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1. Introduction11

Despite abundant literature, model identification is a challenging task for12

environmental systems which keeps drawing considerable attention (Marsili-13

Libelli, 2010). In response, protocols have been developed to simplify the14

model identification task (Jakeman et al., 2006). One important aspect is15

that environmental process and system models are typically nonlinear in their16

parameters. Despite this problem, nonlinear parameter estimation is often17

solved with gradient-based optimization techniques that may not converge18

(Checchi et al., 2007) or which may converge to a local optimum (Jakeman19

et al., 2006; Rieger et al., 2012). Alternatively, stochastic optimization tools20

in combination with sensitivity-based parameter selection techniques (e.g.,21

Benedetti et al., 2011; Sin et al., 2008) can ease this task. While fruitful22

in many cases, stochastic methods can still converge to a local optimum or23

may not converge at all. This is a significant drawback if the model struc-24

ture itself is uncertain and subject to selection or modification. In other25

areas of engineering, deterministic optimization techniques are more popu-26

lar. Whereas stochastic optimization methods increase the chances of finding27

global optima (in finite time), deterministic methods find global optima with-28

out failure (in finite time). Unfortunately, deterministic optimization still29

requires a deep understanding of the optimization problem and the most effi-30

cient algorithms tend to be tailored to a small set of optimization problems.31

However, with this work we show that deterministic optimization is at least32

applicable for modeling of simple batch respirometric experiments involving a33

single reaction. Since such experiments are typical for biological wastewater34

Acronyms:
AOB ammonia oxidizing bacteria
DO dissoved oxygen
NOB nitrite oxidizing bacteria
ODE ordinary differential equations
OUR oxygen uptake rate
QP quadratic program
TNN total nitrite nitrogen
WLS weighted least squares
WRMSR weighted root mean squared residuals
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treatment process modeling, we argue that the provided parameter identifi-35

cation method is broadly applicable.36

In addition to the nonlinear nature of the modeled processes, other factors37

complicating model identification include (i) the stochastic nature of their38

inputs, (ii) the lack of detailed understanding of metabolic pathways, and39

(iii) the large number of empirically determined parameters further leading40

to a lack of practical or even structural identifiability. While these issues are41

important, they are not addressed, diminished, or amplified by this work.42

Thus, we consider the experimental design and the produced experimental43

data as a given and focus on solving parameter estimation problems to global44

optimality.45

To showcase the real-world applicability of the developed optimization46

method, a data set collected for the purpose of kinetic model identification47

of a biological urine treatment process is used. Separate collection and treat-48

ment of urine is a new approach to optimize sanitation. Two possible appli-49

cations are the recovery and recycling of nutrients to agriculture (Udert and50

Wächter, 2012) and the prevention of corrosion in sewers by nitrate dosage51

(Jiang et al., 2011; Oosterhuis and van Loosdrecht, 2009). Nitrification of52

urine is applied in both approaches, either to stabilize volatile ammonia or53

to produce the electron acceptor nitrate. Stable nitrification requires bal-54

anced activities of both bacterial groups involved in the process, ammonium55

oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB). However,56

stable nitrification is challenging in urine due to the high pH value and the57

high concentrations of ammonia, organic substances, and salts. Three ma-58

jor process failures can occur (Fumasoli, 2016). First, both AOB and NOB59

are inhibited at high pH values due to high concentrations of free ammonia.60

Second, at intermediate pH values AOB grow too fast and produce large61

amounts of nitrite, which inhibit NOB. Third, acid-tolerant AOB grow in62

when the operational pH is low. In turn, the pH value can decrease even fur-63

ther leading to the chemical production of large amounts of volatile nitrogen64

compounds, especially nitric oxide (Fumasoli et al., 2015). The main opera-65

tional parameter is the pH value. It directly influences the energy generation66

of the bacteria, but it also determines (i) limitation effects by free ammonia67

and carbonate and (ii) inhibition effects by free ammonia and nitrous acid68

(Fumasoli, 2016). Keeping these effects apart and determining the respective69

kinetic constants is challenging. Consequently, mechanistic computer models70

can be a helpful tool to include all effects and the necessary chemical and71

microbial processes (Fumasoli, 2016). Jubany et al. (2005) showed that con-72

4



secutive dosage of nitrite and fitting the oxygen uptake rate can be used to73

determine the kinetics of NOB in high-strength ammonia wastewaters. This74

approach to experimental data collection is also applied in our study in order75

to demonstrate our optimization algorithm.76

The next section describes the experimental data and the applied opti-77

mization algorithm. Afterwards, results are shown and discussed in separate78

sections. The major conclusions are summarized at the end.79

2. Materials and Methods80

2.1. Notation and symbols81

The notation conventions applied in this study are given in Table 1. All82

symbols used in this study are given in Table 2. In addition, inequalities83

of the form x ≤ y express that every element in x is smaller or equal to84

the corresponding element in y, i.e. x ≤ y ⇔ ∀l : xl = x(l) ≤ y(l) = yl.85

Similarly, we write for matrices that X ≤ Y ⇔ ∀l,m : Xl,m = X(l,m) ≤86

Y (l,m) = Yl,m.87

Table 1: Notation conventions
Notation Description
x, θ Scalar

x, xm, θ Column vector
xl, x(l) lth scalar element of vector x

Xl,m, X(l,m) Scalar element of matrix X at row l and column m
X Matrix
X l,· lth row from matrix X
X ·,m mth column from matrix X
x̃ Measurement
x̂ Optimal estimate
x̆, x̊ Relaxed estimate or value
x+ Positive part of x (max(x, 0))
x− Negative part of x (min(x, 0))
x Lower bound (h,hj,h1,h2), lower interval limit (q,s,θ)
x Upper bound (h,hj,h1,h2), upper interval limit (q,s,θ)
X Set of feasible solutions
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Table 2: List of symbols

Symbol Description Unit
a Biomass activity [mgN L−1 h−1]
amax Maximum biomass activity [mgN L−1 h−1]
bNOB Biomass decay rate of NOB [mg L−1 h−1]
c Regression constraint vector [−]
dk, dj,kj Residuals [mgN L−1], [mgO2 L

−1 h−1]
ej,kj Measurement errors [mgN L−1], [mgO2 L

−1 h−1]
h Objective function [−]
hj, ho, h1, h2 Objective function term [−]
idecay Stoichiometric coefficient for oxy-

gen in biomass decay reaction
[mgO2 mg

−1]

igrowth Stoichiometric coefficient for oxy-
gen in biomass growth reaction

[mgO2 (mgN)−1]

j Measured variable index –
kj Measurement sample index –
l,m Integer index –
p Number of nonlinear parameters –
pKa, pKa,HNO2

,
pKa,HNO3

Acidity constants [−]

q, qkj Relative reaction rate [h−1]
raer Oxygen mass transfer rate [mgO2 L

−1 h−1]
rendo Endogenous oxygen uptake rate [mgO2 L

−1 h−1]
rOUR Oxygen uptake rate [mgO2 L

−1 h−1]
s, skj Relative concentration [−]
s0 Initial relative concentration [−]
smax Relative concentration corre-

sponding to the maximum growth
rate

[−]

t Time (continuous) [h]
tkj Measurement sampling times [h]
tk1 , tkTNN

Sampling times for TNN measure-
ments

[h]

tk2 , tkOUR
Sampling times for OUR measure-
ments

[h]

Continued on next page
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List of symbols
Symbol Description Unit
yk, yj,kj ,
y1,k1 , yTNN,kTNN

,
y2,k2 , yOUR,kOUR

Model output [mgN L−1], [mgO2 L
−1 h−1]

B Regression constraint matrix –
C Constant –
J Number of measured variables –
Kj Number of measurement samples –
KS NOB affinity constant for HNO2 [mgN L−1]
KI NOB inhibition constant for

HNO2

[mgN L−1]

M Number of regression inputs –
SO2

DO concentration [mgO2 L
−1]

STNN TNN concentration [mgN L−1]
STNN,0 Initial TNN concentration [mgN L−1]
T Feasible set of parameter vectors –
XNOB NOB concentration [mg L−1]
X Regression inputs [−]
YNOB Biomass growth yield coefficient [mg (mgN)−1]
β, βj, β1, β2 Regression parameter vectors [mgN L−1], [mgO2 L

−1 h−1]
βj,0, βj,1, βj,2,
β1,0, β1,1, β1,2,
β2,0, β2,1, β2,2

Regression parameters [mgN L−1], [mgO2 L
−1 h−1]

γ Parameter vector Mixed units
µ(t) Specific growth rate [h−1]
µmax Maximum specific growth rate [h−1]
σk, σj,kj ,
σ1,k1 ,
σTNN,kTNN

,
σ2,k2 , σOUR,kOUR

Measurement error standard devi-
ations

[mgN L−1], [mgO2 L
−1 h−1]

θ, θ1, θ2 Dimensionless kinetic parameter
vectors

[h−1]

θj, θ1, θ2, θ3 Dimensionless kinetic parameter [h−1]
Γ Convex set –
Ω, Ωj Convex set –

88
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2.2. Assumed model structure and general problem statement89

The parameter optimization method as developed in this work applies to
process models whose dynamics can be formulated as follows:

