path likelihood at the300

end of the time series, Λpath (s(n) = t | y). Having selected this final state, the backward301
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pass can begin. At this time, one traces the most likely predecessor states by going back302

in time, each time selecting the most likely predecessor of the currently selected state as303

follows:304

spath(i− 1) = P(k, spath(i)) (30)305

This Viterbi algorithm is completed when the first time instant is reached (i = 0).306

Modifications and requirements for data series segmentation with a known307

qualitative sequence308

To enable the use of the above algorithm for segmentation, the following modifications309

and restrictions are implemented in this work:310

1. The sequence of primitives and the corresponding Markov process states are as-311

sumed to be known.312

2. The Markov process is constrained to be a linear chain without cycles by setting313

all elements in Ti equal to zero except on the diagonal and the elements just right314

of this diagonal, e.g.:315

Ti(p, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1− λi(p), p = t

λi(p), p = t− 1

0, otherwise

(31)316

3. Without loss of generality the implemented state change likelihoods, λi(p), are317

considered invariant with respect to time, process state and selected Markov chain.318
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In addition, the value for λ is set to 1, so that:319

∀p = 1 . . . q, ∀i = 1 . . . n : λi(p) = λ = 1 (32)320

As a consequence, the transition likelihood matrices, Ti, and the corresponding321

Hidden Markov Model, are also invariant:322

∀i = 1 . . . n : Ti = Ti−1 = T (33)323

Importantly, this particular choice for the transition likelihoods means that the324

Markov process model defines the chronological order of the qualitative states but325

does not hold prior information about the location of the state transitions. This326

also means that the a priori likelihood for any path generated by any Markov327

process with transition likelihoods as above is the same. Indeed, the values for328

Ti(t, p) in Eq. 21 are always one (1) for any feasible path. As such, the fault329

diagnosis exercise is executed in an uninformative Bayesian setting, apart from the330

a priori definition of the qualitative sequence, q, and the associated linear Markov331

chain.332

4. The Viterbi algorithm is modified by constraining the selected path so that the333

first and last states in the sequence are equal to the first and last state in the334

linear Markov chain. Practically, this means the backward pass is initiated with335

the last state in the chain rather than the state corresponding to the maximum336

value for the corresponding path likelihood. In addition, the likelihood at time337

zero (0) for the first state in the linear chain is set to one (πππ0(1) = 1) while all338

other likelihoods are set to zero (∀j > 0,πππ0(j) = 0). This approach ensures that339

the likelihood associated with the entire qualitative sequence is computed and not340

a likelihood corresponding to only a part of this sequence.341
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The ultimate qualitative representation now results by finding those segments in the342

state path spath where the selected state does not change. Each time a pair of subsequent343

selected states is different from each other, a corresponding transition point is set halfway344

between the argument values corresponding to this pair and further referred to as x̂trans.345

This completes the execution of the QPE algorithm.346

Modifications and requirements for batch fault diagnosis347

The QPE algorithm can also be applied for batch process fault diagnosis. To do so,348

one needs to associate each fault condition with a unique qualitative sequence a priori.349

Practically, the following setup is used:350

1. Each possible condition, c, is associated with a specific qualitative sequence, qc351

and associated Markov process described by a corresponding transition likelihood352

matrix, Tc,i. As before, each primitive in each sequence, qc(t), corresponds to353

a single state, t, in the corresponding Markov chain. Eq. 31-33 hold for each354

transition likelihood matrix.355

2. The QPE algorithm is executed for each of the available qualitative sequences, qc.356

The resulting transition points are referred to as x̂c,trans and the associated path357

likelihoods as Λc,path.358

3. The fault diagnosis result is obtained by selecting the fault c with the highest359

likelihood for Λc,path.360

Additional algorithm parameters361

Two parameters defining the algorithm have been left undefined so far (δ and σy). In362

order to study the effect of these parameters, the following settings were applied:363
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Kernel half-width (δ). The kernel half-width was varied between 2 and 1024. More364

precisely, the applied values were set factors 21/10 (= 1.072) apart as follows:365

