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• Discontinuous shape constrained spline function are fitted to global optimality 
• Shape constrained spline functions are used for fault detection for the first time 
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Abstract

Anomaly detection is critical to process modeling, monitoring, and control, since

successful execution of these engineering tasks depends on access to validated

data. Classical methods for data validation are quantitative in nature and re-

quire either accurate process knowledge, large representative data sets, or both.

In contrast, a small section of the fault diagnosis literature has focused on qual-

itative data and model representations. The major benefit of such methods

is that imprecise but reliable results can be obtained under previously unseen

process conditions. This work continues with a line of work focused on quali-

tative trend analysis which is the qualitative approach to data series analysis.

An existing method based on shape-constrained spline function fitting is ex-

panded to deal explicitly with discontinuities and is applied here for the first

time for anomaly detection. An experimental test case and a comparison with

the principal component analysis method bear out the benefits of the qualitative

approach to process monitoring.
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1. Introduction1

Need for Anomaly Detection. The advent of increasingly intense data collection2

strategies for industrial processes suggests that increasing regulatory and effi-3

ciency requirements can be met by data-driven methods to model, monitor, and4

automate engineered process systems. However, data-driven computer-based5

technologies can only be successful if the data quality produced is guaranteed to6

be sufficient for automated decision-making and if the optimized process behaves7

in predictable ways. The data quality of biological processes can be severely de-8

teriorated in many ways, including inadvertent human errors (e.g. calibration9

errors) and naturally occurring phenomena, ranging from events such as the pas-10

sage of bubbles and particles over long-term processes such as film formation11

(e.g. biofilm growth, deposition, scaling) to sensor aging (e.g. corrosion). The12

processes themselves do not necessarily exhibit normal conditions either. Pro-13

cess faults commonly identified in biological processes include the toxicity effects14

of inlet streams and changes in microbial community composition or biochem-15

ical expression. Successful modeling, monitoring, and automation thus depend16

on effective tools for detecting anomalous data (Nopens et al., 2007; Thomann,17

2008; Rieger et al., 2010; Dürrenmatt & Gujer, 2012; Spindler & Vanrolleghem,18

2012).19

Available Methods. A vast literature focuses on the automated detection, iso-20

lation, and identification of faults in actuators, processes, and sensors. These21

techniques are most commonly based on a (quantitative) model which describes22

data obtained under normal conditions of process operation. An important23

distinction can be made between techniques using models based on first prin-24

ciples (also known as mechanistic or white-box models, Venkatasubramanian25

et al., 2003c) and techniques using empirical data-based models (i.e. black-box26

models, Venkatasubramanian et al., 2003b). White-box models are particu-27

larly useful when the monitored process is understood to the point of allowing28

reliable mathematical models of it to be constructed. Black-box models are29

recommended for cases where the process understanding is limited and large30

2
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representative data sets are available. Both supervised (e.g. classification) and31

unsupervised methods (e.g. clustering, principal component analysis) are popu-32

lar. Unfortunately, both process understanding and historical data sets are often33

severely limited, especially for biological processes. Furthermore, extrapolation34

of the model in time can be challenging due to incipient changes and stochastic35

variations in the monitored process. Traditional methods for fault detection are36

seldom applicable without the need for substantial efforts to collect data and/or37

model the monitored process.38

The Promise of Qualitative Methods. A smaller section of the literature presents39

qualitative methods as a valuable set of alternatives to the above-mentioned set40

of methods (Venkatasubramanian et al., 2003a). These methods are based on41

abstract, coarse-grained representations of data series and process dynamics.42

White-box models, such as qualitative differential equations (Kuipers, 1994) or43

signed directed graphs (Maurya et al., 2003), can again be identified. These are44

used to represent process dynamics qualitatively by focusing on the signs of pro-45

cess states and/or one or more of their rates of change, rather than their exact46

values. This deliberate lack of precision in the resulting model predictions leads47

to a high reliability of the resulting predictions even when extrapolated far from48

the conditions under which the model was identified. However, detailed process49

understanding is still a requirement since the qualitative models have so far been50

obtained only by abstracting from a quantitative dynamic model describing nor-51

mal operating conditions, which is assumed to be available. Qualitative trend52

analysis (QTA) methods constitute the black-box equivalent (Maurya et al.,53

2007). In this case, data series of continuous variable measurements are repre-54

sented by means of episodes, which characterize segments of the series in terms55

of the signs of one or more derivatives (Maurya et al., 2007). Such abstraction56

can facilitate the recognition of historical data patterns despite unpredictable57

variations in the exact data values. Most of the available methods are unsu-58

pervised in nature, i.e. without specification of the expected patterns. Due to59

the relatively recent emergence of this field, QTA methods are mostly based on60

3
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an intuitive recombination of existing quantitative techniques (e.g. Dash et al.,61

2004; Villez, 2015).62

Current Limitations of Qualitative Methods. (Villez et al., 2013) proposed a for-63

mal globally optimal deterministic optimization approach to QTA by recasting64

the pattern recognition problem as the maximum likelihood fitting of a shape-65

constrained splines (SCS) function. Solving this problem to a globally optimal66

level comes at large computational cost. For this reason, a faster and approx-67

imate method called qualitative path estimation (QPE) is developed by Villez68

(2015), offering similar performance at minimal computational cost. Both SCS69

and QPE methods are currently limited as (i) the qualitative patterns which70

ought to be recognized need to be specified before execution of the algorithm, (ii)71

the analysis is limited to univariate data series, and (iii) discontinuous trends72

cannot be accounted for in a systematic manner. To the authors’ knowledge,73

it is impossible to modify the QPE method to remove this last limitation (see74

Villez, 2015). In this work, therefore, the existing SCS method is modified to75

support QTA in the presence of discontinuous trends.76

This Study. In addition to the modifications of the SCS method, this article also77

describes for the first time how the SCS method provides a lack-of-fit statistic78

which can be used for fault detection. The analogy of this approach to the use of79

the Q or squared prediction error (SPE) statistic commonly used in fault detec-80

tion based on principal component analysis (PCA, Jackson & Mudholkar, 1979;81

Kresta et al., 1991) is demonstrated below. Furthermore, this work compares82

the anomaly detection performances of both SCS and PCA. This article con-83

tinues with Materials and Methods, in which the applied data models, anomaly84

detection methods, and the proposed performance evaluation are initially ex-85

plained, followed by a description of the analyzed data and their purpose in86

this study. In the Results section, all the results obtained are discussed in de-87

tail while the Discussion section provides an in-depth analysis. This study is88

summarized in the last section, namely Conclusions.89

4
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2. Materials and Methods90

The modified SCS method and PCA as applied here are initially described.91

This is followed by a description of the studied data sets. An overview of the92

acronyms and typographical conventions used as well as a list of symbols are93

given in Appendix A (Tables A.1, A.2, and A.3).94

2.1. Methods95

Two methods are used for anomaly detection. The first one is a modification96

of the existing SCS method, while the second one is based on PCA. Both meth-97

ods result in the computation of a lack-of-fit statistic, namely a sum of squared98

residuals (SSR). In both cases, this statistic is used to detect anomalous data99

as explained at the end of this subsection.100

2.1.1. Shape-Constrained Splines101

Shape-constrained function fitting is applied here as a way of detecting sig-102

nificant deviations between the shape of a data series and a predefined shape103

reflecting normal conditions. The following paragraphs show how this problem104

can be formulated mathematically and solved numerically.105

Definitions and Notation. In analogy to previous work, the following definitions106

are used here:107

Episode. An episode is an argument interval over which the signs of a function108

or data series and/or a selection of their derivatives do not change. It is109

defined by a primitive, a start time, and an end time.110

Primitive. A primitive is a unique combination of signs for a value of a function111

and/or one or more of its derivatives. Each primitive is usually referred112

to by means of an arbitrarily chosen character. The sign of the first and113

second derivatives of a cubic spline function are of interest in this work.114

The primitives are called triangular primitives when the signs for both115

the first and second derivative are specified (Cheung & Stephanopoulos,116

5
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1990). The correspondence between the signs of the derivatives and the117

characters is given in Fig. 1 and is the same as in Villez et al. (2013).118

Qualitative Sequence. A qualitative sequence (QS) is a series of primitives.119

Such a QS is used to describe the assessed or expected shape of a function120

or data series. A QS does not include the argument locations (transitions)121

at which a change in primitive is expected or observed.122

Qualitative Representation. A qualitative representation (QR) is a com-123

plete description of the expected or observed shape of a function or time124

series and consists of a QS and values for the argument values of the125

corresponding transitions.126

Transition. A transition is defined as the argument location where one primi-127

tive changes to the next.128

Any QS is defined mathematically by means of integers, se,j (se,j ∈ {−1, 0,+1}),129

with e indicating the index of the primitive in the QS (e ∈ {1, 2, . . . , ne}) and130

j indicating the considered derivative (j ≥ 0). An unknown or unspecified sign131

is symbolized with a question mark (?), similar to previous work (Villez et al.,132

2013). In all cases studied in this work, only triangular primitives are used so133

that the sign values of the cubic spline function and its third derivative are ? for134

all episodes. These signs are combined in matrix form as follows, with r being135

the highest derivative under consideration:136

S =



s1,0 s1,1 . . . s1,j . . . s1,r

s2,0 s2,1 . . . s2,j . . . s2,r
...