ṡ(t) = −q
(
s(t),θ

)
, s(0) = 1 (1)

with s(t) the single state variable and q
(
s(t),θ

)
a single rate expression. The

state variable can only take on nonnegative values (s(t) ≥ 0) and the rate
expression q

(
s(t),θ

)
is nonnegative and non-increasing in its parameters (θ,

dimensions: p× 1) over its whole domain:

∀s ∈ R≥0,∀θ,θ1,θ2 ∈ Rp :

{
q
(
s,θ
)
≥ 0

θ1 ≤ θ2 ⇔ q
(
s,θ1

)
≥ q
(
s,θ2

) (2)

The process state and/or the rate of change (s(t) and q(t)) are measured
through equations of the following form:

ỹj,kj = yj,kj + ej,kj , ej,kj ∼ N (0, σj,kj) (3)

yj,kj = βj,0 + βj,1 s(tkj) + βj,2 q(s(tkj),θ)

=
[

1 s(tkj) q(s(tkj),θ)
]
βj, j = 1, . . . , J, kj = 1, . . . , Kj

(4)

βj ∈ Ωj ⊂ R3
≥0 j = 1, . . . , J (5)

These measurement equations deliver Kj measurements ỹj,kj of J measured90

variables yj,kj at sampling times tkj , where kj = 1, . . . , Kj and j = 1, . . . , J .91

The measurement errors ej,kj are assumed to be sampled independently92

from zero mean normal distributions with standard deviations σj,kj . These93

standard deviations are assumed known. In addition, the vectors βj =94

[βj,0 βj,1 βj,2]T (j = 1, . . . , J) are bound to belong to a subset of the non-95

negative real space, Ωj. These subsets are assumed known and are required96

to be convex. The vectors θ and βj (j = 1, . . . , J) constitute the parameters97

of the model and are to be estimated.98

2.3. Parameter estimation methods99

2.3.1. Definition of optimality100

We define optimal parameter estimation as maximum likelihood estima-
tion, that is, we aim to find the values for the parameters which maximize
the likelihood. Let γ denote the vector containing all parameters :

γ =
[
θT β1

T β2
T . . . βj

T . . . βJ
T
]T

(6)
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and let h(γ) be the negative log-likelihood function. The optimization prob-
lem is then:

γ̂ = arg min
γ
h(γ) (7)

Given assumptions and definitions discussed above, the negative log-likelihood
corresponds to the following weighted least squares (WLS) objective func-
tion:

h(γ) = C +
J∑
j=1

hj(θ,βj)

= C +
J∑
j=1

Kj∑
kj=1

(
dj,kj
σj,kj

)2

(8)

dj,kj = yj,kj(γ)− ỹj,kj (9)

with C a constant which can be ignored during optimization, dj,kj residu-101

als, and yj,kj(γ) simulated values for yj,kj obtained with parameter vector γ102

according to (1)-(5).103

2.3.2. Estimation of βj conditional to θ104

A major benefit of the model formulation given above is that the parame-
ter vectors βj appear linearly and separately in the measurement equations.
Indeed, the measurements are linear in these parameters. This means that
optimal WLS values for these parameters can be found easily provided that
s(t) and q

(
s(t),θ

)
are known at the measurement sampling times. Indeed,

given θ, the state s(t) can be evaluated for any time t by

s(t,θ) = s0 −
∫ t

0

q
(
s(t),θ

)
dt, s(0) = s0 = 1 (10)

To find estimates for βj, equation (10) is evaluated for every instant tkj by
solving the following problems:

j = 1, . . . , J : β̂j(θ) = arg min
βj∈Ωj

hj(θ,βj) =

Kj∑
kj=1

(
dj,kj
σj,kj

)2

(11)
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subject to

dj,kj = yj,kj(γ)− ỹj,kj
=
[

1 s(tkj) q(s(tk)|θ ,θ)
]
βj − ỹj,kj (12)

This problem is convex in βj and is therefore solved efficiently by means of105

interior-point programming in the general case. If the set Ωj is polyhedral106

(i.e., described completely by linear equalities and inequalities) the above107

problem is a quadratic program (QP) in βj.108

Given the above solutions β̂(θ)j, one can now write the original optimiza-
tion problem as follows:

θ̂ = arg min
θ

h(θ) =
J∑
j=1

hj
(
θ,βj

)
(13)

subject to

hj
(
θ,βj

)
=

Kj∑
kj=1

(
dj,kj
σj,kj

)2

(14)

dj,kj =
[

1 s(tkj) q(s(tk)|θ ,θ)
]
βj − ỹj,kj (15)

This optimization problem is nonlinear in the remaining parameters θ.109

The particular instance of this problem studied in this work is solved in110

two ways. Firstly, it is solved by means of the branch-and-bound algorithm111

explained in the next paragraphs. Secondly, it is solved by means of the112

quasi-newton algorithm as is discussed below as well.113

2.3.3. Deterministic optimization114

The branch-and-bound algorithm is a popular and general method for115

solving nonlinear optimization problems in a deterministic fashion and is116

based on a divide-and-conquer strategy. Its applicability depends on the117

availability of provable upper and lower bounds to the objective function118

for subsets of the parameter search space. For the parameter optimization119

described above, such bounds are given below.120

The basic procedure for branch-and-bound optimization is as follows. The121

branch-and-bound algorithm is initiated with a polyhedral set (i.e., a box in122

the multidimensional parameter space) containing all considered solutions123
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(parameter vectors) to the problem. This primary set is called the root set124

or root. The algorithm proceeds by branching from this root set. In this step,125

the set is halved into two non-overlapping sets by separating the solutions126

above and below the center value for one of the parameters over the set. The127

produced sets are called leaf sets or leaf nodes. This branching continues at128

every iteration by selecting a leaf node and branching from this node. Sets129

which have been branched into leaf nodes are called branches as they form a130

hierarchical solution tree. To prevent complete enumeration of all parameter131

subsets, bounding procedures are implemented. For every newly generated132

leaf set, one computes an upper bound and lower bound to the objective133

function for that set. These are classically defined as follows:134

• Upper bound. An upper bound is a value which is guaranteed to be135

higher or equal to the objective function value for at least one feasible136

solution within the considered set.137

• Lower bound. A lower bound is a value which is guaranteed to be lower138

or equal to the objective function value for every feasible solution within139

the considered set.140

At every iteration of the algorithm, one now compares the lower and upper141

bounds for every pair of available leaf sets. If for a given set A the lower142

bound is higher than the upper bound for another set B then the set A143

cannot contain the global optimum. As a result, one can ignore the set144

A during the remainder of the algorithmic search for the global optimum.145

This is called fathoming and speeds up algorithm convergence as parts of146

the solution tree can be ignored without jeopardizing global optimality. For147

efficient convergence, the lower bound should be as close as possible to the148

actual minimum objective function within each of the considered leaf sets.149

The fathomed leaf sets are referred to as dead nodes. The remaining leaf150

sets, live nodes, remain available for continued branching and bounding. The151

algorithm is terminated when a predetermined stopping criterion is met. For152

more information of deterministic optimization schemes we refer to Floudas153

(1999); Nocedal and Wright (2006); Forst and Hoffmann (2010).154

Additional implementation choices are as follows:155

• Stopping criterion. The algorithm is terminated when all live leaf nodes156

are smaller than a set resolution in every dimension.157
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• Node selection. At every iteration of the branch-and-bound optimiza-158

tion algorithm, one must choose a node to be branched from. For the159

presented work, the node with the lowest lower bound value was chosen160

at every iteration.161

• Branching. At every branching step, one must choose along which pa-162

rameter one must split the given set into two new leaf sets. In our163

implementation of the branch-and-bound algorithm, branching is exe-164

cuted by splitting evenly along the longest dimension of the considered165

polyhedral set.166

2.3.4. Bounds to the objective function167

Assume that at a given iteration of the search algorithm a leaf set of
values for θ are given as a box set, T , defined as follows:

∀θ ∈ T : θ ≤ θ ≤ θ (16)

The following paragraphs describe how upper bounds and lower bounds168

to the objective function in (13) can be computed.169

Upper bound. Computing a valid upper bound is a fairly simple task, as is
typical for most optimization problems. In our implementation we compute
the value for h(θ) twice, namely for θ and θ. Given the expressions for
hj(θ, βj) in (13), it is necessary to obtain the values β̂j(θ) and β̂j(θ) (j =
1, . . . , J) by solving the problems (11). Upon evaluation of both objective
function values, h

(
θ
)

and h
(
θ
)
, one obtains a valid upper bound by selecting

the minimum of both. We write

h(T ) = min
{
h
(
θ
)
, h
(
θ
)}
. (17)

It is fairly trivial to see that the obtained value for the upper bound satisfies170

the definition given above.171

Lower bound. Computing a lower bound is not trivial and deserves careful172

attention. In what follows, we describe the development of the obtained173

lower bound which is based on some of the simplest rules of interval arith-174

metic (Hansen and Walster, 2003; Moore et al., 2009) and a relaxation of175

WLS regression. In the results section, the lower bounding procedure is176

demonstrated in detail.177
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To construct a lower bound computing procedure, we first consider that
the rate expression q

(
s,θ
)

can be bounded as follows:

q
(
s,θ
)
≤ q
(
s,θ
)
≤ q
(
s,θ
)
, ∀s ∈ R≥0. (18)