τ = 2γ (34)366

with: γ ∈ {1.0, 1.1, . . . , 9.9, 10.0} (35)367

Measurement variance (σy). The above method requires knowledge of the measure-368

ment error variance, σy. In practice this is seldom available. For this reason, the369

method is tested in two settings:370

1. Setting 1: Known variance. In the first setting, the measurement error vari-371

ance is simply assumed known.372

2. Setting 2: Estimated variance. In the second setting, the measurement error373

variance is replaced by its maximum likelihood estimate which is obtained as374

follows:375

σ̂y =
1

n
·

n∑
i=1

(
yi − f(zh,i, β)|h=i,β=β̂i

)
(36)376

=
1

n
·

n∑
i=1

(
yi − f(0, β̂i)

)
(37)377

Performance evaluation378

The following paragraphs describe the criteria used to evaluate the QPE method by379

means of the benchmark batch process simulation study. The QPE method is evaluated380

on the basis of its segmentation accuracy, fault diagnosis accuracy, and computational381

requirements.382
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Segmentation accuracy383

The QPE algorithm is aimed at the identification of the most likely transition points384

given a single, predetermined qualitative sequence. An overall measure of accuracy is385

determined as the mean absolute deviation (MAD) between the ground truth transition386

points and their optimized values. The ground truth values, xtrans(t), are obtained by387

simple differentiation of the noiseless signals. Their estimates, x̂trans(t), are given by388

the QPE algorithm. The accuracy is measured as follows:389

MAD =
1

l − 1

l−1∑
t=1

|x̂trans(t)− xtrans(t)| (38)390

Importantly, the ground truth qualitative sequence needs to be known for the computa-391

tion of this measure.392

Classification accuracy393

A second but no less important objective of this study is to evaluate the QPE algorithm394

as a tool for fault diagnosis. The fault diagnosis accuracy is evaluated as the fraction of395

correctly classified batches (j = 1 . . .m):396

Fault Diagnosis Accuracy =
1

m
·

m∑
j=1

δ (c(j), ĉ(j)) (39)397

with δ the Kronecker delta to indicate equality:398

δ (c(j), ĉ(j)) =

⎧⎪⎪⎨
⎪⎪⎩
1, if c(j) = ĉ(j)

0, otherwise

(40)399

In addition to the above overall classification accuracy, condition-specific classification400

accuracies are also studied. To compute these measures, a predefined set of process401
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conditions (c, normal and faulty operations) are assumed to be known a priori and402

are matched one-to-one with a qualitative sequence (qc) and associated Markov process403

transition likelihood matrix (Tc). Furthermore, for each batch (j) the ground truth or404

reference process condition needs to be known (c(j)).405

Computational requirements406

One of the main characteristics of the QPE method is that both of its algorithmic steps407

are of linear time complexity. As such, a favorable comparison with the SCS method408

is expected. The computational requirements for the QPE method are evaluated by409

tracking the time requirements for the complete execution of fault diagnosis as well as410

the portion associated with the kernel regression and Viterbi algorithm step. To this411

end, all computations were executed on a dedicated desktop machine (IntelR CoreTM
412

i7-4770 CPU, 3.40 GHz, 16.0 GB RAM).413

Materials414

Data set415

The newly proposed algorithm is evaluated by means of a data set used previously416

for benchmarking of QTA methods.16,17 This data set consists of simulated univariate417

batch time series. The use of simulations allows effective benchmarking against the418

ground truth instead of a subjective reference assessment. The use of such a benchmark419

data set was necessary to demonstrate and validate the rather poor performance of the420

wavelet-based algorithm studied in the first effective benchmarking study on qualitative421

trend analysis.17 The continued development of new algorithms benefits from testing422

with the same data set because comparison between methods is straightforward in spite423
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of the idealized features of simulated data sets. The analyzed data set consists of 150424

noiseless data series for the Penicillin concentration obtained by simulation of a highly425

nonlinear batch fermentation process model created for benchmarking.21 These data426

were originally simulated for the study of more conventional fault detection and diagnosis427

methods.22 Each of these 150 batches are simulated according one to three process428

conditions (see also Fig. 3). Batch 1 to 50 correspond to normal operation conditions429

(condition 1), batch 51 to 100 are simulated to a reduced saturation constant (condition430