...
. . .

...
. . .

...

se,0 se,1 . . . se,j . . . se,r
...

...
. . .

...
. . .

...

sne,0 sne,1 . . . sne,j . . . sne,r


(1)

The transitions between primitives are given as a vector:137

θ =
[
θ1 θ2 . . . θnt

]T
(2)

6
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Figure 1: Primitives. The above scheme includes all triangular primitives defined on the basis

of the sign of the 1st and/or the 2nd derivative.

with nt = ne−1. A number, nd, of transitions are known to imply a discontinuity138

in one or more derivatives which are otherwise continuous. These are defined139

as follows:140

δ =
[
δ1 δ2 . . . δnd

]T
(3)

and constitute a subset of θ:141

δ ⊆ θ (4)

The maximal degrees for the derivatives which are still continuous in δ are given142

as143

cvar =
[
cvar,1 cvar,2 . . . cvar,nd

]T
(5)

7
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144

Problem Formulation. The fitting of shape-constrained spline functions is for-145

mulated mathematically as follows. Consider that a sequence of n data pairs,146

(xi, yi), is given as a vector of arguments (x) and a matching vector of measure-147

ment values (y):148

x =
[
x1 x2 . . . xi . . . xn

]T
(6)

y =
[
y1 y2 . . . yi . . . yn

]T
(7)

The problem of fitting a shape-constrained univariate function can then be149

written in a general form as follows:150

min
β,θ

g(β) = g(β,x,y) (8)

subject to:151

β ∈ Ω(S,θ) (9)

θ ∈ Θ (10)

where β is a function parameter vector; Ω(S,θ) is the set consisting of all vectors152

β for which the resulting function satisfies the qualitative representation defined153

by S and θ; and Θ is the feasible set of transitions. Further definitions are as154

shown in Table A.3. As discussed shortly above and as in prior SCS-based work,155

it is assumed that S is available a priori, either by means of expert reasoning or156

by computer-based qualitative reasoning (e.g. Kuipers, 2001; Bredeweg et al.,157

2009). The feasible set for each transition (θt) equals the function domain,158

subject to the isotonicity of their consecutive values:159

θ ∈ Θ ⇔ ∀t ∈ {1, 2, . . . , nt} : x1 ≤ θt ≤ θt+1 ≤ xn (11)

160

The shape constraints, described by the set Ω(S,θ), consist of equality and161

inequality constraints for the value of the fitted function and/or one or more162

of its derivatives. These constraints are expressed as functions of the argument163

8
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(x) and the function parameters (β). As they are valid over intervals of the164

function domain (episodes), their number can be infinite. Fortunately, certain165

function families permit such an infinite number of constraints to be equivalently166

expressed as a finite number of constraint equations involving only the function167

parameters. This is possible for univariate spline functions, as demonstrated168

in Papp & Alizadeh (2014). The fitted functions are thus restricted to belong169

to the family of spline functions. Under these conditions, the above problem170

can be solved deterministically and globally by means of the branch-and-bound171

algorithm (Villez et al., 2013).172

In existing work (Villez et al., 2013), the spline knots are considered known173

a priori. This means that discontinuous behavior of the otherwise continuous174

function and/or its derivatives implied by shape constraints is not permitted.175

Indeed, some examples of QSs (e.g. FC ) imply a discontinuity of the func-176

tion and/or one or more derivatives. Such discontinuous behavior can only177

be achieved by placing additional knots with multiplicity at the corresponding178

transition (Ramsay & Silverman, 2005). The function and its derivatives re-179

main continuous in other parts of the function domain. Since the transitions180

are parameters to be optimized, this implies that a fraction of the spline knots181

is unknown a priori. It follows that the bounds proven in Villez et al. (2013)182

cannot be applied when the QS implies discontinuous behavior. This restriction183

is removed with the formulation and proof of new bounds in Appendix B. These184

new bounds require that the optimization problem can be written as follows:185

min
β,θ

g(β) = g(β,x,y)

=
∑
i

|yi − f(β, xi)|p +

j=r∑
j=0

λj

∫ xn

x1

∣∣f j(β, v)
∣∣qj dv (12)

with constraints as given above (Eqs. 9-10) and the definitions shown in Table186

A.3. The powers p and qj are larger than or equal to one. The above objective187

function consists of separable penalty functions for the function fit and, possibly,188

the smoothness of the function and/or a number of its derivatives.189

The global solution to the above shape-constrained spline fitting problem190

9
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can be found to an arbitrary level of precision by a deterministic global search191

algorithm since the following apply (sufficient conditions):192

1. The set Ω(S,θ) is convex for any given S and θ (Papp & Alizadeh, 2014).193

2. The objective function g is convex in the parameters β (Papp & Alizadeh,194

2014).195

3. Bounds to the objective function g exist and can be computed for any196

subset of Θ. This last condition is proven in Appendix B.197

For details of the deterministic global optimization method for shape-constrained198

spline fitting, including necessary proofs, we refer to Appendix B. For the pur-199

pose of batch process monitoring, the above optimization problem is solved for200

every new data series (x,y) generated by the considered batch process. In this201

work, all penalty coefficients, λj , are equal to zero so that the objective func-202

tion value after optimization corresponds to the minimal SSR given the spline203

function and the imposed shape constraints. This SSR is further referred to as204

SSRSCS .205

2.1.2. Principal Component Analysis206

PCA is a well-known method for data dimension reduction and can be used207

for anomaly detection under specific assumptions, e.g. that all analyzed data208

samples are drawn independently from the same distribution. PCA for anomaly209

detection is executed in two phases. First, a PCA model is calibrated by anal-210

ysis of a data matrix consisting of historic data samples which are considered211

normal. In a second step, the model obtained is used for confirmatory testing212

of newly obtained samples. As the PCA model and its use for fault detection213

are described at great length in the literature (see e.g. Jackson & Mudholkar,214

1979; Joliffe, 2002), the following text focuses on the essentials.215

Phase 1 - Calibration. The calibration data set is given as a matrix (Y cal) with216

n rows corresponding to variables andm columns corresponding to data samples.217

A centered data set (Y cal,C) is obtained by subtracting the mean vector from218

each matrix column. This matrix is decomposed into a matrix consisting of219

10
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principal score vectors (T cal) and one consisting of loading vectors (P ). This is220

done here by means of singular value decomposition. This decomposition can221

be written as:222

Y cal,C = P · T cal (13)

It is well known that the loading vectors, i.e. the columns of P , correspond to223

the eigenvectors of the empirical maximum likelihood covariance matrix estimate224

(X ·XT /m) computed for the calibration data set. Similarly, the variances of the225

principal scores (rows of T cal) are equal to the eigenvalues of the same covariance226

matrix. By definition, the loading vectors and principal scores are ordered in227

decreasing order of eigenvalues. To achieve dimensional reduction, a number of228

principal components (PCs) with the smallest eigenvalues are removed from the229

model. This leads to the following equation where T̄ cal and P̄ cal comprise the230

retained part of the model and R represents the residuals:231

Y cal,C = P̄ · T̄ cal +R (14)

It can be shown that the column vectors of P̄ describe the least-squares optimal232

plane approximating the centered data for a given number of PCs (Schuermans233

et al., 2005). A challenging task in PCA is the determination of the number of234

PCs (Joliffe, 2002). A simple scree plot of the eigenvalues is found to suffice in235

this study.236

Phase 2 - Confirmatory Analysis. In a second phase, new samples are projected237

onto the PCA model. This is done by computing each centered sample (ytest,C)238

by subtracting the means computed in phase 1. The principal scores are then239

computed as follows, thanks to the orthonormal properties of the loading vec-240

tors:241

t̄test = ytest,C · P̄
T

(15)

The quality with which the PCA model describes the new data samples is mea-242

sured by the following sum of squared residuals (SSRPCA), also known as the243

11
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Q statistic (Jackson & Mudholkar, 1979) and the SPE statistic (Kresta et al.,244

1991):245

SSRPCA =
(
ytest,C − P̄ · t̄test

)T · (ytest,C − P̄ · t̄test) (16)