This implies that the slowest obtainable rate, given s and for any choice for178

θ ∈ T , is obtained by setting θ = θ. This is fairly trivial since the rate179

expression was defined to be monotonically decreasing in every element of θ.180

Similarly, the fastest attainable reaction rates are found by setting θ = θ.181

Using the previous definition in (10), it follows that the state s(t) evalu-
ated in tkj (skj = s(tkj)

∣∣
θ
) can be bounded as follows:

s(tkj)
∣∣
θ

= skj ≤ skj ≤ skj = s(tkj)
∣∣
θ
, ∀θ ∈ T , kj = 1, . . . , Kj (19)

Hence, the lowest relative concentrations are obtained for the lowest values182

of θ within the set T . This is fairly intuitive, as the highest process rates183

will deliver the fastest decreases of the state and thus the lowest values for184

the state. Similarly, the highest relative concentrations are obtained for the185

highest values of θ. These bounds are tight and are easy to obtain thanks to186

the required properties of the rate function (2).187

Next, bounds on the process rate q(s,θ) are sought at every time instant.
That is, we seek to find bounding values qkj and qkj which bound qkj =

q
(
s(tkj)

∣∣
θ
,θ
)

as follows:

qkj ≤ qkj ≤ qkj , ∀θ ∈ T ,∀skj ∈
{
skj |skj ≤ skj ≤ skj

}
,

j = 1, . . . , J, kj = 1, . . . , Kj. (20)

The bounds on the rate expression should define an interval within which188

any possible rate expression evaluation lies for any feasible parameter vector189

θ and for any feasible value s.190

Due to the monotonically decreasing property of q
(
s,θ
)

(2), the lowest191

(highest) reaction rate can only be obtained for the highest (lowest) values192

of θ within T , namely θ (θ). It is however more difficult to evaluate at193

which value of s within the interval
[
skj , skj

]
one obtains a minimum (max-194

imum) for q
(
s,θ
)
. To handle this, several options are available. First, if195

the shape of the function is known simple rules of interval airthmetic can196

be applied. For instance, rate expressions that are monotonically increas-197

ing in s find their minimum (maximum) at skj (skj) and rate expressions198
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that are pseudo-convex have a single minimum inside the interval
[
skj , skj

]
199

which may be available analytically. The maximum of pseudo-convex rate200

expressions is found at either skj and skj following explicit evaluation at201

both locations. Secondly, for sufficiently simple expressions one can find202

all local minima (maxima) within the interval
[
skj , skj

]
by solving one or203

more algebraic equations of the form q
(
s,θ
)

= 0. The overall minimum and204

maximum then follows from taking the minimum (maximum) among these205

minima (maxima) and values obtained at the interval boundaries. Finally,206

interval arithmetic rules can be applied in an automatic fashion to bound the207

rate expressions. To this end, specialized code libraries are available (Rump,208

1999). As will be shown below, the first option can be applied to the case209

studied in this work. In what follows, we assume that provable bounds (qkj ,210

qkj) are available.211

To enable the computation of a lower bound to hj (j = 1, . . . , J), the
QPs as executed for the upper bound (11) are relaxed as follows:

j = 1, . . . , J : β̆j(T ) = arg min
βj∈Ωj

hj(T ,βj) (21)

subject to

hj(T ,βj) =

Kj∑
kj=1

(
d̆+
j,kj

σj,kj

)2

+

Kj∑
kj=1

(
d̆−j,kj
σj,kj

)2

(22)

d̆+
1,kj

=
[

1 skj qkj

]
βj − ỹj,kj (23)

d̆−j,kj =
[

1 skj qkj
]
βj − ỹj,kj (24)

This relaxed regression problem is (non-strictly) convex in the parameters
βj and is thus solved efficiently to a global optimum. The problem is also
closely related to interval regression (e.g., Inuiguchi and Tanino, 2006). More
importantly, its solution leads to a lower bound for hj. This is proven in 2.3.5.
Mathematically, one can write that:

hj
(
T , β̆j(T )

)
≤ hj

(
θ, β̂j

)
, ∀θ ∈ T . (25)

In words, the minimum objective function value for the relaxed regression212

problem, hj
(
T , β̆j(T )

)
, is lower than or equal to any value that can be213

obtained for hj(θ) with any parameter vector θ ∈ T .214
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Combining the relaxed regressions (25), j = 1, . . . , J , one can now write:

h(T ) = h
(
T , β̆1(T ), . . . , β̆J(T )

)
=

J∑
j=1

hj
(
T , β̆j(T )

)
≤
∑
j

hj
(
θ, β̂j(θ)

)
= h(θ) (26)

Thus, computing h(T ) with the procedure described above gives a provable215

lower bound to the objective function given the set of feasible parameter216

vectors T . This completes the description of the optimization method used217

to find globally optimal values for θ.218

In Fig. 2 one can see that the computation of the bounds is possible by219

only considering the two extremal parameter vectors θ and θ in the con-220

sidered set T . This is thanks to the particular choice for the upper bound221

procedure. It has the practical advantage that only two integrations of the222

ODE in (10) are necessary per considered set of parameter values: one to223

compute values for skj and one to compute skj .224

2.3.5. Relaxation of weighted least-squares regression225

Let XK×M be an input matrix to a constrained WLS regression prob-
lem. Furthermore, let the elements of X be functions of some parameters θ.
Consider then that the following holds

X = X(T ) ≤X = X(θ) ≤X = X(T ), ∀θ ∈ T . (27)

Let ỹk be measurements (k = 1, . . . , K) and β a vector of parameters of size
N × 1. Define the constrained WLS regression problem as

β̂(θ) = arg min
β∈Ω

ho(θ,β) =
K∑
k=1

(
dk
σk

)2

(28)

subject to

dk = Xk,·(θ) · β − ỹk, (29)

where:

∀β : {β|β ∈ Ω} ⇒ β ≥ 0 (30)

A globally optimal solution to the constrained WLS problem (28) is obtained226

when X, ỹ, and θ are given.227
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Since the regression problem is quadratic in the residuals, it can be rewrit-
ten equivalently by expressing the residuals as dk = d+

k + d−k such that

β̂(θ) = arg min
β∈Ω

ho(θ,β) (31)

subject to

h(θ,β) =
K∑
k=1

(
d+
k + d−k
σk

)2

(32)

d+
k = max

{
Xk,·(θ) · β − ỹk, 0

}
(33)

d−k = min
{
Xk,·(θ) · β − ỹk, 0

}
. (34)

The equivalence follows from the fact that d+
k · d

−
k = 0, k = 1, . . . , K.228

Lower bound. In order to find a lower bound to ho for all values θ ∈ T , the
upper and lower bounds to X are used in the following relaxed regression
problem

β̆(T ) = arg min
β∈Ω

ho(T ,β) =
K∑
k=1

(
d̆+
k + d̆−k
σk

)2

(35)

subject to

d̆+
k = max

{
Xk,·(T ) · β − ỹk, 0

}
(36)

d̆−k = min
{
Xk,·(T ) · β − ỹk, 0

}
. (37)

with d̆+
k and d̆+

k relaxed residuals. This problem is non-strictly convex and229

can thus be solved to global optimality with local optimization algorithms.230

Theorem 2.1. Let θ ∈ T and let the regression problems β̆(T ) and β̂(θ) be
defined as above. Then, the objective function ho(T , β̆(T )), evaluated with

the relaxed regression problem β̆(T ), is a lower bound to ho(θ,β(θ)) such
that

ho(T , β̆(T )) ≤ ho(θ,β(θ)), ∀θ ∈ T , ∀β ∈ Ω. (38)
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Proof. From (28) and (35), we know that β̂(θ) is a global minimizer of
ho(θ,β) and that β̆(T ) is a global minimizer of ho(T ,β), that is

ho(θ, β̂(θ)) ≤ ho(θ,β), ∀θ ∈ T , ∀β ∈ Ω (39)

ho(T , β̆(T )) ≤ ho(T ,β), ∀β ∈ Ω. (40)

It follows from (30), (33)-(34) and (36)-(37) that for every feasible θ and
β the magnitudes of the relaxed residuals are smaller than or equal to the
magnitudes of the original residuals. We have

0 ≤ d̆+
k ≤ d+

k and d−k ≤ d̆−k ≤ 0, ∀θ ∈ T , ∀β ∈ Ω, k = 1, . . . , K. (41)

From (31)-(37) and (41), it follows that

ho(T ,β) ≤ ho(θ,β), ∀θ ∈ T , ∀β ∈ Ω. (42)

The same holds when replacing β with the constrained WLS solution β̂(θ)
given by (31)-(34)

ho(T , β̂(θ)) ≤ ho(θ, β̂(θ)), ∀θ ∈ T . (43)

Finally, combining (39), (40), and (43), one can write:

ho(T , β̆(T )) ≤ ho(T , β̂(θ)) ≤ ho(θ, β̂(θ)) ≤ ho(θ,β),

∀θ ∈ T , ∀β ∈ Ω (44)

which proves the theorem.231

2.3.6. Improved relaxation of weighted least-squares regression232

The following development is added for reasons of completeness despite233

not being used to generate the reported optimization results. The reasons234

for this are explained in the Discussion section.235

An improved lower bound can be found by solving the following relaxed
WLS problem:

β̊(T ), X̊(T ) = arg min
β ∈ Ω
X ∈ Γ

h̊o(T ,β,X) (45)
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subject to

h̊o(T ,β,X) =
K∑
k=1

(
d̊k
σk

)2

(46)

with the relaxed residuals

d̊k = Xk,·(θ) β − ỹk (47)

In the above, Γ(T ) is the feasible set for X which is defined as follows:

X ∈ Γ(T )⇔

{
Xk,·(T ) ≤Xk,·(θ) ≤Xk,·(T )

B(T ) · vec (X) ≤ c(T )
, ∀θ ∈ T (48)

with B(T ) and c(T ) describing constraints for estimates of the elements
of X. In the studied example, the profile of the state s(t) is known to be
monotonically decreasing with time. In addition, it is guaranteed to have a

concave shape as long as s(t) ≥
√
θ1/θ3 (without proof). Similarly, the profile

of s(t) is guaranteed convex when s(t) ≤
√
θ1/θ3 (without proof). Applying

such prior knowledge leads to shape constraints for skj and qkj which are
expressed with B(T ) and c(T ). The proposed relaxation is pseudo-convex
for all-positive values for β and X. (45)-(48) can be solved to convergence
straightforwardly by means of (constrained) alternating least-squares, i.e.
by iterating between optimization of β given the best known values for X
and optimization of X given the best known β. Each of these optimization
problems is a QP. This relaxation delivers a tighter lower bound than the
one discussed in 2.3.5:

ho(T , β̆(T )) ≤ h̊o(T , β̊(T ), X̊(T )) ≤ ho(θ,β), ∀θ ∈ T , ∀β ∈ Ω (49)

This is given here without proof.236

2.3.7. Conventional optimization237

The performance of the proposed deterministic optimization scheme is238

compared with a more conventional approach based on the quasi-newton239

algorithm. This algorithm is commonly applied for nonlinear optimization240

despite the risk of finding a local optimum (Jakeman et al., 2006; Rieger241

et al., 2012) or getting stuck in saddle-points (Dauphin et al., 2014). To242
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circumvent such problems it is common to start this algorithm from multiple243

initial estimates for the parameters. In this work, these initial estimates are244

obtained by uniform gridding in T . The number of points on the grid is245

the same along each dimension and was set so that the computational effort,246

measured in terms of total batch process simulations, roughly matches the247

number of simulations executed during deterministic optimization. By means248

of this uniform sampling, the same level of prior ignorance is assumed for both249

the deterministic and conventional optimization method.250

2.4. Application251

The following paragraphs describe the developments specific to the appli-252

cation study used for demonstration of the proposed optimization method.253

2.4.1. Experimental data254

The experimental data used to demonstrate the parameter optimization255

method were collected for a batch respirometric experiment executed as fol-256

lows. A laboratory-scale continuous-flow stirred tank reactor for biological257

urine nitrification was operated under aerobic conditions by means of a bang-258

bang oxygen controller (a.k.a. on-off controller, Levine (1996)) switching the259

aeration on (off) when measuring 6.0 mgO2/L (6.2 mgO2/L) with an optical260

oxygen sensor (WTW: TriOxmatic 700, without salinity correction). The261

pH level was left uncontrolled and the pH measurements (Mettler Toledo:262

405-DXK-S8/225) remained between 5.66 and 5.68. Such a stable pH is cur-263

rently explained by (i) direct inhibitory effects of the pH on the biological264

ammonia oxidation process (Fumasoli et al., 2015), (ii) complete consump-265

tion of the available inorganic carbon, and (iii) negligible net effects of other266

processes affecting the pH. Prior to the experiment, endogenous respiration267

conditions were achieved by stopping the inlet flow and attending the halting268

of the exogenous oxidation processes, in particular the oxidation of organic269

matter, ammonia, and nitrite. The mixed-liquor volume was 5.89 ± 0.10 L270

during the experiment. The complete experiment consists of four pulse ad-271

ditions of a nitrite stock solution, each time awaiting endogenous respiration272

conditions before adding the next pulse. Endogenous respiration conditions273

and a laboratory TNN concentration level measurement below the detection274

limit were awaited before each pulse addition. As the developed method275

is particularly suitable to single-pulse batch experiments, only the data re-276

garding the last pulse is used in this study. At the start of this part of277

the experiment (t = t0 = 0) a pulse of a nitrite stock solution was added278
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(20 ± 0.02mL, 5970 ± 10mgN/L) which increased the total nitrite nitrogen279

(TNN) concentration (STNN) in the reactor to 20.2 ± 0.5 mgN/L. The re-280

actor was operated without feeding until endogenous respiration conditions281

could be recognized and a laboratory TNN concentration level measurement282

was below the detection limit. During the experiment, seven samples were283

taken at distinct times (tkTNN
= tk1) to measure the TNN concentration284

(ỹTNN,kTNN
= ỹ1,k1 , kTNN = k1 = 1, . . . , K1, KTNN = K1 = 7). Each of these285

samples were filtered using micro-glass fibre paper (0.45µm, MGF, Munktell286

Filter AB, Falun, Sweden), diluted (sample 3: 1/25, all others: 1/20), and287

analyzed with colorimetric cuvette tests (LCK342 (samples 1-2) and LCK341288

(samples 3-7), Hach-Lange, Berlin, Germany). Automated dissolved oxygen289

(DO) concentration (SO2
) readings were collected throughout the experiment290

at a sampling interval of 5 seconds. These DO concentration measurements291

were corrected for salinity and processed to compute the oxygen uptake rate292

(OUR) as the slope of the line fitted in the least-squares sense to the lin-293

ear segment of the DO concentration profiles obtained in each of the non-294

aerated periods. The KOUR = K2 = 50 OUR measurements and sampling295

times are further referred to as ỹOUR,kOUR
= ỹ2,k2 and tOUR,kOUR

= t2,k2 , where296

kOUR = k2 = 1, . . . , K2.297

2.4.2. Proposed model structure298

For the purpose of modeling, focus is given to the biological oxidation of
nitrous acid (HNO2) by means of the nitrite oxidizing bacteria (NOB):

HNO2 + igrowth O2 → HNO3 (50)

with igrowth the stoichiometric coefficient for oxygen. When ignoring the
need for oxygen for biomass internalization this coefficient equals 1/2 ex-
actly. Here, we however assume the precise oxygen requirements are not
known. This also allows accounting for potential deviations in the oxygen
measurement, particular due to a deviation of the sensor’s sensitivity. As
such, igrowth becomes a parameter which lumps the stoichiometric require-
ment for the nitrite oxidation, the oxygen demand for biomass internalization
during growth, and imperfections of the oxygen sensor together. Additional
reactions include the acid-base reactions for the nitrite and nitrate species
which influence the availability of the substrate HNO2 and are assumed to
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be in equilibrium at all times:

HNO2 � H+ + NO −
2 (51)

HNO3 � H+ + NO −
3 (52)

Because of the low pKa value for the nitrate acid-base reaction (52) (pKa,HNO3
∼299

−1.4) one can safely assume that for our study all nitrate is present in its ionic300

form (NO −
3 ) (at pH=5.66-5.68) and thus has little influence on the available301

HNO2 concentration. Furthermore, we consider that the pH is stable enough302

to assume it to be constant. The TNN concentration (STNN) is the sum of303

the nitrite and nitric acid concentrations, i.e. STNN = [HNO2] + [NO −
2 ].304

Given the stable pH, the experiment cannot be used to determine whether305

molecular nitrous acid or nitrite ions function as the substrate for the NOB.306

Here, we assume that nitrous acid is the substrate. Its concentration can be307

expressed as a linear function of STNN:308

[HNO2] =
STNN

1 + 10pH−pKa,HNO2

. (53)

This allows us to formulate our model in terms of STNN. Given the above
description and assumptions, the following model is cast to describe the
dynamic behavior of a batch experiment (Henze et al., 2000):

ṠTNN(t) = − 1

YNOB

µ(t) XNOB(t) (54)

ṠO2
(t) =

raer(t)

V
− idecay bNOB XNOB(t)− igrowth

YNOB

µ(t) XNOB(t) (55)

ẊNOB(t) = µ(t) XNOB(t)− bNOB XNOB(t) (56)

with STNN(t) the TNN concentration, SO2
(t) the DO concentration, XNOB(t)309

the bacterial mass, µ(·) the specific growth rate, and raer(t) the oxygen mass310

transfer rate. All remaining elements of the above equations are parameters311

and are listed in Table 2.312

Earlier work (Hellinga et al., 1999; Jubany, 2007) has suggested that the
specific growth rate µ of NOB can be adequately described by means of
Haldane kinetics, which include substrate affinity and inhibition effects in
the rate expression (Andrews, 1968):

µ(t) = µmax
STNN

KS + STNN + STNN
2/KI

(57)
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with parameters defined in Table 2.313

In addition, the effect of aeration can be omitted from the equations by
replacing equation (55) with the description of the oxygen uptake rate rOUR:

rOUR(t) = idecay bNOB XNOB(t) +
igrowth

YNOB

µ(t) XNOB(t). (58)

Given that the active nitrifying biomass concentration cannot be measured
directly, the parameters idecay, igrowth, and YNOB cannot be identified simul-
taneously (lack of structural identifiability). To address this, one can assume
to know one of these parameters, e.g. based on values in the literature. In
this work, we instead assume that the net growth of the biomass is negligible
during the batch experiment, which translates to XNOB being a constant.
Define the biomass activity a(·) as the substrate degradation rate:

a(t) =
XNOB

YNOB

µ(t) = amax
STNN

KS + STNN + STNN
2/KI

, (59)

where amax = µmax XNOB/YNOB. Then the dynamic behavior of the equations
(54)-(58) can be reduced to the following set of two equations which are
a single ordinary differential equation (ODE) and a linear equation in the
reaction rate:

ṠTNN(t) = −a(t) (60)

rOUR(t) = rendo + igrowth a(t) (61)

with the initial condition

STNN(0) = STNN,0 (62)

and rendo = idecay bNOB XNOB.314

The data obtained during the experiment described above are given as
vectors of measurements of the TNN and the OUR. As above, the measure-
ment errors e1,k1 and e2,k2 are assumed to be sampled independently from
zero mean normal distributions with known standard deviations σ1,k1 and
σ2,k2 . The measurements are thus described as

ỹTNN,kTNN
= ỹ1,k1 = y1,k1 + e1,k1 , y1,k1 := STNN(tk1), k1 = 1, . . . , K1 (63)

ỹOUR,kOUR
= ỹ2,k2 = y2,k2 + e2,k2 , y2,k2 := rOUR(tk2), k2 = 1, . . . , K2.