2), and for batch 101 to 150 the substrate feed rate is reduced (condition 3). Each431

simulated batch lasts 400 hours and results in a noiseless vector of 5001 equidistant432

measurements (one measurement per 4.8 minutes). Each of the simulated conditions433

results in a distinct and unique QS for the (noiseless) time series, as indicated in Table 1.434

As such, fault diagnosis can be performed by evaluating which QS –and its corresponding435

process condition– is the most likely given a time series.436

The noiseless time series are corrupted by independent and identically distributed mea-437

surement errors from a zero mean univariate Gaussian distribution with five different438

measurement error variances, σy, namely: 0, 10, 100, 103, and 104 (g/m3)2. The mea-439

surement error sequences for all batches indexed as j, j+50 and j+100 for j = 1 . . . 50,440

are the same up to a constant factor, namely the applied measurement standard devi-441

ations. This results in a total of 750 simulated time series (150 × 5). For each of these442

series, the QPE method is applied in order to identify the optimal transition points as443

well as to identify the most likely QS.444

Implementation445

All computations are implemented in the QPE toolbox for Matlab/Octave which is re-446

leased as supplementary material to this manuscript together with an exemplary analysis447

of data and script specific to this work.448
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Results449

Data set450

Fig. 3 displays the measurement profiles for 15 batches, namely every 10th batch of451

the simulated Penicillin fermentation process (i.e., batch 10, 20,... 150) and with a452

measurement error variance of 103 (g/m3)2 (standard deviation: 31.6 g/m3). Visual453

inspection easily confirms three different conditions of the process with distinct QSs454

as identified in Table 1. It remains to be evaluated whether the QPE method enables455

automated identification of these conditions.456

Detailed example457

The proposed method is demonstrated by means of a single batch simulation. The data458

of batch 51 in particular, with a measurement error variance of 103 (g/m3)2 (standard459

deviation: 31.6 g/m3) were selected to this end. The noisy data are shown in the top460

panel of Fig. 4.461

In the first step of the algorithm, kernel regression is applied as a smoother to these data.462

A quadratic polynomial and a kernel half-width (τ) of 512 are applied to produce the463

results in Fig. 4. The shown results are computed with the measurement error variance464

assumed known. The estimate of the first derivative is close to zero as well as rather465

uncertain at the beginning and the end of the batch. In between, the first derivative is466

positive and more precise. Similarly, the estimate of the second derivative is uncertain467

and close to zero at the beginning and end of the batch and more precise in between.468

However, the pattern of its signs during the batch length is more complex. Roughly469

speaking, one identifies a positive segment, a segment where the second derivative hovers470

around zero, another positive segment and a negative segment. Based on the computed471
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estimates for the derivatives and the associated variances, the point-wise probabilities472

for each of the primitives are calculated. The computed likelihoods for the primitives473

A, B, C, and D (see Fig. 2) are shown in the top panel Fig. 5. As expected from the474

visual inspection of the smoothed derivatives, the probabilities for the B and C primitives475

(increasing trends) are generally higher than those for A and D primitives (decreasing476

trends). An exception to this is observed at the beginning of the batch cycle where the477

A primitive appears to dominate.478

The sequence of probabilities for each primitive are then interpreted by means of Viterbi479

path estimation. For demonstration purposes, the HMM corresponding to the (true)480

BCBC sequence is used. Practically, this means that the probabilities for A and D481

primitives are ignored. Indeed, with this HMMmodel, A and D primitives are considered482

impossible to achieve. The resulting state path, spath, is shown in the bottom panel483

of Fig. 5 together with the corresponding qualitative representation. The optimized484

transition points are indicated in all panels of Fig. 4 and Fig. 5 and show a pleasing485

match between visual interpretation of the data and the computed result.486

The above steps were executed for all qualitative sequences (BC, BCBC, and BCDA)487

and for all considered kernel half-widths (τ). The resulting path likelihoods (Λpath) are488

shown in Fig. 6. It can be observed that the likelihood for the BCBC sequences are489

generally higher than those for the BC and BCDA sequence, thus leading to a positive490

identification of the true sequence. Very low and very high kernel half-widths result in491

likelihoods which are lower and closer to each other. Inspection of the corresponding492

results leads to the conclusion that lower kernel half-widths lead to ineffective denoising493

and highly oscillating values for the derivatives, further leading to a reduced distinction494

between the maximum likelihoods obtained for each of the three QSs. High kernel half-495

widths lead to a rather high smoothing level, bringing all derivatives close to zero, once496

more leading to reduced discrimination between the resulting likelihoods.497
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Performance evaluation498