The higher SSRPCA is, the lower is the chance that the analyzed data are246

produced according to the PCA model. SSRPCA can thus be used as a statistic247

for the automatic detection of anomalous data patterns. This is discussed in248

more detail below.249

2.1.3. Anomaly Detection250

Both the PCA model and the SCS model result in an SSR computed indi-251

vidually for each data sample. To use these SSR values for anomaly detection,252

an upper control limit (UCL) is specified to define the classification boundary253

for the anomaly detection problem (Montgomery, 2005). When the computed254

SSR is above (below) this UCL, the analyzed sample is considered anomalous255

(normal). In the case of PCA, an UCL can be computed on the basis of re-256

liable approximations of the distribution of the SSR statistic and be given a257

proposed false positive rate (FPR, frequency of anomaly detections for normal258

data). This requires a multivariate normal distribution for the residuals to be259

assumed and identified (Jackson & Mudholkar, 1979; Kresta et al., 1991). In260

the case of SCS, no such approximations exist. To allow a fair comparison of261

these methods, the performance of the SSR statistics is instead evaluated by262

means of the receiver-operator-characteristic (ROC, Fawcett, 2006) which plots263

the true positive rate (TPR, frequency of anomaly detections for abnormal data)264

as a function of the FPR for different values of the UCL. These frequencies are265

computed and plotted by using every value obtained for SSR once as the UCL.266

This approach also avoids the arbitrary effects of an a priori specified FPR on267

the evaluation of the proposed methods.268

2.2. Data Sets269

Two data sets are used in this study. The first consists of a single univariate270

time series and is merely used to demonstrate the modified SCS method. The271

12
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second consists of a larger set of time series obtained in a batch process for272

biological wastewater treatment. The latter set is used to demonstrate and273

compare the anomaly detection performance with of both the SCS and PCA274

methods. Both data sets are described below and are included in Supplementary275

Materials.276

2.2.1. Data Set 1: Refinery Data277

The refinery data set is taken from Ramsay & Silverman (2005) and contains278

193 tray level measurements from an oil refinery distillation column. These279

measurements are recorded equidistantly in time and were used to showcase the280

introduction of the discontinuous behavior of knots with multiplicity and the281

identification of functional differential equations (Ramsay & Silverman, 2005).282

They are used here to demonstrate how a shape-constrained spline function can283

be fitted to global optimality when the enforced QS implies a discontinuity.284

2.2.2. Data Set 2: Oxidation-Reduction Potential (ORP) Data285

The second data set consists of 1684 univariate time series collected in a286

sequencing batch reactor (SBR) for aerobic wastewater treatment. This SBR287

consists of a reactor tank in a two-tank reactor setup which includes an ex-288

perimental side-stream reactor (SStR) operated as a continuously stirred tank289

reactor. The SBR is used for aerobic treatment of sewage and the SStR for aer-290

obic digestion of excess sludge. Each SBR cycle lasts six hours and is operated291

in the following fixed sequence of stages: (i) pumping of sludge from the SStR292

to the SBR and liquor from the SBR to the SStR (7 min.), (ii) addition of fresh293

wastewater under anoxic conditions (10 min.), (iii) aerated reaction phase (285294

min.), and (iv) sludge withdrawal, settling, and decanting (58 min.). Each new295

cycle starts immediately after decanting. A complete description of the setup296

can be found in Habermacher et al. (2015).297

The selected data consist of the first 513 oxidation-reduction potential (ORP)298

measurements collected every 10 seconds in each batch cycle. The time series299

thus represent the first 85 minutes of the batch cycle which includes the first300

13
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two stages and the first hour of the aerobic stage. These data series exhibit a301

typical shape with discontinuities in the first and second derivatives at distinct302

locations. It is this behavior at the beginning of normal batch cycles that in-303

spired the methodological development of the proposed shape-constrained spline304

fitting method.305

To benchmark the anomaly detection methods, two experts were asked to306

classify each time series as explained by either normal or anomalous functioning307

of the process and the ORP sensor. The first expert is the second author of this308

paper and the second one is one of his research advisors. Their classification309

was recorded by means of a customized visualization which presented the time310

series to each expert separately and in a random order. Each inspected time311

series was shown in white against a black backdrop while all other time series312

for that operational period were shown in dark gray in the same image. The313

program used for this visualization and response recording can be found in the314

Supplementary Materials. As the two experts did not agree in all cases, a joint315

session was held in which the time series with conflicting classifications were316

shown simultaneously to both experts in order to obtain a consensus classifi-317

cation wherever feasible. After this joint session, 1564 cycles are classified as318

normal and 96 as abnormal. No consensus could be reached for 24 cycles. The319

data series and reference classification results can be found in the Supplementary320

Materials. Only the time series for which a consensus between the two experts321

was reached (1660 cycles) are used for comparative analysis.322

2.3. Software323

All computations were executed using Matlab (R2014b, The MathWorks324

Inc., 2014). The SCS method could be realized thanks to the use of convex325

optimization software (MOSEK ApS, 2012), a functional data analysis toolbox326

(Ramsay & Silverman, 2002), and an updated version of the SCS toolbox (Villez327

et al., 2013). In view of reproducibility, all data and programs necessary to328

repeat the data analysis and produce all figures in this work can be found in the329

Supplementary Materials. All software created newly for this work is published330

14
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under an open-source license and released simultaneously with this publication.331

3. Results332

The results for the refinery time series are initially reported in the following.333

The results obtained with the ORP measurements are subsequently discussed.334

3.1. Data Set 1: Refinery Data335

The refinery time series is shown in Fig. 2. It can be seen that the QS336

FC is a reasonable abstraction for this series. This FC sequence implies dis-337

continuous behaviour at the transition between the two constituting primitives.338

Indeed, a change from a zero-valued 1st and 2nd derivative to a strictly positive339

1st derivative combined with a negative 2nd derivative can only be achieved by340

discontinuous behavior of the 1st and 2nd derivative.341

To demonstrate the shape-constrained spline fitting method, a shape-constrained342

cubic spline function (r = 3) with fixed knots placed at every second data point343

is fitted to the data in the least squares sense. To this end, the powers and344

smoothness penalty coefficients are set as follows:345

p = 2 (17)

∀j ∈ {0, . . . , r} : λj = 0 (18)

The function is constrained to exhibit the assumed FC shape. This can be346

expressed by the following sign matrix (cfr. Eq. 1 & Table 1):347

S =

 ? 0 0 ?

? +1 −1 ?

 (19)

An additional knot with multiplicity 3 is placed at the transition to provide348

the desired discontinuity of the 1st and 2nd derivative. This means that the349

function itself is the highest function derivative which remains continuous in350

this added knot, in mathematical terms:351

κvar = κ1 = θ = θ = δ = δ (20)

cvar = cvar,1 = 0 (21)
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Figure 2: Refinery data set - Data series and fitted functions as a function of time. The data

series (D) are shown in their original scale. All functions are shown with an offset to facilitate

visualization. Lines below the data series correspond to the functions fitted to compute the

upper and lower bounds for six contiguous intervals for θ, indicated by vertical dashed lines

and indexed 1 to 6 from top to bottom. Red circles indicate the transitions as applied for the

upper bound computation (θ̂QP ). The full black line (O) above the data series corresponds to

the globally optimal shape-constrained spline function. The global optimum for θ is indicated

by a black square at 67.2813.

Optimal fitting requires solving for β and θ. The problem, as indicated352

above, is convex in β for a given value of θ and is then solved efficiently by353

means of interior-point optimization. This was executed for a grid of values for354

θ spaced equidistantly over the domain of the spline function. The resulting355

objective function (SSR) is shown in Fig. 3. Such a brute force approach (i)356

is naturally inefficient, (ii) does not guarantee global optimality, and (iii) does357

not scale well with the number of transitions to be optimized.358
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Figure 3: Refinery data set - (i) Objective function as a function of the transition (θ) evaluated

in an equidistant grid with steps of 0.05 and (ii) upper and lower bounds to the objective

function for six intervals. The upper and lower bounds to the objective function are found

consistent by visual inspection.

The shape-constrained spline fitting problem is solved in a better way by359

means of the branch-and-bound algorithm. The suitability of this algorithm360

depends primarily on the validity of the applied bounding procedures. This361

validity is demonstrated first. To this end, the bounds to the objective func-362

tion are computed for six different solution sets for the transition, namely the363

following contiguous intervals of the argument range: [0, 32], [32, 64], [64, 96],364

[96, 128], [128, 160], and [160, 193]. For each of these intervals, the upper bound365

solution for the transition (θ̂QP ) equals the center of the interval (see Appendix366

B). The function parameters (β) are optimized for both the upper and lower367

bound (see Appendix B, Section B.2). The corresponding spline functions are368

shown in Fig. 2. Fig. 3 plots the corresponding upper and lower bounds to the369

17



Page 19 of 54

Acc
ep

te
d 

M
an

us
cr

ip
t

objective function. In every interval the lower bound for every interval is lower370

than any value obtained for the objective function in the considered interval.371

At the same time, the upper bound is effectively equal or higher than at least372

one objective function value in the considered interval. This demonstrates the373

bounding procedures given in Appendix B.374

The top panel of Fig. 4 visualizes the execution of the branch-and-bound375

algorithm to find the optimal value for θ by displaying the solution sets gener-376

ated by this branch-and-bound algorithm as a function of its iteration count.377

After a total of 24 steps, the last live node corresponds to an interval of width378

0.003125 (1/32) and the optimization algorithm is halted. The best upper bound379

solution is found for θ = 67.2813. The lowest values for the upper and lower380

bounds among the live nodes are shown as function of the algorithm iterations381

in the bottom panel of Fig. 4. Here one can see that the lower bound converges382

monotonically to its final value. In contrast, the upper bound does not decrease383

monotonically. This is because our implementation of the algorithm does not384

keep memory of the upper bound solutions. The corresponding globally optimal385

spline function is shown in Fig. 2.386

3.2. Data Set 2: Oxidation-Reduction Potential (ORP) Data387

3.2.1. Visual Data Inspection388

A subset of 21 normal ORP time series which span the complete data set389

is shown in Fig. 5. Thanks to offset visualization, it is easy to see that they390

are all very similar in shape. More specifically, the displayed time series can be391

described in a rough fashion by means of the QS EAC with a discontinuity in392

the first and second derivatives at both transitions. The transitions between the393

episodes are close to changes in batch stages within the first 80 minutes of each394

cycle, namely the change from the liquor exchange stage to the feeding stage (7’)395

and from the feeding stage to the aerobic oxidation stage (17’). It can also be396

seen that the curvature of the A primitive becomes less pronounced in batches397

at the end of the data set. The same data are shown in their original scale in the398

Supplementary Materials (Fig. S.1). The latter figure clearly suggests a mean399
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Figure 4: Refinery data set - Visualization of the progress of the branch-and-bound algorithm.