(64)
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2.4.3. Model reformulation315

The full model is now described by equations (59)-(64). As the remain-316

ing parameters are unknown, the parameter estimation problem consists of317

finding optimal values for amax, KS, KI, STNN,0, igrowth, and rendo. To ap-318

ply the parameter optimization method described above this model is now319

refomulated to match the form in (1)-(5).320

The ODE defined above is nondimensionalized by writing it in terms of
the relative substrate concentration s(t). This is defined as

s(t) =
STNN(t)

STNN,0

. (65)

A new complete description of the process is then:

ṡ(t) = −amax
s(t)

KS + STNN,0 s(t) +
STNN,0

2

KI
s(t)2

(66)

s(0) := s0 = 1. (67)

STNN = STNN,0 s(t) (68)

rOUR(t) = rendo − igrowth STNN,0 ṡ(t) (69)

To simplify the equations, we define the expression q(·) as the relative reac-
tion rate:

q(s) = amax
s

KS + STNN,0 s+
STNN,0

2

KI
s2

(70)

and the nonnegative parameters β1,1, β2,0, β2,2, θ1, θ2, θ3 such that

β1 =
[

0 β1,1 0
]T

(71)

β2 =
[
β2,0 0 β2,2

]T
(72)

θ =
[
θ1 θ2 θ3

]T
. (73)

with the following equivalence relations:

γ =
[
amax KS KI STNN,0 rendo igrowth

]T
=
[

β1,1
θ2

θ1 β1,1
θ2

β1,1 θ2
θ3

β1,1 β2,0
β2,2
β1,1

]T
(74)
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As a result, the ODE is now:

ṡ(t) = −q
(
s(t),θ

)
= − s(t)

θ1 + θ2 s(t) + θ3 s(t)2
, s(0) := s0 = 1. (75)

and the measurement equations can be rewritten as:

ỹ1,k1 = y1,k1 + e1,k1 , y1,k1 = β1,1 s(tk1), k1 = 1, . . . , K1 (76)

ỹ2,k2 = y2,k2 + e2,k2 , y2,k2 = β2,0 + β2,2 q
(
s(t),θ

)
, k2 = 1, . . . , K2. (77)

This matches the form of (1)-(4) except that in the proposed model several
values in the vectors βj are known to be zero, i.e. β1,0 := 0, β1,2 := 0,
β2,1 := 0. The implicit assumptions are (i) that the TNN measurements
are measured without an offset and (ii) that the measurements are affected
by only one measured variable (i.e., no mixing effects in the measurements).
Therefore, the subsets Ωj are defined as follows:

β1 ∈ Ω1 ⇔ β1,0 = 0 ∧ β1,1 ≥ 0 ∧ β1,2 = 0 (78)

β2 ∈ Ω2 ⇔ β2,0 ≥ 0 ∧ β2,1 = 0 ∧ β2,2 ≥ 0 (79)

These constraints define a polyhedral set. It is also verified easily that the321

expression for q
(
s(t),θ

)
satisfies the requirements in (2). This is thanks to the322

specific choices made in (70) and (74). As a consequence, all requirements for323

the optimization method are satisfied. Interestingly, the reformulated model324

contains six parameters of which three are available through WLS regression.325

This means that the branch-and-bound algorithm needs to operate in only326

three dimensions to find the values of θ = [θ1 θ2 θ3]T.327

A scheme of the procedures to compute these bounds is given in Fig. 2.328

This scheme reflects the special structure of the measurement equations (i.e.,329

no mixing effects), as the lower bound for h1 (h2) only depends on the bounds330

for s (q).331

The only aspect of the optimization method left unattended is how bounds332

for the rate expressions (20) can be obtained. We assume that the intervals333 [
skj , skj

]
are computed already. As mentioned before, lower (upper) bounds334

for the rate expression are obtained with θ (θ). Thanks to the pseudo-335

concave property of the rate expression (75), the lower bound for the relative336

reaction rate is easily obtained as the minimum of two evaluations of q ob-337

tained at the extrema of the given feasible interval for s. Mathematically one338
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Figure 2: A schematic view of the bounding procedures. The inputs to the procedures are
shown in green. The steps exclusively required for the upper (lower) bound are indicated
in red (blue) and the steps used for both the upper and lower bound are indicated in
yellow. The choice made for the upper bounding procedures means that only two ODE
integrations are necessary, namely one time to compute the values for sk1 and sk2 and one
time for sk1

and sk2
.

obtains:339

qkj = min
{
q
(
skj ,θ

)
, q
(
skj ,θ

)}
. (80)

To compute the upper bound, three distinct situations can occur as (70) has
a unique (local and global) maximum within its domain, its location denoted
as smax. First, smax can lie left of skj , in which case the upper bound is found

at s = skj . Secondly, smax can lie within the interval
[
skj , skj

]
, in which case

the upper bound is found at s = smax. Lastly, smax can lie right of skj , in
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which case the upper bound is found at skj . Mathematically, one writes:

qkj =


q
(
skj ,θ

)
smax ≤ skj ,

q
(
smax,θ

)
skj ≤ smax ≤ skj ,

q
(
skj ,θ

)
skj ≤ smax

(81)

Fortunately, the location of the relevant maximum, smax, is available analyt-
ically given θ so that the upper bound computations remain fairly simple:

smax = arg max
s
q
(
s,θ
)

=

√
θ1

/
θ3. (82)

2.5. Data and Software Availability340

All computations were executed with Matlab R2012b (8.0.0.783, win32)341

on a desktop machine (CPU: IntelR CoreTM i7-3770K 3.50 GHz, RAM: 8.00342

GB, OS: Windows 7 Enterprise, Service Pack 1). To solve the nonlinear343

optimization problem we used the Spike O toolbox (v1.1), an open-source344

package for deterministic optimization (Villez et al., 2013; Villez and Haber-345

macher, 2016; Villez et al., 2016) in Matlab/Octave. All QPs were solved346

with the MOSEK optimization software (Version 7.1.0.30). All additional347

data and software used to generate the obtained results are released publicly348

under the GNU GPL license (Version 3) and provided in the Supplementary349

Information.350

3. Results351

In what follows, we first demonstrate the computation of the provided352

bounds. Thereafter, the basic result of the applied optimization strategy is353

shown. Lastly, additional results regarding the optimization algorithm are354

discussed.355

3.1. Experimental data356

In Fig. 3, the experimental data are shown. One can see that dur-357

ing the considered pulse experiment, the TNN concentration measurements358

(ỹTNN,kTNN
= ỹ1,k1) decrease monotonically during the experiment from 19.22359

mg N/L at 12’ to 0.66 mg N/L at 3h12’. Simultaneously, the OUR is ob-360

served to increase first from about 155 mg O2/L.h at the beginning of the361

experiment up to around 200 mg O2/L.h at 2h30’ in the experiment only362
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to decrease quickly afterwards to 55 mg N/L.h at the end of the experi-363

ment. The TNN measurements are assumed to be subject to measurement364

errors with a relative standard deviation of 2% with respect to the measured365

value (σTNN,kTNN
= σ1,k1 = 2/100 ỹ1,k1). The measurement error standard366

deviation for the OUR measurements (σOUR,kOUR
= σ2,k2) is assumed to be367

constant and equal to 2 mg O2/L.h. This is an educated guess based on the368

best fit obtained with a cubic spline function which is constrained to consist369

of increasing-convex, concave, and decreasing-convex segments (not shown,370

Villez et al., 2013). Fig. 3 shows the 3-σ bounds around the measurements.371

Figure 3: Data and best-fitting model simulation. Data are shown with 3-σ confidence
intervals. The model simulation for the best-fitting values for θ are shown with full and
dashed lines.