Having demonstrated the proposed QPE algorithm with an exemplary time series, the499

results obtained for all time series are summarized in the next paragraphs. First the500

accuracy of the identified transition points, given the true QS, is discussed. Then the501

accuracy of the QPE method for fault diagnosis is evaluated. Finally, the required time502

for computation is studied.503

Segmentation accuracy504

The transition point accuracy for the QPE method was evaluated by means of the505

MAD (Eq. 38) for (i) five different noise levels, (ii) ninety-one (91) different kernel506

half-widths and (iii) two ways of defining the standard deviation: (a) known and (b)507

estimated as in Eq. 36. Fig. 7 displays the MAD values averaged over all batches and508

the batches with a single specific simulated condition. As indicated above, the correct509

fault condition or class and associated QS is considered known and only the transition510

points are sought for. The differences between the cases with known and estimated511

measurement variances are limited and hardly visible. However, both the noise variance512

and kernel half-width affect the MAD substantially. In the absence of noise (σy = 0)513

and kernel half-widths (τ) up to 776, the accuracy of transitions appears to increase514

linearly with the kernel half-width. This is the case regardless whether the overall MAD515

is considered or the MAD is inspected for each condition separately. Kernel half-widths516

of 832 and higher break this linear trend by delivering higher MAD values. For higher517

noise levels, the MAD curve appears roughly convex with an apparent minimum within518

the range of evaluated kernel half-widths. A reasonable performance can still be obtained519

for measurement error variances as high as 103 (g/m3)2 as the minimum overall MAD is520

140.15 (corresponding to 11.21 h or 2.8% of the batch cycle length). At the highest noise521

level (σy = 104 (g/m3)2), the minimum overall MAD is 574.11, which amounts to 46 h522
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simulated time or 11.5% of the batch cycle length. It is noted that the best performance523

for condition 1 remains good for all noise levels (minimal MAD below 100, equivalent524

to 8 h or 2% of the data series length). For condition 2 and 3, similar observations can525

be made when excluding the highest noise level (best MAD below 125, corresponding to526

10h or 2.5% of batch length). In general, increasing noise levels lead to increasing values527

for the optimal kernel half-width. As such, the negative impact of increasing noise levels528

on the accuracy can be compensated to some extent by stronger smoothing, which is529

not too surprising.530

Classification accuracy531

The fault diagnosis accuracy is simply computed as the fraction of batches to which the532

correct condition is associated by virtue of the most likely QS (Eq. 39). This fraction533

is computed for all 150 batches as well as for each set of 50 batches corresponding to a534

single simulated condition. All computed fractions are displayed in Fig. 8. Interestingly,535

using a known or estimated standard deviation has almost no effect on the diagnosis ac-536

curacy. The fault accuracy is however sensitive to the applied kernel half-width (τ). For537

the three lowest noise variances (i.e., up to 102 (g/m3)2), a maximum accuracy of 100%538

can be achieved. For low noise levels, this is also a robust result as a wide selection of539

possible kernel half-widths lead to this perfect classification. For higher noise variances540

the maximum overall accuracy is 83.34% (σ = 103 (g/m3)2) and 64% (σ = 104 (g/m3)2).541

Low kernel half-widths impact the overall accuracy most by increased misclassification542

of batches belonging to condition 1. Higher kernel half-widths impact the overall accu-543

racy foremost by increased misclassification of batches belonging to condition 2. The544

classification performance for batches 101-150 (condition 3) remains 100% for all ker-545

nel half-widths as long as the noise level is low (σy = 0 or 10 (g/m3)2). The same546

performance for condition 3 can can be achieved at all noise levels, except the highest547
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(σy = 104 (g/m3)2). In this case, the maximal accuracy is 96% (for τ = 256).548