(a) Solution tree. For each iteration of the algorithm, live leaf nodes are shown as shaded rect-

angles. (b) Upper and lower bounds to the objective function as computed during execution

of the branch-and-bound algorithm.

shift occurring between cycles 400 and 480. Detailed inspection (not shown)400

indicates that the mean shift occurs between cycles 410 and 411, which is when401

the ORP sensor was maintained and calibrated.402

3.2.2. Shape-Constrained Spline Function Fitting403

For the ORP data series, a natural cubic spline function with knots in every404

data sample is fitted in the least squares sense. The objective function is thus405
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Figure 5: Exemplary data series for normal operating conditions. Data of every 80th are

displayed. The time series for cycle 80 is in its original scale. All other time series are shown

with an offset for convenient visualization. An EAC sequence appears to be a good qualitative

description of these time series.

parameterized as follows:406

κfix = x (22)

∀j ∈ {0, . . . , r} : λj = 0 (23)

p = 2 (24)

r = 3 (25)

This means that the fitted functions would be perfectly fitting interpolating407

spline functions without the application of shape constraints. The QS EAC408
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corresponds to the following sign matrix:409

S =


? −1 0 ?

? −1 +1 ?

? +1 −1 ?

 (26)

Both transitions are associated with discontinuities in both the first and second410

derivative which require a knot with multiplicity 3 to be placed in the transitions.411

This is described as follows in mathematical terms:412

κvar = θ = δ =
[
κ1 κ2

]T
=
[
θ1 θ2

]T
=
[
δ1 δ2

]T
(27)

cvar =
[
cvar,1 cvar,2

]T
=
[

0 0
]T

(28)

The optimal solution for θ is obtained by means of the branch-and-bound413

algorithm explained in Appendix B. Fig. 6 displays the executed branching414

steps of the algorithm when executed for batch 37. The algorithm is halted415

when all dimensions of the live nodes (subsets) are smaller than 0.125 (= 1/8).416

This occurs after 29 branching steps. The minimum for g(β,θ) is equal to417

433 mV2 and is found at θ̂ =
[

7′ 5′′ 17′ 18′′
]T

. Fig. 7 shows the spline418

function obtained. It fits the data very well and the resulting QR matches419

the earlier visual inspection well. The residuals are visibly small and some420

auto-correlation is apparent. This is most visible after the second transition,421

matching the start of the aerated stage closely. Within this stage, an on-off422

(i.e. bang-bang) controller actively controls the dissolved oxygen concentration423

leading to corresponding oscillations in the ORP signal. These oscillations are424

typically small and are not analyzed further within this work. Despite the coarse425

approximation of the ORP signal that results, good detection performances are426

reported below.427

3.2.3. Sum-of-Squared-Residuals and Anomaly Detection428

The optimization of the shape-constrained spline function as described above429

is repeated for every time series in the data set. The top panel of Fig. 8 displays430

the resulting SSRs as a function of the batch cycle index (SSRSCS). This431
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Figure 6: Visualization of the branch-and-bound algorithm. Each vertical (horizontal) line

represents a branching step which splits a parent node along θ1 (θ2).

statistic ranges between 241 mV2 and 4.9 · 105 mV2. The maximum SSRSCS432

value obtained for a normal cycle is 977 mV2. An initial assessment of the433

performance of this method is obtained by setting the UCL equal to the latter434

value. This is the lowest possible limit leading to a zero FPR. Of the 96 abnormal435

time series, 56 are then positively detected (TPR: 58%).436

The bottom panel of Fig. 8 shows the SSR statistic obtained with PCA437

modeling (SSRPCA). The calibration set consists of the data from the first438

100 normal batch cycles. Two PCs were selected on the basis of scree plots439

(Supplementary Materials, Fig. S.2). This PCA model captures 96.6% of the440

total variance of the calibration set and its loading vectors are shown in the441

Supplementary Materials, Fig. S.3).442

The SSRPCA statistic ranges from 446 mV2 to 9 · 106 mV2. The maximum443
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Figure 7: Optimal shape-constrained spline fitting for batch 37. Top: data (y, original scale)

and fitted function (f(β̂, θ̂), shown with offset). Bottom: Residuals.

SSR for the normal cycles is 7.37·105 mV2. For each normal cycle, the SSRPCA444

is higher than the corresponding SSRSCS , indicating that the SCS data model445

fits the normal data better than the selected PCA model can. This is not446

surprising because the SCS model has 513 parameters (spline coefficients) which447

can be adjusted whereas the PCA model, once calibrated, has only two principal448

scores. An interesting phenomenon occurs at batch 411, where the SSRPCA449

suddenly rises from 2.16 · 104 mV2 to 3.47 · 105 mV2. Beyond batch 411, the450

SSRPCA remains high. This is explained by the mean shift caused by sensor451

maintenance discussed above. Indeed, as the PCA model was calibrated with452

data obtained before this maintenance event, it is unlikely that this model can453

represent data after such an event.454

Using the maximum SSRPCA value for the normal cycles as the UCL, eight455
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Figure 8: Anomaly detection with a single detection limit for the sum-of-squared residuals

statistic. Top: shape-constrained spline fitting - Bottom: principal component analysis. The

detection limit is the lowest limit giving no false alarms.

positive detections (TPR: 8.3%) are obtained at the same FPR (0%). Inter-456

estingly, these detections include two cycles not detected by the SCS method457

above. The remaining six cycles are detected by both methods. This also458

means that 50 out of 56 positive detections with SCS are not obtained with459

the PCA method. The time series corresponding to positive detections by SCS,460

PCA, or both methods are displayed separately in the Supplementary Materials461

(Fig. S.4-S.6).462

In order to account for the observed mean shift at batch cycle 411, the463

PCA-based detection is repeated by using a separate PCA model for the cycles464

before and after the ORP sensor maintenance event. The PCA model for the465

first 410 time series remains the same as before (Subset 1). The PCA model466
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for the remaining time series (Subset 2) is obtained by selecting the first 100467

normal time series following batch 410 as the calibration set. A model with468

two principal components (PCs) was again selected on the basis of scree plots469

(see Supplementary Materials, Fig. S.7-S.8). This model captures 94.8% of the470

total variance. The resulting SSR statistic is shown in the bottom panel of471

Fig. 9. Within subset 1, the resulting SSRPCA statistic ranges from 446 mV2
472

to 1.07 · 106 mV2 and the maximal value for normal batches is 3.77 · 104 mV2.473

Within subset 2, SSRPCA ranges from 440 mV2 to 2.59 · 107 mV2 and exhibits474

a maximum for the normal cycles at 1.05 · 105 mV2. All values for SSRPCA475

are higher than the corresponding values for SSRSCS , except for a single time476

series (batch 491). This indicates that the PCA models still deliver a worse fit477

than the SCS method in general.478
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Figure 9: Top: shape-constrained spline fitting - Bottom: principal component analysis. The

detection limits are the lowest ones giving no false alarms in each of the two considered periods.
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Both PCA models are again evaluated first by setting the UCL to the highest479

SSRPCA obtained for the normal cycles. This is done separately for subsets480

1 and 2. In subset 1, 30 out of 46 cycles are now detected (TPR: 65%). In481

subset 2, 13 out of 50 abnormal batches are positively detected (TPR: 26%).482

Constructing two separate PCA models thus improves the model performance483

dramatically. For a fair comparison with the SCS method, the SCS method is484

now evaluated by setting different UCLs for each subset. However, the original485

SSRSCS values are used (Fig. 8, top panel). The resulting UCLs are 581 mV2
486

(subset 1) and 977 mV2 (subset 2). This leads to a positive detection of 39 out of487

46 batches in subset 1 (TPR: 84%) and 23 out of 50 abnormal batches in subset488

2 (TPR: 46%). The SCS and PCA methods both detect 29 abnormal batches in489

subset 1 and eight (8) in subset 2. The SCS method identifies ten (10) abnormal490

time series not identified by the PCA method in subset 1 and 15 in subset 2.491

The PCA method leads to the exclusive detection of one abnormal time series492

in subset 1 and five (5) in subset 2. The time series exclusively identified by the493