3.2. Demonstrating the Bounds372

The ranges for the parameter values θ applied to demonstrate the bounds373

are given in Table 3. Using (18)-(19), one obtains the intervals [s(t), s(t)] for374

the process state, s, at every time point during the experiment. The resulting375
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intervals are shown in Fig. 4. The intervals obtained at the measurement sam-376

pling times t1,k1 and t2,k2 are indicated as well (
[
s1,k1 , s1,k1

]
and

[
s2,k2 , s2,k2

]
).377

A number of simulations corresponding to a regular grid of parameter vectors378

within the feasible set of parameter vectors are shown as well. One can see379

that the computed interval bounds effectively bound the obtained concen-380

tration values, thereby demonstrating this part of the bounding procedure.381

As far as understood, these bounds cannot be improved (i.e., these are the382

tightest bounds achievable).383

Table 3: Considered set of parameter vectors (T ) to demonstrate the bounding proce-
dures.)

Parameter (θ) Lower bound (θ) Upper bound (θ)
θ1 0.050 0.45
θ2 1.6 2.0
θ3 1.6 2.0

With (20) and (80)-(82), values for q(t) and q(t) are obtained. The pro-384

cedures for this are demonstrated in Fig. 5, which offers an intuitive insight385

into (80)-(82). One can clearly see how the position of the interval for the rel-386

ative concentration affects the selected bounds for the reaction rate and cor-387

responding relative concentrations. The figure also suggests that the bounds388

to the reaction rate are tight for a given concentration value. In Fig. 6,389

the profiles of relative concentrations corresponding to the lower and upper390

bounds to the relative reaction rate are shown in the top and bottom panel.391

One sees that the lower bound computations results in a discrete jump for392

the selected relative concentration as the concentration interval moves from393

high to low values. In contrast, the computation of the upper bound results394

in a constant section in the profile. The bounding intervals for the relative395

reaction rates are shown in the bottom panel together with simulated values396

for the reaction rates corresponding to the previously applied grid of feasi-397

ble parameter vectors. The computed bounds appear valid as they bound398

the values obtained with random simulations. Unfortunately, the figure also399

suggests that these bounds are not tight (for the selected set of parameter400

vectors) as the white-space in the bottom panel between the most extremal401

simulation of the relative reaction rate and the proven bounds is fairly large,402

especially for the second half of the experiment.403
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Figure 4: Bounding and selected time profiles of the relative concentration. Selected
time profiles and upper and lower bounds for the relative concentrations at each time,
corresponding to the lowest and highest values for θ.

The objective function term h1 is bounded by means of solving three re-404

gression problems. To this end, a linear model is fitted to the concentration405

data by manipulating the value of β1,1. The first two problems are used to406

compute values for h1 corresponding to the parameter vectors θ and θ and407

by means of solving (11) accordingly. The objective function term h1 and408

the corresponding minima for β1,1 are shown in Fig. 7. For the purpose of409

demonstration, other quadratic objective function profiles are shown corre-410

sponding to previously selected values of θ with the considered feasible set.411

The convex nature of these regression problems (for β1,1 ∈ R+
0 ) is visually412

confirmed by inspection of the figure. It is also visible that the selected upper413

bound value is higher than a number of minima obtained for other parameter414

vectors. The upper bound is thus not a tight one. This problem however dis-415

appears as the considered sets (T ) become smaller during branch-and-bound416

optimization (not shown). The last regression problem is the relaxed regres-417
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Figure 5: Bounding of the relative reaction rate. Dashed vertical lines indicate the intervals
for the relative concentration at selected time instants (1h00’, 1h45’, and 2h37’). The grey
rectangles, cross-hairs, and circle indicate the lower and upper bound values for the relative
reaction rate for each of the selected time instants computed according to (80)-(82).

sion problem described in (21). The resulting objective value is also shown418

as function of β1,1 and for the obtained value for β1,1. One can easily see419

that the best objective function value for β1,1 obtained through the relaxed420

regression problem delivers a lower bound to the objective function term h1.421

The lower bound function exhibits an insensitive zone within which its value422

is constant and equal to zero. This effect disappears relatively quickly during423

branch-and-bound optimization (not shown). More important is that the gap424

between the lower bound function and the global minimum is rather large.425

Although this gap converges to zero as the volume of considered sets T is426

reduced, convergence of the lower bound is rather slow (see below). Similar427

observations are made for the bounds of the second objective function term428

h2 in (13) (not shown).429
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Figure 6: Computing bounds for the relative reaction rate. Top/Middle: Relative con-
centrations – Dashed lines: Bounds to the relative concentration, Full thick line: Relative
concentration delivering the minimum (top) and maximum (middle) relative reaction rate,
Full thin lines: Relative concentration profiles for selected parameter vectors within the
considered set; Bottom: Relative reaction rates – Full thick lines: Bounds to the relative
reaction rate, Full thin lines: Relative reaction rate profiles for selected parameter vectors
within the considered set. In all panels, dashed vertical lines indicate previously selected
time instants for use in Fig. 5 (1h00’, 1h45’, and 2h37’). The bottom panel suggests that
the bounds on the relative reaction rate are not tight.

3.3. Parameter estimation430

The feasible root set (T ) for the parameters (θ) is decribed in Table 4.431

Starting from this feasible set, the branch-and-bound algorithm is executed432

until a relative resolution of 1/8 = 0.125 is reached for every live set. This433

requires 512 iterations in the worst case. A minimal bounding box is con-434

structed around these live sets. The algorithm is then repeated starting435

with this bounding box until the same relative resolution is reached. The436

parameter intervals describing the resulting bounding boxes are shown in437

Fig. 8. One can see that the upper bound interval for every parameter can438
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Figure 7: Bounding the objective function term h1. Objective function profiles for the
(i) bounding values of θ (dashed lines), (ii) selected values within these bounds (full thin
lines), and (iii) the relaxed regression problem (full thick line). The obtained value for

h1 at β̂1,1(T ) is clearly lower than or equal to any other objective function value. Major
observations are as follows: (i) the gap between the lower bound objective function and the
(global) minimum is rather large; (ii) the selected upper bound to the objective function
term is clearly larger than the global minimum value as some of the selected profiles
can deliver a better overall fit; and (iii) an insensitive region exists for the lower bound
objective function within which the lower bound is exactly equal to zero.

be reduced whereas the lower bound remains the same. The obtained upper439

bounds increase with the parameter index (θ1 ≤ θ2 ≤ θ3), meaning that the440

absolute resolution decreases more slowly with increasing parameter index.441

At the fifth repetition of the algorithm, the bounding box cannot be reduced442

further. In Table 5 the number of iterations for each run of the algorithm443

as well as the relative volume of the bounding box is given. As can be seen,444

the volume is reduced to 2.36% of the original feasible parameter space with445

a total of 702 algorithm iterations. With each iteration, four simulations are446

executed (two for each leaf set), leading to a total of roughly 2800 simula-447
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tions. In what follows, the lastly obtained bounding box is referred to as the448

contracted set. The set described in Table 4 is called the original set.449

Table 4: Feasible root set for parameter optimization (T ).

Parameter θ Lower bound θ Upper bound θ
θ1 1× 10−5 10
θ2 1× 10−5 10
θ3 1× 10−5 10

Table 5: Initial executions of the branch-and-bound algorithm

Repetition Number of iterations Fraction [%]
1 35 9.38
2 99 3.08
3 181 2.69
4 196 2.36
5 191 2.36

The branch-and-bound algorithm is now executed starting with the con-450

tracted set as the root set and until all live sets are as small as 1/211 times451

the range of the contracted bounding box in every time dimension (absolute452

resolution: θ1 : 0.47× 10−3, θ2 : 1.83× 10−3, θ3 : 3.20× 10−3). In Fig. 3 the453

simulation according to the best-fitting values for θ is given. One can see454

that the fit is reasonable, although systematic deviations can be observed.455

At the start of the experiment the TNN is underestimated and the OUR is456

overestimated and at the end of the experiment the OUR is overestimated.457

About halfway during the experiment TNN is overestimated and OUR is458

underestimated.459

If Fig. 9, progress indicators for the branch-and-bound algorithm are460

given as a function of the iteration number. The algorithm terminated af-461

ter 575845 iterations. This represents 0.067h of the maximal number of462

iterations (2113 ∼ 8.6 × 109), leading to a total of roughly 2.3 × 106 simula-463

tions. One can see that the number of live nodes exhibits a concave profile464

with an increasing trend until iteration 430667 and a decreasing trend af-465

terwards. The maximal number of live sets reached during optimization is466
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Figure 8: Bounds to the parameter values defining the bounding boxes around live sets
following initial executions of the branch-and-bound algorithm.