Computational requirements549

The computational requirements of the proposed QPE method are a linear function of550

the number of data points. Indeed, both the kernel regression step and the Viterbi551

algorithm are algorithms with linear running time (O(n)). In addition, the associated552

computational load does not depend on factors such as the noise variance or the con-553

sidered QS. Inspection of the registered time needed to compute the QPE results does554

not challenge these expectations. Increasing the kernel half-width does lead to rather555

dramatic increases in computational requirements however. As can be seen in Fig. 9,556

this effect on the computational requirements is attributed to the kernel regression step557

as the computational demand for the Viterbi step is unaffected by the kernel half-width.558

More importantly however, the total time requirement remains below 30 seconds in all559

cases.560

Discussion561

In this work a new method for Qualitative Trend Analysis, i.e., segmentation of data562

series on the basis of shapes, has been proposed. The method can be compared fa-563

vorably against other methods, such as the recently developed SCS method. The fol-564

lowing paragraphs discuss identified strengths, weaknesses, opportunities, and threats565

(SWOT).566

Strenghts567

Speed. Above all, the most important benefit of the proposed QPE method is its speed.568

Whereas complete fault diagnosis can requires up to 20 hours for the SCS method,16569

26



the QPE method delivers fault diagnosis results in under 30 seconds for all consid-570

ered cases. In addition, the required computational load was found independent of571

the noise level or the data values. This permits prediction of the required time for572

fault diagnosis with the QPE method, in contrast to the SCS method where severe573

dependencies of the computational time on the simulated condition and noise level574

were found.575

Accuracy. Despite a greatly advanced speed, the reported fault diagnosis performance576

for the QPE method remains high. For example, at a noise variance of 104(g/m3)2,577

the overall accuracy for the QPE method is 83.3% (64.0%) whereas the SCS method578

resulted in a 85.2% (64.0%) accuracy. It is noted that the QPEmethod outperforms579

the wavelet-based method studied earlier17 in both fault diagnosis accuracy and580

speed. Indeed, the wavelet-based method delivered, at its best, a classification581

performance of only 60% while the computational demand rises up to 2.5 minutes582

(150 seconds), about 5 times more than the worst case for the QPE method. Also,583

the need to estimate the measurement error variance hardly affects the transition584

location and diagnosis performance with the QPE method.585

Ease of implementation. The method is based on the combined application of kernel586

regression as a smoother and the Viterbi algorithm as a path estimation method.587

While this combination is unique and novel, the fact that smoothers and path588

estimation methods have been developed and studied extensively, means that the589

method is straightforward to implement, either from scratch or based on pre-590

existing software. This is considered an important advantage over the SCS method,591

which is less intuitive and requires specialized software for second order cone pro-592

gramming and branch-and-bound optimization.593
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Weaknesses594

The QPE method is characterized by a few drawbacks. These are important to keep in595

mind even though these do not prevent application of the method:596

Lack of statistical optimality. Even if the constituting tools of the proposed method597

(smoothing and path estimation) are optimal by themselves and for their origi-598

nal purposes, the proposed combination requires approximations and assumptions599

which are questionable in the light of statistical theory. Most importantly, the600

applied sensor equation in the HMM erroneously assumes independence of the601

estimates of the derivatives obtained through smoothing and the resulting proba-602

bilities of the primitives. In reality, the smoothing operation leads to unavoidable603

correlation between derivatives of different order and at different locations in the604

data series. The observed robustness of the method to this lack of theoretical op-605

timality is likely application-dependent. To a lesser extent, the absence of a joint606

likelihood function and associated generative properties can also be considered a607

drawback of the method.608

Necessity of tuning. The proposed QPE method thanks its excellent performance due609

to an inherent flexibility obtained by using a smoother. Indeed, by selecting the610

kernel support half-width (τ) one can fine-tune the method for the intended appli-611

cation. However, such tuning is necessary for every new application. As demon-612

strated by the benchmarking study in this work, even a change in measurement613

noise warrants adjustment of the kernel half-width. In contrast, the SCS method614

does not require such tuning. One should thus trade (inexpensive) computing615

time for the SCS method against (human, expensive) time required to fine-tune616

the QPE algorithm. Once more, this trade-off is expected to be case-specific.617
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Opportunities618