SCS or PCA method and those identified by both methods are shown separately494

for each subset in the Supplementary Materials (Fig. S.9-S.14).495

3.2.4. Receiver-Operator-Characteristic496

The above paragraphs permitted a comparative analysis by discussing detec-497

tion results which were all obtained with a zero FPR. However, the correspond-498

ing UCL is an unlikely choice as a typical approach is to trade off false positives499

against false negatives. Where this trade-off lies, is seldom known exactly as500

it involves an assessment of the frequencies of normal and abnormal conditions501

and the associated costs and benefits, all of which are hard to assess, as ab-502

normal conditions tend to be rare and diverse in nature. In order to compare503

anomaly detection methods without specifying the trade-off, the ROC can be504

used as described above. The ROC is computed for the cases studied so far, i.e.505

for both methods and for the complete data set (global), subset 1, and subset506

2. Batch cycles included in the PCA calibration sets are excluded from this507

evaluation.508
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All ROCs are shown in Fig. 10. The left-hand side of the graph shows the509

TPRs corresponding to an FPR of 0% which were discussed above. As the510

UCL is decreased, both TPR and FPR increase. The black diagonal line is511

the expected performance for a random classifier. A good anomaly detection512

method should deliver high TPRs and low FPRs. It follows that the first PCA513

model applied over the whole data set leads to a TPR lower than the FPR for514

FPRs from 32.2% to 83%. In contrast, the SCS method applied to the whole515

data set leads to better than random performance results for every possible516

choice for the FPR. At conventional choices of 1%, 5%, and 10% for the FPR,517

the TPRs are 64.6%, 72.9%, and 77.1%. The SCS method delivers combinations518

of TPR and FPR values which are simultaneously better than any combination519

obtained with PCA, except for FPRs from 94.7% to 96.8%, where the TPR is520

equal to 97.9% with SCS and 99.0% with PCA.521

The use of separate PCA models for subsets 1 and 2 leads to universally522

improved ROCs compared to the single PCA model approach. The effect is523

most dramatic for subset 1 and delivers an ROC which is similar to that for524

the SCS method (SCSglobal). At 1%, 5%, and 10% FPRs, the TPRs are 65.2%,525

69.6%, and 76.1%. For subset 2, the corresponding FPRs are 28%, 42%, and526

70%. By choosing a separate UCL for each subset in the case of the SCS method,527

a high performance is obtained for subset 1. For FPRs of 1%, 5%, and 10%,528

TPRs of 84.8%, 84.8%, and 89.1% are obtained. For subset 2, the ROC shows529

a decreased performance compared to the original ROC for the whole data set.530

The TPRs are 56%, 66%, and 70% for FPRs of 1%, 5%, and 10%. For subset 1,531

the ROC for SCS completely dominates the ROC for the PCA model, meaning532

that the SCS method is universally better than PCA. No matter which FPR is533

chosen, SCS delivers the highest TPR. This is also the case for subset 2, except534

for FPRs from 72.7% to 99.3% where SCS delivers TPRs from 94% to 98% and535

PCA leads to TPRs from 96% to 100%.536
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Figure 10: Receiver-Operator Characteristic computed for the complete data set and the two

identified subsets. In all cases, the SCS method is preferable over the PCA method at almost

all choices for the false positive rate.

4. Discussion537

In this work, a modified method based on shape-constrained splines (SCS)538

is presented and evaluated as a tool for anomaly detection. The results demon-539

strate that it is feasible to fit spline functions with shape constraints implying540

discontinuous trends by means of a globally optimal deterministic optimization541

algorithm. Comparative analysis indicates an almost universally better perfor-542

mance of the SCS method over the more conventional PCA method. This is in543

part due to a greater flexibility of the fitted function as well as the nonlinear544

nature of the SCS model. In addition, the SCS method requires a minimal545

amount of prior information about the process and does not depend on a large546

representative data set for calibration. The next paragraphs describe a number547
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of limitations of this study and an analysis of the SCS method.548

4.1. Limitations of This Study549

The following limitations of this study are recognized:550

Experimental Laboratory-Scale Data. This study is the first in a recent series of551

studies on QTA co-authored by the first author in which experimental data are552

analyzed. While the use of experimental data demonstrates the applicability of553

the deployed SCS method and its preferred performance, the reported benefits554

in detection performance cannot be guaranteed for every process and for full-555

scale processes which may be subject to larger operational variability. However,556

given the earlier work which included benchmarking tests with simulated data,557

it is our opinion that the method shows great potential as an intuitive tool for558

anomaly detection in many systems.559

Single Instrument and Single Reactor System. This study focuses on the anal-560

ysis of data obtained with a single ORP sensor installed in the same reactor.561

Given the demonstrated robustness of the SCS method, it is also considered562

very valuable to test whether the underlying SCS model remains appropriate563

for other reactor units and for different instruments (spatial variability). It is564

hypothesized that this is indeed the case. However, the studied data do not565

allow this to be demonstrated.566

Anomaly Detection Limited to the Lack-of-Fit Statistic. A deliberate choice567

was made to restrict anomaly detection to the use of sum-of-squared-residuals568

(SSR). One argument in favor of this decision is that (i) a lack-of-fit statistic is569

exactly the right measure for assessing the degree to which a new data sample570

matches the applied model. Other measures, e.g. Hotelling’s T2 statistic as571

applied to PCA, are applicable when it is useful to identify extreme data samples572

which do, however, fit the identified model, i.e.the correlation structure, rather573

well. A second argument is that (ii) the SCS method does not come with574

features, such as the principal scores given by PCA, for which a theoretical575
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distribution can be easily proposed. Although semi-parametric methods, such576

as kernel density estimation, could be used to describe the normal behavior of577

the spline function coefficients and/or the identified transitions, this adds a level578

of complexity which could impede evaluation by the SCS method. Thirdly and579

lastly, (iii) the statistical description of these features would require an extensive580

calibration data set, which is not a requirement for the SCS method in its current581

form. Nevertheless, further improvement of the detection performance should582

be expected if such data are available, representative, and easy to model. Note583

that the possibility to use the transitions as process indicators has been explored584

before (Villez et al., 2008).585

Incomplete Data Set. The analyzed time series consist of only a fraction of the586

available data for the studied SBR process. The inclusion of more data was587

prevented by a number of factors. First of all, the shape of the ORP time series588

consisting of the first 513 data points is roughly the same for all normal batch589

cycles with two distinct transitions. Analysis of longer time series results in a590

rather diverse set of normal QSs. This leads to a dramatic increase in computa-591

tional time as the required computations increase exponentially with the number592

of transitions and linearly with the number of alternative QSs which have to be593

checked against. Although this is shown to be feasible in (Villez et al., 2013),594

a simpler approach was taken here given the first-time application of the SCS595

method to a reasonably large experimental data set. Secondly, the SCS method596

as proposed here does not support the joint analysis of multivariate time series597

and therefore prevents the inclusion of data originating from other instruments.598

Thirdly, it was observed that the analysis of the time series covering the com-599

plete SBR cycles on the basis of an interpolating cubic spline function led to600

insufficient memory availability on both desktop and laptop machines tested for601

this purpose. It remains an open question as to how to deal effectively with (i)602

complex and diverse QSs, (ii) multivariate time series, and (iii) long time series603

in the SCS framework.604
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4.2. Strengths, Weaknesses, Opportunities, and Threats of the SCS method605

In the following paragraphs, a detailed assessment of the proposed modified606

SCS method is given in terms of its strengths, weaknesses, opportunities, and607

threats (SWOT).608

4.2.1. Strengths609

Intuitiveness. One of the major advantages of QTA methods like the one pre-610

sented here, is their intuitive interpretation. In the presented work, the anomaly611

detection method is essentially based on the computer-based recognition of a612

known pattern which is tied to normal operating conditions. Importantly, this613

pattern (i) is described in a coarse-grained fashion, and (ii) can be established614

easily by a process operator or by visual inspection of a few normal cycles. In615

contrast, conventional methods, especially unsupervised ones such as PCA, rely616

on representative calibration data sets of considerable size and require consid-617

erable expertise in statistical process control methods for proper model identi-618

fication. It may be argued that the SCS method is less of an art and thus not619

as sensitive to subjective judgments common to the application of unsupervised620

latent variable models (e.g. PCA). Note that this kind of reasoning is similar621

to the dynamic model identification philosophy in (Shaich et al., 2001).622

Optimality. In contrast to alternative QTA techniques, the SCS method solves623

the pattern recognition problem by means of a deterministic global optimiza-624

tion scheme. This allows avoiding the challenges associated with greedy and625

stochastic optimization methods such as (i) obtaining locally optimal solutions626

and (ii) the need for tuning to increase chances of finding the global optimum.627