3518700. At the end of the branch-and-bound optimization, 226910 live sets467

remain available. The volume represented by the live nodes (Fig. 9, middle468

panel) reduces monotonically during the algorithm execution. In log-scale,469

the profile has an inverse-sigmoid shape. At the end of the algorithm execu-470

tion, the live sets represent 0.0264h of the contracted set (0.662 × 10−6 of471

the original set). In the bottom panel of Fig. 9, one can see the evolution472

of the lower and upper bounds to the weighted root mean squared resid-473

ual (WRMSR=
√
h/(K1 +K2)). The lower bound increases monotonically474

while the upper bound decreases monotonically. The upper bound converges475

relatively fast and reaches its final value of 4.01 at iteration 25020, i.e. after476

less than 5% of the total number of iterations. The lower bound converges477

more slowly and reaches its final value of 3.91 at iteration 205770 (36% of478

total iterations). Most iterations are thus spent on reducing the volume of479

the sets containing the global optimum. At algorithm termination, a gap480
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Figure 9: Progress of the branch-and-bound algorithm. Top: Number of live sets. Middle:
Relative volume of live sets. Bottom: Lowest values for the bounds among all live sets.
Dashed lines indicate the iteration at which the final value for the lowest upper and lower
bound is obtained.

of 0.106 between the lowest lower bound and lowest upper bound remains481

(relative gap: 5.5%). The algorithmically proven lower bound of 3.91 for the482

WRMSR signifies that the model exhibits a significant and irreducible lack-483

of-fit. This is true since the WRMSR corresponds to a χ2-statistic with mean484

equal to one if the proposed model and assumptions are correct. Importantly,485

convergence to a local optimum or lack of convergence can be excluded as an486

explanation. As a consequence, one necessary concludes that at least one of487

the model assumptions, including model structure, are causing the observed488

lack-of-fit.489

Fig. 10 shows bounds to the location of the optimal parameter vector.490

Topologically speaking, the complete set of retained live leaf nodes is a ball491

(body with genus 0, i.e. the body has no holes or internal empty spaces). The492

live sets represent 0.0622× 10−3% of the original set or 2.64× 10−3% of the493
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Figure 10: Location of the optimal parameter vector. Circles: location (filled) and projec-
tions (not filled) of the best-known parameter vector. Black dots: Points describing the
convex hull to the live sets. Black dashed lines: bounding box. Black full lines: minimum
volume enclosing ellipsoid. Black crosses: Projections of the center of minimum volume
enclosing ellipsoid.

contracted set. The convex hull around all live sets at algorithm termination494

has a volume of 0.0714 × 10−3% of the original set (3.0328 × 10−3% of the495

contracted set. The bounding box and minimal volume enclosing ellipsoid496

that contain all live leaf nodes are shown in Fig. 10. One can easily see497

that the volume of the bounding box is much larger than the volume of498

the enclosing ellipsoid. This is a consequence of the correlation between the499

parameters, causing the ellipsoid to circumscribe the obliquely oriented set of500

live sets better. The bounding box represents 1.8294× 10−3% of the original501

set (Table 5). The enclosing ellipsoid represents 0.0734×10−3% of the original502

set (3.12 × 10−3% of contracted set). Thus, the enclosing minimum-volume503

ellipsoid is a reasonable and simple body to enclose the solution sets. It504

is oblong and flattened in appearance (semi-axes lengths: 0.86, 0.10, and505
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0.017). This is visible in Fig. 10 thanks to alignment of the line of eye-sight506

(orthogonal to the 2D-rendered image) with the mid-length axis.507

To further inspect the obtained solutions, the parameter vectors repre-508

senting the convex hull of the live sets retained at algorithm termination509

are used to simulate the extremal relative concentration profiles. These are510

shown in Fig. 11 together with the empirical bounds derived from them as511

well as the bounds corresponding to the (larger) set of parameters described512

by the bounding box set. One can see that the bounds for the relative concen-513

tration profiles are fairly narrow, despite the bounding gap discussed above.514

In addition, these simulations clearly indicate that the bounding box is ill-515

fitted to describe the region within which the globally optimal parameter516

vector lies.517

3.4. Parameter values and derived results518

The best-fit parameter values for the non-dimensional parameters (θ1, θ2,519

θ3, β1,1, β2,0, β2,2) and the original model parameters (amax, KS, KI , SN,0,520

rendo, igrowth, according to (74)) are listed in Table 6. Values for the biomass521

yield, biomass growth rate, and biomass decay rate were taken from pre-522

existing works. These allow to compute a ballpark estimate of the biomass523

concentration, and changes of the biomass concentration through growth524

and decay. These aditional parameters are also given in Table 6. Growth525

amounts to roughly 4.3% increase in biomass while decay amounts to about526

4.1% decrease of the biomass. The assumption of a negligible net biomass527

growth is therefore considered acceptable. The limited options to completely528

avoid such approximation errors while enabling global optimization methods529

are discussed below.530
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Figure 11: Simulations of the relative substrate concentration corresponding to (i) every
parameter set defining the convex hull of the live sets (full thin lines), (ii) maximum
and minimum over all parameter sets (full thick lines), and (iii) bounds corresponding to
the minimum volume box enclosing all live sets (dashed lines). The simulations with the
convex hull of the live sets form a patch rather than distinct lines. The obtained bounds
corresponding to the bounding box around the parameter sets are not tight.
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Table 6: Best-fit parameter values.

Parameter Source/derivation Value Unit
θ1 Optimization 0.124 1/h
θ2 Optimization 1.91 1/h
θ3 Optimization 1.97 1/h
β1,1 Optimization 18.9 mgN · L−1

β2,0 Optimization 61.5 mgO2 · L−1 · h−1

β2,2 Optimization 392 mgO2 · L−1

amax = β1,1/θ2 9.92 1/h
KS = β1,1 θ1/θ2 1.23 1/h
KI = β1,1 θ2/θ3 18.3 1/h

STNN,0 = β1,1 18.9 mgN
rendo = β2,0 61.5 mgO2 · L−1 · h−1

igrowth = β2,2/β1,1 20.7 mgO2 · (mgN)−1 · h−1

bNOB
(a) 0.17 d−1

YNOB
(b) 1.12 gCOD ·molN−1

µmax
(b) 0.55 d−1

XNOB = amax YNOB/µmax/24h · d−1 0.0346 gCOD · L−1

∆XNOB,growth = SN,0 YNOB/14 103 mgN ·molN−1 1.51× 10−3 gCOD
∆XNOB,decay = bNOB XNOB (tK2 − t1) 1.41× 10−3 gCOD/L

(a) (Jubany, 2007)
(b) based on the following excerpt taken from (Fumasoli, 2016): estimated from Hunik

et al. (1994) for a temperature of 25◦C and corrected for the salt concentration according
to Moussa et al. (2006)
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3.5. A comparison with a conventional optimization strategy531

The performance of the deterministic optimization method is now com-532

pared with the optimization scheme based on gradient-based search discussed533

above. To this end, the gradient-based quasi-Newton optimization method534

was run with initial values for the parameter vector θ arranged in a uniformly535

spaced 20x20x20 grid spanning T . The total number of simulations needed536

for this was just under 1.14× 106. In Fig. 12, one can see the final objective537

function value obtained after convergence of each optimization as well as the538

best and final bounds by the deterministic optimization method. First of all,539

one can see that many of the gradient-based searchers fail to find an objec-540

tive value that is close to the best-known objective value. Only 2% of the541

searches lead to a value within 1% above the obtained upper bound for the542

WRMSR and only 3.75% deliver a value within 10% above the same upper543

bound. If one assumes (i) that a 1% margin is acceptable and (ii) that one544

aims to run the gradient-based search by sampling initial values randomly545

until this margin is reached with a 99.9% success rate, then the minimum546

number of gradient-based searches delivering the expected success rate is 342547

(
∑341

j 0.02× (1− 0.02)j−1 ≤ 0.999 ≤
∑342

j 0.02× (1− 0.02)j−1). The average548

number of simulations for a single gradient-based search is 142. Therefore,549

a sheme using 342 random starting values, requires under 50000 simulations550

on average.551

4. Discussion552

4.1. Deterministic optimization for biokinetic modeling553

In this work, a deterministic optimization scheme for global optimization554

is proposed which enables the identification of the best parameter values in555

the WLS sense for a given biokinetic model. Thanks to a well-chosen pa-556

rameterization, the original six-dimensional parameter optimization problem557

is reduced to an optimization problem that is nonlinear in three parameters558

only. Furthermore, the computation of a lower bound to the objective func-559

tion was made feasible through a combination of interval arithmetic and a560

relaxation of WLS regression problems for bounded inputs. The combined561

method makes deterministic nonlinear parameter estimation feasible. A fur-562

ther benefit of this approach is that derivatives of the objective function are563

not required. This makes the implementation of the applied bounds fairly564

straightforward.565
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Figure 12: Sorted values for the objective function (WRMSR) after convergence of
gradient-based search as a function of the fraction of executed searches. Clearly, the
global minimum is only reached from a small fraction of initial parameter values.