Having established the QPE method for univariate data series, a few opportunities619

arise:620

Multivariate data series. So far, only one QTA method can deal explicitly with mul-621

tivariate trends.9 The QPE method is expected to lend itself to a multivariate622

application setting as well.623

Zero-valued derivatives. In the above, it was assumed that the noiseless signal does624

not exhibit segments with zero-valued derivatives (linear and steady-state trends)625

or, alternatively, that one does not care to identify them as such. This was found626

sufficient, as before, for fault diagnosis of a simulated batch process. Should recog-627

nition of such features be warranted, then the QPE method should be extended628

for this.629

Alternative applications. So far, the SCS and QPE methods have been studied pri-630

marily in a fault diagnosis application context where they are applied to time631

series data. It remains to be evaluated whether these methods are also applicable632

for other data or even other goals such as data reconciliation, data mining23, and633

control24.634

On-line and real-world application. Both the SCS and QPE method have been635

used for off-line diagnosis of a simulated batch process. However promising, the636

ultimate test of such method lies with their on-line and real-world application. To637

this end, a modification of the QPE algorithm, called qualitative state estimation,638

has been proposed for on-line control of the full-scale Hard wastewater treatment639

plant in Winterthur (Switzerland).25640
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Threats641

The QPE method cannot be applied if the following requirements cannot be met:642

Library of qualitative sequences and associated process conditions. The QPE643

method assumes that one or more qualitative sequences (QSs) are given for data se-644

ries segmentation. For fault diagnosis, it is an additional requirement that each QS645

is associated uniquely with a single process condition. This requirements are met646

when long term experience with a process and its malfunctions can be expressed647

this way. Note that this does not mean that every possible qualitative sequence648

should have been experienced. It is however necessary that an expert or operator649

assigns a likely cause or process condition to each feasible qualitative sequence.24650

If this cannot be met, then the QPE algorithm cannot be applied in its current651

form. Most of the existing QTA techniques, except the SCS and QPE method,652

deal with this effectively already and allow to obtain new qualitative sequences653

and qualitative representations with limited restrictions. Thus, the SCS and QPE654

methods, while high-performing, are limited in their application range. For ex-655

ample, these algorithms cannot be applied for data mining or to continuous-flow656

systems in their current form. The development of the qualitative state estimation657

algorithm mentioned above partly addresses this challenge by permitting the use658

for continuous-flow systems.25 Methods which enable data mining on the basis of659

modified SCS or QPE methods are not established yet.660

Discontinuities. As indicated, the QPE method cannot deal with discontinuities in661

the 1st derivative. For example, a CA sequence would imply a discontinuity, which662

cannot be handled efficiently within the kernel regression framework. Quite criti-663

cally, to the best of the author’s knowledge, the QPE method cannot be extended664

for discontinuities. The pre-existing SCS method has been extended for discon-665

tinuous behaviors however.26 In the mean time, some of the existing piece-wise666
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polynomial methods reported before offer opportunities for such cases.12,27667

Conclusions668

An analysis of the spectrum of data analytic methods suggested that a reliable yet ef-669

ficient algorithm for qualitative trend analysis (QTA) is not available in the existing670

literature. Existing methods are either plagued by theoretical and/or practical sub-671

optimality or high computational demand. For this reason, a new algorithm, named672

qualitative path estimation (QPE), was devised with the intention to provide a com-673

promise between accuracy and computational requirements. Following detailed study674

and comparison with earlier benchmarking results, it is concluded that the QPE indeed675

offers such a compromise. Interestingly, tuning of the QPE method leads to a diag-676

nostic performance comparable to the previously developed shape constrained splines677

(SCS) method while using the QPE method reduces computational requirements sub-678

stantially. In addition to this excellent performance, the discussion section of this paper679

also describes the method’s weaknesses (e.g., the requirement for tuning), opportuni-680

ties (e.g., multivariate and on-line applications), and threats (e.g., discontinuous trends,681

known qualitative sequence library). In summary, the QPE method provides a validated682

improvement over the existing methods in the QTA literature.683
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Table 1: Overview of simulated conditions and corresponding qualitative sequences
(QSs).
Condition Description Batch cycles QS