Statistical Framework. The pattern recognition problem is cast as a maximum628

likelihood estimation problem. This means that the resulting estimates for the629

spline function parameters and transitions are consistent estimators as long as630

the spline basis and the shape constraints are consistent with the true data631

generating process (i.e. the true model is included in the feasible model set).632
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Furthermore, anomaly detection is based on a lack-of-fit statistic which is sim-633

ilar to those for existing anomaly detection methods, such as PCA. The pro-634

posed method can thus be easily integrated in existing statistical process control635

schemes.636

Support of Discontinuities. The proposed extension of the SCS method now637

allows explicit accounting of discontinuous trends in QTA. Although previously638

identified methods also allow for such discontinuities (Dash et al., 2004; Char-639

bonnier & Gentil, 2007), these do not automatically lead to the guaranteed640

continuity of derivatives in function arguments different from the identified tran-641

sitions.642

Robust Data Model. As borne out by the comparative analysis between the643

anomaly detection performance of the SCS and PCA models, it is apparent644

that the SCS model represents relationships between the collected data which645

remain true throughout the data collection period. In contrast, the PCA model646

requires recalibration following sensor maintenance to recover reasonable de-647

tection performance levels. This inherent robustness stems from the fact that648

the SCS model, with as many spline coefficients as there are data points, is ex-649

tremely flexible and can thus track both incipient and abrupt numerical changes650

in the collected data series while clearly rejecting anomalous data not fitting the651

qualitatively described expectations. The conventionally identified PCA model652

with two principal components exhibits far fewer degrees of freedom and lacks653

the flexibility of the SCS model. The SCS data model thus provides a robust654

approach to anomaly detection. Other use cases which may benefit from this655

property, such as data reconciliation and missing data estimation, remain to be656

evaluated.657

4.2.2. Weaknesses658

Computational Effort. The global optimality of the branch-and-bound search659

algorithm requires a large computational effort. In the worst case, this effort660
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increases exponentially with the number of optimized transitions. The identi-661

fication is thus practically limited to a small number of transitions given the662

computational capacity for a typical wastewater treatment plant.663

End-of-batch use only. Due to the computational requirements of the presented664

method, specifically the optimization of the transitions, the current use of the665

SCS model is restricted exclusively to end-of-batch use. Exceptions to this are666

possible however (i) when the qualitative sequence consists of a single primitive667

only (there are no transitions to be optimized) or (ii) when the transitions are668

known exactly.669

Shape-based detection only. As discussed above, the proposed method does de-670

tect anomalous shifts in time of the identified transitions. Indeed, the SSR671

statistic computed with the SCS data model only evaluates departure from the672

assumed profile shape, not its location in time. Still, the changes necessary to673

enable process monitoring on the basis of the identified transitions are likely674

limited.675

Univariate method. The proposed method is limited to the analysis of univariate676

data series, similarly to previous studies (e.g. Villez et al., 2012, 2013; Villez,677

2015) and in contrast to alternative methods based on wavelet and piece-wise678

polynomial fits (Maurya et al., 2005; Flehmig & Marquardt, 2006). However, a679

multivariate SCS method is currently being developed.680

4.2.3. Opportunities681

Knot placement. The extension of the SCS method allows the location of knots682

to be optimized. In principle the provided bounds also make this possible when683

no shape constraints are enforced. The branch-and-bound algorithm can thus be684

used to optimize knot placements. However, alternative methods (e.g. Beliakov,685

2004) are likely to be more efficient for this purpose. It is unclear whether686

existing methods for globally optimal knot placement are useful in the context687

of shape-constrained spline fitting. This can potentially lead to improved bounds688

for the optimization problem and remains open for exploration.689
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4.2.4. Threats690

Supervised nature. A major drawback of the proposed SCS method is that the691

targeted QS needs to be specified a priori. The method could easily be extended692

to allow for multiple permissible sequences (as in Villez et al., 2013; Villez, 2015)693

but a completely unsupervised application based on shape-constrained function694

fitting is not yet considered feasible.695

5. Conclusions696

In this study, shape-constrained spline (SCS) function fitting is proposed697

as a method for qualitative trend analysis (QTA). For the first time, a QTA698

method is proposed which deals with discontinuous trends in an explicit way.699

Furthermore, the resulting QTA method is the first of its kind to produce a700

confirmatory data model which is useful for fault detection, as opposed to fault701

diagnosis. This means that the SCS model can be used in a similar way to702

any other data model, including principal component analysis (PCA), as is703

demonstrated with this work. The application to a data set obtained from an704

experimental wastewater treatment pilot plant further indicates that the SCS705

method leads to tangible improvements in fault detection performance compared706

to the classic PCA model. However, an even more important benefit is that the707

SCS method is fairly simple on a conceptual level and easy to explain to process708

operators and experts, in contrast to more conventional tools such as PCA. This709

is true despite the relatively complex mathematical forms required to provide a710

globally optimal deterministic function-fitting algorithm.711
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Rieger, L., Takács, I., Villez, K., Siegrist, H., Lessard, P., Vanrolleghem, P. A.,780

& Comeau, Y. (2010). Data reconciliation for wastewater treatment plant781

simulation studies – planning for high-quality data and typical sources of782

errors. Water Environment Research, 82 , 426–433.783

Schuermans, M., Markovsky, I., Wentzell, P., & Van Huffel, S. (2005). On the784

equivalence between total least squares and maximum likelihood PCA. Anal.785

Chim. Acta, 544 , 254–267.786

Shaich, D., Becker, R., & King, R. (2001). Qualitative modelling for automatic787

identification of mathematic models of chemical reaction systems. Control788

Eng. Practice, 9 , 1373–1381.789

Spindler, A., & Vanrolleghem, P. A. (2012). Dynamic mass balancing for790

wastewater treatment data quality control using CUSUM charts. Water Sci-791

ence and Technology , 65 , 2148–2153.792

The MathWorks Inc. (2014). MATLAB Release 2014b. Natick, Massachusetts.793

Thomann, M. (2008). Quality evaluation methods for wastewater treatment794

plant data. Wat. Sci. Technol., 10 , 1601–1609.795

37



Page 39 of 54

Acc
ep

te
d 

M
an

us
cr

ip
t

Venkatasubramanian, V., Rengaswamy, R., & Kavuri, S. N. (2003a). A review796

of process fault detection and diagnosis - Part II: Qualitative models and797

search strategies. Computers & Chemical Engineering , 27 , 313–326.798

Venkatasubramanian, V., Rengaswamy, R., Kavuri, S. N., & Yin, K. (2003b).799

A review of process fault detection and diagnosis - Part III: Process history800

based methods. Computers & Chemical Engineering , 27 , 327–346.801

Venkatasubramanian, V., Rengaswamy, R., Yin, K., & Kavuri, S. N. (2003c). A802

review of process fault detection and diagnosis - Part I: Quantitative model-803

based methods. Computers & Chemical Engineering , 27 , 293–311.804

Villez, K. (2015). Qualitative path estimation: A fast and reliable algorithm for805

qualitative trend analysis. AIChE Journal , 61 , 1535–1546.806

Villez, K., Rengaswamy, R., & Venkatasubramanian, V. (2013). Generalized807

shape constrained spline fitting for qualitative analysis of trends. Comp.808

Chem. Eng., 58 , 116–134.809

Villez, K., Rosén, C., Anctil, F., Duchesne, C., & Vanrolleghem, P. A. (2008).810

Qualitative representation of trends: an alternative approach to process di-811

agnosis and control. Wat. Sci. Technol., 57 , 1525–1532.812

Villez, K., Rosén, C., Anctil, F., Duchesne, C., & Vanrolleghem, P. A. (2012).813

Qualitative representation of trends (QRT): Extended method for identifica-814

tion of consecutive inflection points. Comp. Chem. Eng., 48 , 187–199.815

38



Page 40 of 54

Acc
ep

te
d 

M
an

us
cr

ip
t

Appendices816

A. Acronyms and Symbols817

Table A.1: List of acronyms

Acronym Full expression

FPR False positive rate

ORP Oxidation-reduction potential

PC Principal component

PCA Principal component analysis

QP Quadratic program

QPE Qualitative path estimation

QR Qualitative representation

QS Qualitative sequence

QTA Qualitative trend analysis

ROC Receiver-operator-characteristic

SBR Sequencing batch reactor

SCS Shape-constrained splines

SPE Squared prediction error

SSR Sum of squared residuals

SStR Side-stream reactor

SWOT Strengths, weaknesses, opportunities, and threats

TPR True positive rate

UCL Upper control limit
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Table A.2: Typography

Style Description

x, xi, Xi,j Scalar

x, X ·,j Column vector

X Matrix

x̂, x̂, X̂ Estimate
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Table A.3: Symbol definitions

Symbol Description Class

a Index of nodes generated during optimization Integer

b Interval boundary for enforced shape constraints Continuous

c Highest continuous derivative Integer

d Index for transitions associated with a discontinuity Integer

e Index of primitives in QS and episodes in QR Integer

f() Piece-wise polynomial function Function

f j() jth derivative of f() Function

g() Objective function Function

h() Indicator function Function

i Index for data pairs Integer

j Index for derivatives Integer

k Index for internal knots Integer

m Count (number of samples) Integer

n Count (number of episodes, knots, samples) Integer

p Power for lack-of-fit objective criterion Integer

qj Power for smoothness objective criterion Integer

r Degree of the spline function Integer

s Sign value Integer

t Score Continuous

v Integrand Continuous

x Function argument Continuous

y Measurement Continuous

P Loading vector matrix Continuous

R Residuals matrix Continuous

S Sign matrix Continuous

T Score matrix Continuous

Y Data matrix Continuous
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α Argument for hypothesized spline knot Continuous