Importantly, the use of deterministic optimization scheme means that566

the model fit cannot be improved beyond the lower bound by manipulation567

of the parameter values upon termination of the optimization algorithm.568

This facilitates the diagnosis task during model building as one can exclude569

lack of convergence or convergence to a local minimum as the cause for an570

observed lack-of-fit. Instead, any lack-of-fit is explained by means of a model571

structure deficit, ill-chosen assumptions, and/or unaccounted errors (e.g.,572

input disturbances, measurement errors). This is expected to facilitate a573

more straightforward model diagnosis.574

A comparison with a gradient-based search algorithm with uniform grid-575

based sampling of initial values shows that the number of simulations required576

to find an objective function value within 1% of the obtained upper bound is577

much lower (50000 vs. 2.3×106). However, to obtain this number of required578

simulations, about 1.14× 106 model simulations were required. This number579
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is in the same scale as the number of simulations required for the deterministic580

optimization. In addition, such grid-based sampling or random sampling581

cannot guarantee that the global optimum is actually found. If not, empirical582

success rates based on the best-found values will overestimate the actual583

success rate. In this light, the deterministic optimization approach offers584

significant benefits, avoiding any uncertainty associated with the possible585

lack of convergence of gradient-based or otherwise local search algorithms.586

In (2), a seemingly conservative set of admissibility requirements are spec-587

ified for the rate expression and the measurement equations in (1)-(5). How-588

ever, these requirements are not as conservative as one may think. To support589

this argument, consider that most reaction rate expressions used for environ-590

mental process modeling are nonnegative for any set of substrate, product,591

and inhibitor concentrations (i.e., irreversible processes). In contrast, the592

non-increasing property is usually not met for rate expressions given in their593

conventional form. However, this requirement can often be met by replacing594

the original parameters with their opposite or their inverse. Importantly,595

this is possible for a wide array of rate expressions, including but not limited596

to all expressions (i) that are exponential (with fixed base) or posynomial597

(with fixed exponents) in the substrate concentration and (ii) that can be598

written so that each parameter appears only once. The Haldane reaction599

rate expression used in this work is an example of this. Furthermore, admis-600

sible expressions included any expression that can be formulated as a sum601

of products of and divisions by admissible expressions which do not share602

any parameters. This includes a large fraction of the affinity and inhibition603

switching functions found in Bastin and Dochain (1990) (e.g., Blackman,604

1905; Tessier, 1942; Monod, 1949; Haldane, 1965; Andrews, 1968; Sokol and605

Howell, 1981; Ming et al., 1989), and sum-of-product combinations thereof606

(e.g., Shehata and Marr, 1971; Jost et al., 1973; Chen and Hashimoto, 1978;607

Hoppe and Hansford, 1982; Hellinga et al., 1999). Rate expressions with mul-608

tiple appearances of the same parameter may still satisfy the requirements,609

however pending detailed analysis (e.g., Steele, 1965). If the non-negativity610

requirement for the vectors βj is not met initially, then linear transforma-611

tion of the obtained measurements is sufficient in most cases to satisfy the612

requirement.613

Another apparent complication may arise from the appearence of prod-614

uct concentrations in the rate expression. However, in batch experiments615

the product concentrations can be written as a function of the substrate616

concentration based on stoichiometric balances. As a result, rate expres-617
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sions including product inhibition may easily be reformulated again so to618

satisfy the form of (1)-(2) (not shown, e.g., Aiba et al., 1968; Aborhey and619

Williamson, 1977).620

4.2. Limitations of the study621

Our study is limited in a few ways. First of all, the reformulation of the622

problem as a three-dimensional nonlinear problem is only shown possible for a623

single pulse experiment. When multiple pulses are used in series, the possible624

dimension reduction is not as dramatic unless the initial concentration and625

pulse additions are known exactly (not demonstrated).626

A second limitation is that the results are demonstrated for experiments627

involving a univariate process and by assuming negligible net biomass growth.628

More specifically, the proposed bounding procedures are currently limited to629

irreversible univariate processes. Similar bounding procedures are likely ap-630

plicable to multivariate systems, in particular when they are cooperative.631

This includes monotone non-reversible reaction systems (De Leenheer et al.,632

2007). This is not demonstrated yet. However, even if it is applicable, con-633

vergence may become prohibitively slow as more parameters are included in634

the optimization problem. Therefore, our current efforts are instead focused635

on fusing the global optimization strategy with methods that transform ex-636

perimental data into extents, i.e. data series reflecting the dynamics of each637

dynamic phenomenon separately (Bhatt et al., 2011). On the plus side, most638

batch/pulse experiments in wastewater engineering involve processes mod-639

eled in a univariate fashion thanks to addition of enzyme inhibiting products.640

This prevents confounding phenomena from occurring and is typically moti-641

vated as a way to improve practical identifiability.642

Thirdly, there are notable rate expressions found in the literature which643

could not (yet) be reformulated by the authors to satisfy the requirements in644

(1)-(2). These include switching functions for substrate affinity, substrate in-645

hibition, and product inhibition (e.g., Moser, 1958; Konak, 1974; Levenspiel,646

1980; Luong, 1987). To make the optimization method applicable in this647

case, the procedure to bound the state estimates (18)-(20) can be replaced648

with more general methods (e.g., Berleant and Kuipers, 1997; Sahlodin and649

Chachuat, 2011).650

Lastly, it was shown that the provided bounds result in fairly large gaps651

between the lower and upper bounds, further leading to relatively slow con-652

vergence and fairly large region around the global optimum. The gap is653

believed to be caused mainly by the necessary coupling of lower and upper654
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bound values for s with lower and upper bound values for q(s). The ap-655

plied rules for interval arithmetic lead to expressions within which θ appears656

multiple times. This, in turn, leads to a dependency problem as the com-657

plete polyhedron for θ is considered independently for every instance of θ in658

the expression (Moore et al., 2009). As a consequence, the bounds for q(s)659

are not tight. An analytical expression for q(s,θ) within which θ appears660

only once is not known to the authors and for this reason, it is unclear how661

the bounding gap can be reduced for the given setup. The problem may662

be avoided by fitting a model to the oxygen measurements, rather than to663

the derived OUR signal. Such an approach requires however that the oxy-664

gen gas-transfer and sensor dynamics are explicitly accounted for, either by665

assuming these dynamic processes are known or by modeling them as well.666

To this end, the extent-based approach discussed above is again considered667

promising.668

It is noted that a slightly better lower bound was obtained by incorporat-669

ing shape constraints for the relative concentration profiles into account (see670

2.3.6). However, this improved bound does not solve the dependency problem671

discussed above. Furthermore, no significant improvements were observed in672

terms of rate of convergence or the volume of the live sets at termination,673

despite a considerable increase in computational complexity. Initial results674

(not shown) suggest that the obtained improvement is marginal compared to675

the gap caused by dependency problem. This suggests that the usefulness of676

this lower bound depends on whether the dependency problem can be solved677

or otherwise avoided.678

The efficiency of deterministic optimization tools for the posed model-679

fitting problem could increase dramatically if the fitting to rate measurements680

is avoided to eliminate the dependency problem. One may also attempt to681

solve the problem in its original nonlinear form to avoid using the relaxed682

regression for the lower bound, then however requiring branch-and-bound683

optimization in six dimensions. Despite the larger dimensionality, tighter684

bounds may still lead to faster convergence. In addition, the algorithm effi-685

ciency is also affected by the information content of the data and the model686

parameterization. The interactive effects of (i) experimental design and data687

information content, (ii) available model outputs (state, rate, or mixed type688

measurements), (iii) appearance of the dependency problem, (iv) dimension-689

ality reducing schemes, and (v) applied bounding procedures on algorithm690

performance remains open for further study.691
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4.3. Opportunities in kinetic modeling692

An interesting observation is that the set of live parameter vector sets693

retained at termination of the branch-and-bound algorithm can be approx-694

imated well by an ellipsoidal body. This is believed to be in part due to695

the particular parameterization of the reaction rate (75). Indeed, such a696

reformulation can facilitate optimization as least-squares estimators of the697

parameters tend to be unbiased and normally distributed (Ratkowsky, 1983,698

1986). As a consequence, equiprobable surfaces are approximated well with699

ellipsoids. However, the strength of the link between the close-to-Gaussian700

behavior of parameter estimates and the close-to-ellipsoidal nature of the re-701

gion including the global optimum remains open for study. In addition, it702

was observed that the upper and lower bounds to the objective function con-703

verge at an early stage of the algorithm. This means early-stopping criteria704

could be useful to find acceptable parameter estimates before actual algo-705

rithm termination. This means that the global optimum is then enclosed in706

a significantly larger region of the parameter space.707

Having found a globally optimal parameter vector and an enclosing el-708

lipsoid also presents an opportunity for uncertainty analysis. The obtained709

mode and enclosing ellipsoid can be used to describe the uncertainty in a710

qualitative manner, can be used to populate stochastic sampling methods711

during initialization, or could assist in finding a good proposal distribution for712

Markovian sampling techniques. Importantly, the obtained results suggest713

that the instance of the optimization problem solved in this study exhibits714

only one optimum which, if so, is the global optimum. This is not generally715

true for the studied model and depends on the experimental design and the716

obtained measurements. Enumerating all (local) minima is non-trivial and717

would also require a deterministic numerical optimization scheme for guar-718

anteed results. As such, our optimization method is the only method known719

to the authors which guarantees global optimality of the parameter estimates720

for the studied model structure.721

5. Conclusions722

A deterministic global optimization method has been proposed and ap-723

plied for parameter estimation. The method has been tested to describe724

a batch pulse experiment executed for modeling of nitrite oxidation by au-725

totrophic bacteria in a urine nitrification reactor. The obtained results show726

45



that this is indeed possible. The reported success is attributed to a combi-727

nation of model reformulation, interval arithmetic, and problem relaxation.728

Importantly, these tools are generally applicable so that the optimization729

technique is not limited to a single experiment, reaction, or process. The730

current form of the optimization method is however limited to the modeling731

of batch experiments involving a single reaction only. Suggestions to improve732

the scope of applicability as well as increasing the speed of convergence have733

been discussed in the text. Most interestingly, the results suggest that the734

estimation problem is actually pseudo-convex in nature and could therefore735

be solved to its unique local optimum by means of fast algorithms developed736

for this kind of problems.737
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