1 NOC: Normal operation conditions 1-50 BC
1 Fault 1: Reduced saturation constant 51-100 BCBC
1 Fault 2: Reduced substrate feed 101-150 BCDA
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Table 2: List of acronyms
Acronym Full wording

HMM Hidden Markov Model
MAD Mean Absolute Deviation
NOC Normal Operation Conditions
QPE Qualitative Path Estimation
QR Qualitative Representation
QS Qualitative Sequence
QTA Qualitative Trend Analysis
SCS Shape Constrained Splines
WLS Weighted Least Squares
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Table 3: Notation
Notation Meaning

a, σ scalar
a, A.,j , σσσ, ΣΣΣ.,j column vector
A, ΣΣΣ matrix
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Table 4: Symbols
Symbol Variables

α normalization constant
β polynomial coefficient
γ base-2 logarithm of τ
δ Kronecker delta
κ Primitive
λ transition likelihood
π0 prior likelihood
σ variance
τ kernel half-width
Λ Likelihood
ΣΣΣ Variance-covariance matrix
a degree of derivative
c condition index
d polynomial term order
f polynomial function

f (a) ath derivative function
h data point index
i data point index
j batch index
k kernel weight
l length of primitive sequence
m number of scenarios
n length of data series
o order of polynomial
p discrete (predecessor) state
pM maximum likelihood predecessor state
q primitive
s discrete state
spath discrete state on maximum likelihood path
t discrete (target) state
u integrand
x argument
y measurement
z distance
A Projection matrix
P Maximum likelihood predecessor states
T Transition likelihood matrix
K Kernel weight matrix
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Figure 1: A schematic overview of available techniques for QTA. Left: Traditional meth-
ods provide a one-way path from data to qualitative representations; Right: The Shape
Constrained Spline (SCS) method permits simulation of data according to the qualita-
tive representation; Center: The newly proposed the ability to simulate features based
on a qualitative representation but not data.
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Figure 2: Triangular primitives according to the signs of the 1st and 2nd derivative: A =
anti-tonic convex, B = isotonic convex, C = isotonic concave, D = anti-tonic concave.
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Figure 3: Noiseless simulations of every 10th batch (lines) and noisy data obtained with
a measurement error variance of 103 (g/m3)2 (dots, standard deviation: 31.6 g/m3)
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Figure 4: Smoothing of the concentration data by means of quadratic polynomial ker-
nel regression: (a) Simulated noisy data and smoothed kernel regression estimate; (b)
Estimate and 3-σ point-wise confidence intervals for the 1st derivative; (c) Estimate and
3-σ point-wise confidence intervals for the 2nd derivative. Red dashed lines indicate the
location of the identified transition point for the BCBC sequence.
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Figure 5: Viterbi path estimation for segmentation on the basis of qualitative features:
(a) Point-wise probabilities for the primitives A, B, C, and D; (b) Identified state path.
Red dashed lines indicate the location of the identified transition point for the corre-
sponding BCBC sequence.
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Figure 6: Log-likelihood as function of the kernel half-width (τ) for all three considered
qualitative sequences. The BCBC shape is clearly identified as the most likely over a
wide range of kernel half-widths.
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Figure 7: Accuracy of the transition locations as function of the kernel half-width for
(a) all conditions (all batch cycles), (b) condition 1 (batch cycles 1-50), (c) condition 2
(batch cycles 51-100), and (d) condition 3 (batch cycles 101-150). Results are shown for
increasing noise levels (blue to red) and for different approaches to the estimation of the
noise standard deviation. Vertical dashed lines indicate the minimum MAD values for
each noise variance and corresponding kernel half-widths.
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Figure 8: Observed fault diagnosis accuracy as a function of the kernel half-width for
(a) all conditions (all batch cycles), (b) condition 1 (batch cycles 1-50), (c) condition 2
(batch cycles 51-100), and (d) condition 3 (batch cycles 101-150). Results are shown for
increasing noise levels (blue to red) and the two settings for the noise standard deviation.
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Figure 9: Time requirements for execution of fault diagnosis with the QPE algorithm.
For each kernel half-width, 1500 points are shown (150 batches x 5 noise variances x 2
approaches to measurement variance).
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