β Function parameter (polynomial coefficient) Continuous

δ Transitions associated with a discontinuity Continuous

κ Internal spline knot location Continuous

λ Penalty factor Continuous

θ Transition parameter Continuous

Θ Set for transition vectors Continuous

Ω Set for parameter vectors Continuous
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B. Bounding Procedures for Shape Constrained Splines with Discon-818

tinuities819

The branch-and-bound algorithm as applied in this study proceeds in the820

same fashion as in Villez et al. (2013) to compute optimal values for β̂ and θ̂.821

This requires the provision of bounds to the objective function over subsets of822

Θ. The root set to initialize the branch-and-bound algorithm, Θ0, is defined as823

follows:824

θ ∈ Θ0 ⇔ ∀t ∈ {1, 2, . . . , nt} : x1 ≤ θt ≤ xn (B.1)

This root set, Θ0, is essentially an nt-dimensional box (i.e. hyper-rectangle or825

orthotope). Just as in Villez et al. (2013), every branching step splits a parame-826

ter set (a.k.a. parent node) into two constitutive and contiguous parameter sets827

(a.k.a. leaf nodes). Each newly generated node in the solution tree (indexed828

with a: Θa, a ∈ N+) can be described in the following form:829

θ ∈ Θa ⇔ ∀t ∈ {1, 2, . . . , nt} : θLt ≤ θt ≤ θUt (B.2)

In our implementation of the algorithm, each parent node is halved along its830

longest dimension during branching. This means that the set is halved along831

the dimension (t) with the lowest range (θUt − θLt ). It follows that each set in832

the solution tree is a subset of the root of the solution tree:833

∀a ∈ N0 : Θa ⊆ Θ0 (B.3)

The bound computations in the branch-and-bound optimization scheme are834

based on semi-definite programming which permits the optimal solution for β̂835

to be computed given a feasible solution for θ̂. Indeed, shape-constrained spline836

function fitting with given transitions is a convex optimization problem which837

can be solved effectively by interior-point solvers (Alizadeh & Goldfarb, 2003).838

The lower bound solution as defined below is based on sufficient relaxations to839

prove the bounds, as will be shown below. However, these relaxations are not840
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known to be strictly necessary. In addition, it is unlikely that the gap between841

the upper and lower bounds can be driven to absolute zero (unlike the case in842

Villez et al., 2013). Thus, finite computation times are only guaranteed when843

the branch-and-bound algorithm is allowed to terminate after the gap between844

the bounds and/or the size of the solutions sets (nodes) have reached critical845

numerical tolerances. These tolerances can be set to arbitrarily small strictly846

positive values. Upon termination, optimal values for β̂ are given as those values847

associated with the best known upper bound solution for θ̂. Further notes on848

the optimization algorithm can be found in Villez et al. (2013). The following849

paragraphs discuss the bounding procedures.850

In order to prove the applied bounds of the objective function, the following851

definitions are required. The applied set of spline knots consists of a set of nfix852

fixed knots, (κfix) and a set of nvar variable knots (κvar). The latter set of853

knots corresponds to those transitions in the considered Qualitative Sequence854

(QS) which imply a discontinuity in the fitted function and/or one or more of855

its derivatives. The number of variable knot locations, nvar, is thus equal to the856

number of transitions in the QS implying a discontinuity, nd. The complete set857

of transitions is now described mathematically as follows:858

θ =
[
θ1 θ2 . . . θj . . . θnt

]T
(B.4)

It follows for this set that:859

κvar = δ ⊆ θ (B.5)

The set of fixed knots and variable knots is mutually exclusive so that:860

κ = κfix ∪ κvar = κfix ∪ δ =
[
κ1 κ2 . . . κk . . . κnk

]T
(B.6)

κfix ∩ κvar = κfix ∩ δ = ∅ (B.7)

The proof of the bounding procedures is easier to follow when the fitted spline861

function is formulated explicitly as a piece-wise polynomial function. This means862

that a piece-wise polynomial basis is used and the function is parametrized by863

its polynomial coefficients and not –as in a more conventional approach– by its864
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spline function coefficients. It also means that continuity of the function and865

its existing derivatives in the knots is only achieved by formulating continuity866

constraints explicitly as equality constraints in the mathematical problem for-867

mulation. To this end, a degree of continuity, ck, is associated with each knot868

in κ and specifies the highest derivative which is continuous in the considered869

knot. The degree of the highest derivative which remains continuous for the870

kth variable knot location is given as cvar,k. Without any discontinuities this871

integer is equal to r − 1 for all knots. Indeed, the rth derivative of any spline872

function is piece-wise linear with discontinuities in the knot locations. This873

problem formulation, while apparently inefficient, allows the variable location874

of knots to be accounted for.875

The above specifications lead to the following mathematical formulation of876

the shape-constrained spline fitting problem:877

min
β,θ

g(β,θ) =
∑
i

|yi − f(β, xi)|p +

j=r∑
j=0

λj

∫ xn

x1

∣∣f j(β, v)
∣∣qj dv (B.8)
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subject to:878

∀k ∈ {1, 2, . . . , nk},

∀j ∈ {0, 1, . . . , ck} : lim
v→κ−

k

f j(β, v) = lim
v→κ+

k

f j(β, v) (B.9)

∀e ∈ {1, 2, . . . , ne},

∀j ∈ {0, 1, . . . , r} :

bLe ≤ v ≤ bUe ⇒


f j(β, v) ≤ 0, if se,j = −1

f j(β, v) = 0, if se,j = 0

f j(β, v) ≥ 0, if se,j = +1

(B.10)

bL =
[
bL1 bL2 . . . bLne−1 bLne

]T
=

[
x1 θ1 . . . θnt−1 θnt

]T
(B.11)

bU =
[
bU1 bU2 . . . bLne−1 bUne

]T
=

[
θ1 θ2 . . . θnt

xn

]T
(B.12)

∀t ∈ {1, 2, . . . , nt − 1} : θt ≤ θt+1 (B.13)

∀t ∈ {1, 2, . . . , nt} : θLt ≤ θt ≤ θUt (B.14)

with definitions as in Table A.3.879

To enable bounding of the objective function for the optimization problem880

described by Eq. B.8–B.14 over any set, Θa, two cases must be considered.881

These are:882

1. No feasible solution for θ exists in Θa883

2. A feasible solution for θ exists in Θa884

Two procedures are available to determine whether a feasible parameter885

set exists. One consists of applying formal methods such as solving feasibility886

problems (Boyd & Vandenberghe, 2009). A more conventional and intuitive887

procedure consists by finding a parameter set which minimizes the following888

quadratic objective function over the set Θa:889

min
θ

nt∑
t=1

(
θt − θLt

)2
+
(
θt − θUt

)2
(B.15)
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subject to (B.13)-(B.14). If no solution can be found to this quadratic program890

(QP), it follows that no feasible solution exists. If a solution has been found, it891

can applied to compute an upper bound to the shape-constrained spline fitting892

problem as will be shown below. In this case, the values obtained for θ are893

further referred to as θ̂
QP

. This optimization strategy is followed because of its894

intuitiveness and convenience.895

B.1. Case 1: Infeasible Problem896

In the first case, both lower and upper bounds to the objective function value897

are set to infinity:898

gL = gU = +∞ (B.16)

899

The proof is rather trivial. Indeed, if no feasible solution can be found for θ,900

then there is no solution with any objective function value lower than +∞. This901

automatically also defines the upper bound at the same infinitely large value.902

B.2. Case 2: Feasible Problem903

In the second case, a feasible solution is given by θ̂
QP

. Bounds to the904

objective function can then be computed as described below.905

B.2.1. Upper Bound to the Objective Function906

Procedure. In this case, it remains relatively trivial to evaluate an upper bound.907

The problem in Eq. B.8–B.14 is solved after replacement of θ with θ̂
QP

. This908

leads to the following convex optimization problem in β:909

min
β
g(β) =

∑
i

|yi − f(β, xi)|p +

j=r∑
j=0

λj

∫ xn

x1

∣∣f j(β, v)
∣∣qj dv (B.17)
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subject to:910

∀j ∈ {0, 1, . . . , ck},

∀k ∈ {1, 2, . . . , nk} : lim
v→κ−

k

f j(β, v) = lim
v→κ+

k

f j(β, v)(B.18)

∀e ∈ {1, 2, . . . , ne},

∀j ∈ {0, 1, . . . , r} :

bLe ≤ v ≤ bUe ⇒


f j(β, v) ≤ 0, if se,j = −1

f j(β, v) = 0, if se,j = 0

f j(β, v) ≥ 0, if se,j = +1

(B.19)

bL =
[
bL1 bL2 . . . bLne

]T
=

[
x1 θ̂QP1 . . . θ̂QPnt

]T
(B.20)

bU =
[
bU1 bU2 . . . bUne

]T
=

[
θ̂QP1 . . . θ̂QPnt

xn

]T
(B.21)

This optimization completes the computation of an upper bound (gU ).911

Proof. The objective function value for the computed solution is indeed an912

upper bound since the existence of the associated solution proves that at least913

one solution has an objective function value equal to or lower than gU .914

B.2.2. Lower Bound to the Objective Function915

Procedure. In the following, three sufficient relaxations leading to a provable916

lower bound are discussed.917

Relaxation 1. To describe the computation of the lower bound, the re-918

laxations used in Villez et al. (2013) for the continuous case are also applied919

here. Specifically, this means that the upper bound problem is solved, except920

that equations Eq. B.20–B.21 are replaced with the following equations:921

bL =
[
bL1 bL2 . . . bLne−1 bLne

]T
=

[
x1 θU1 . . . θUnt−1 θUnt

]T
(B.22)

bU =
[
bU1 bU2 . . . bUne−1 bUne

]T
=

[
θL1 θL2 . . . θLnt

xn

]T
(B.23)
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922

In words, the lower (upper) bounds for the intervals over which shape con-923

straints are implemented are replaced by the upper (lower) bounds for the tran-924

sition arguments. This relaxation reduces the argument intervals over which925

the shape constraints are enforced. Importantly, it follows that the shape con-926

straints applied for the lower bound are also applied when solving with any927

feasible set of values for θ within the considered set:928

∀a ∈ N0,∀e ∈ {1, 2, . . . , ne},∀θQP ∈ Θa :
[
bLe , b

U
e

]L ⊆ [bLe , bUe ]U (B.24)

The shape constraints in the modified lower bounding problem are always929

included in the original problem for any choice of θ within the considered so-930

lution set. The obtained objective function following this relaxation, denoted931

here as gL1 , is thus guaranteed to be lower than or equal to the computed upper932

bound, gU :933

gL1 ≤ gU (B.25)

As long as no discontinuities are implied by the qualitative sequence, this934

relaxation is sufficient to obtain a provable lower bound (Villez et al., 2013). In935

the more general case where some of the transitions imply the presence of a knot936

with multiplicity, this is not a sufficient relaxation to obtain a provable lower937

bound. However, two further relaxations are sufficient to achieve this. These938

are explained below.939

Relaxation 2. The second relaxation consists of adding knots with mul-940

tiplicity to the set of knots implemented for the upper bound solution. For941

any transition, with index d, the corresponding index of the highest continuous942

derivative is denoted as cvar,d. The solution for the transition argument ob-943

tained for the upper bound is written as δ̂QPd . Whereas cvar,d knots are placed944

in δ̂QPd for the upper bound, r + 1 (r + 1 ≥ cvar,d) knots are now placed in the945

same argument. This means that the spline function and all its derivatives are946

discontinuous in this location. As a result, the piece-wise polynomial function947
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fitting is now completely separable since the data and polynomial coefficients948

on the left (right) hand side, of each discontinuity argument, θ̂
QP

d , have no in-949

fluence on the polynomial coefficients for the right (left) hand side. This also950

implies additional degrees of freedom for the piece-wise polynomial function. In951

general, the number of applied constraints is either reduced or remains the same952

while the objective function itself remains unchanged. The resulting objective953

function, referred to as gL2 , is then lower than or equal to the previously defined954

objective function value:955

gL2 ≤ gL1 ≤ gU (B.26)

Relaxation 3. A third relaxation is required to obtain a provable lower956

bound. It consists of minimizing the following modified objective function:957

min
β
g(β) =

∑
i

h(xi) · |yi − f(β, xi)|p

+

j=r∑
j=0

λj

∫ xn

x1

h(v) ·
∣∣f j(β, v)

∣∣qj dv (B.27)

with:958

h(x) =

0, if ∃d : θLd ≤ x ≤ θUd

1, otherwise

(B.28)

In words, the residuals corresponding to data points lying within an inter-959

val defining the potential location of any transition implying knot multiplicity960

are not accounted for in the objective function. In addition, the integrals to961

compute smoothness penalty functions are only integrated over intervals which962

are guaranteed not to contain a transition implying knot multiplicity for any963

feasible solution. The resulting objective function value, gL3 , is naturally lower964

than or equal to all previously defined objective function values:965

gL3 ≤ gL2 ≤ gL1 ≤ gU (B.29)
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The combined relaxations discussed above are sufficient to obtain a prov-966

able lower bound. This is proven in the following paragraphs. The underlying967

principle of the proof is that adding a discontinuity in any additional feasible968

location cannot lower the computed objective function value below values given969

by gL3 (maximal relaxation).970

Proof. To prove the lower bound, consider first that the objective function971

can be rewritten as a sum of terms associated with three contiguous and non-972

overlapping intervals of the function domain by using the bounds for the argu-973

ment location of a discontinuity, δLd and δUd , as interval boundaries:974

minβ g(β) =
∑

i:xi∈[x1,δLd ]

h(xi) · |yi − f(β, xi)|p

+
∑

i:xi∈[δLd ,δUd ]

h(xi) · |yi − f(β, xi)|p +
∑

i:xi∈[δUd ,xn]

h(xi) · |yi − f(β, xi)|p

+

j=r∑
j=0

λj

∫ δLd

x1

h(v) ·
∣∣f j(β, v)

∣∣qj dv +

j=r∑
j=0

λj

∫ δUd

δLd

h(v) ·
∣∣f j(β, v)

∣∣qj dv

+

j=r∑
j=0

λj

∫ xn

δUd

h(v) ·
∣∣f j(β, v)

∣∣qj dv (B.30)

Upon explicit evaluation of h(xi) and h(v) (Eq. B.28) it can be observed975

that the 2nd and 5th terms are equal to zero, so that the optimization problem976

above is equivalent to the following:977

minβ g(β) =
∑

i:xi∈[x1,δLd ]

h(xi) · |yi − f(β, xi)|p

+
∑

i:xi∈[δUd ,xn]

h(xi) · |yi − f(β, xi)|p +

j=r∑
j=0

λj

∫ δLd

x1

h(v) ·
∣∣f j(β, v)

∣∣qj dv

+

j=r∑
j=0

λj

∫ xn

δUd

h(v) ·
∣∣f j(β, v)

∣∣qj dv (B.31)

It is now easy to verify that the objective function above cannot be reduced978

further by adding any knot within the interval [δLd , δ
U
d ]. Indeed, the fitted func-979
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tion as above includes two piece-wise polynomial segments, defined over the980

intervals [δLd , δ̂
QP
d ] and [δ̂QPd , δUd ]. The polynomial coefficients for the considered981

interval are tied to those defined for intervals left and right of the considered982

interval by means of continuity constraints. In the argument δ̂QPd no continu-983

ity constraints are applied. Now consider that a knot is added in the interval984

[δL,d, δ̂
QP
d ] in the argument α. In this case, the original left-side polynomial is985

split into two new piece-wise polynomials with continuity constraints for the986

function value and the derivatives up to the rth derivative. The last (rth )987

derivative is discontinuous. Another way to interpret this is that the original988

polynomial with r+ 1 coefficients is now replaced by two polynomials involving989

2 · (r+ 1) coefficients. This results in the net addition of a single degree of free-990

dom. Importantly however, this added degree of freedom cannot be exploited991

to reduce the objective function value.992

To see this, it should be noted that the coefficients of the polynomial terms993

up to degree r − 1 over [α, δ̂QPd ] can be computed from the coefficients of the994

polynomial over [θLd , α] thanks to existing continuity constraints. The coefficient995

for the polynomial term of rth degree for the interval [α, δ̂QPd ] remains to be996

chosen. Interestingly, this value can be chosen freely since the objective function997

is not influenced by the value of this coefficient. Any further addition of a knot in998

the same or other location will lead to the same effect. In summary, the further999

addition of any number of knots within the interval [δLd , δ̂
QP
d ] adds degrees of1000

freedom to the fitted function which cannot be used to improve the objective1001

function because it is not sensitive to the added parameters. Furthermore, the1002

set of applied constraints does not change when adding such additional knots.1003

Similarly, the addition of any number of knots within the interval [δ̂QPd , δUd ]1004

cannot be used to reduce the computed objective function value. It follows1005

from the above that the addition of any number of knots with multiplicity r+ 11006

in the interval [δ̂Ld , δ
U
d ] will result in the same objective function with value gL3 .1007

This is true for all discontinuous transitions (d = 1 . . . nd).1008

The last paragraph proves that any value obtained for gL3 for any feasible1009

choice for θQP , gL3 is equal to the lowest attainable value for this function for1010
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any number of added knots within the permitted intervals. In other words,1011

the optimization problem cannot be relaxed further by adding any number of1012

additional knots in the permitted intervals. Importantly, this lowest attainable1013

value is also obtained by applying the (unknown) globally optimal values for θ,1014

here referred to as θ∗. This is written mathematically as:1015

gL3 = gL∗3 ≤ gU∗ ≤ gU (B.32)

In words, this means that the lower bound objective function gL3 evaluated for1016

any feasible solution is equal to the same lower bound evaluated for the globally1017

optimal solution, gL∗3 , which, in turn, is lower than or equal to the objective1018

function for the global optimum of the original problem. This concludes the1019

proof of the lower bound.1020
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