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Abstract6

Empirical model identification for biological systems is a challenging task due to the combined effects of

complex interactions, nonlinear effects and lack of specific measurements. In this context, several researchers

have provided tools for experimental design, model structure selection, and optimal parameter estimation,

often packaged together in iterative model identification schemes. Still, one often has to rely on a limited

number of candidate rate laws such as Contois, Haldane, Monod, Moser, and Tessier. In this work, we

propose to use shape-constrained spline functions as a way to reduce the number of candidate rate laws

to be considered in a model identification study, while retaining or even expanding the explanatory power

in comparison to conventional sets of candidate rate laws. The shape-constrained rate laws exhibit the

flexibility of typical black-box models, while offering a transparent interpretation akin to conventionally

applied rate laws such as Monod and Haldane. In addition, the shape-constrained spline models lead to

limited extrapolation errors despite the large number of parameters.

Keywords: mathematical models, microbial growth-rate kinetics, Monod equation, shape-constrained7

spline function, wastewater treatment8

1. Introduction9

Despite major advances in computational tools, the task of building reliable models for process design,10

monitoring, operation, and automation remains difficult (e.g., Mašić and Eberl, 2014). Quite often, modeling11

is challenged by the complexity and nonlinearity of the process at hand. In the case of biological systems,12

especially mixed cultures, a large number of key variables cannot be measured. This typically includes the13

concentrations of active organisms and their internal metabolites.14
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The lack of completeness of experimental data has led to the formulation of the activated sludge model15

(ASM) family in the case of biological wastewater treatment systems with suspended biomass. These models16

represent mixed-culture biological systems in a simplified way by identifying the most important groups of17

bacteria and a macroscopic description of the growth and decay processes associated with them. In these18

models, one makes use of switching functions to describe the most important effects of substrates, products,19

and inhibiting compounds on the growth and decay processes (Henze et al., 2008). The Monod function20

(Monod, 1949) is most popular to describe substrate affinity. However, the Monod model is not considered21

a universal representation of all bacterial behaviors (Moser, 1985). Less popular alternatives include models22

by Moser (1958), Tessier (1942), and Contois (1959). Importantly, this approach is necessarily empirical.23

In other words, these switching functions describe empirically established relationships rather than laws24

derived from first principles. As a result, extrapolation errors can easily be observed when a model is used25

to optimize process controls (e.g., Sin et al., 2006).26

Avoiding extrapolation errors can in part be solved by designing experiments carefully (e.g., Donckels27

et al., 2009). In addition, frequent model updating might help account for stochastic changes in the pro-28

cess. However, modifying both the model structure and its parameters on a frequent basis leads to large29

computational efforts for experimental design, model structure selection, and parameter estimation. With30

the methods proposed and applied in this work, we aim to reduce such efforts and thereby facilitate faster31

model identification procedures.32

Our method relies on the observation that many switching functions have the same shape despite being33

different functions. This is the case for the affinity switching functions discussed above. Indeed, the Con-34

tois, Monod, Moser, and Tessier switching functions exhibit the same increasing and concave shape with35

respect to the substrate concentration. The Monod function is often used by default, mainly to avoid large36

computational efforts related to the selection among the list of candidates. However, this can lead to severe37

extrapolation errors during process design, as is also demonstrated in Neumann and Gujer (2008). Alter-38

natively, one can consider several candidates in a library of rate laws and select via an iterative process of39

experimental design, parameter estimation, and model structure selection (e.g., Sin et al., 2005). The power40

of such an approach increases with the number of candidate rate laws, which however results in a larger41

computational effort. Even if the computational requirements can be satisfied, such an approach can still42

fail as a library cannot be guaranteed to be universal, that is, to encompass all feasible behaviors (Refsgaard43

et al., 2006).44

To accommodate for the lack of universality discussed above, we propose shape-constrained spline func-45
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tions (SCS, Villez et al., 2013) as an alternative way to formulate rate laws. Instead of evaluating multiple46

candidate rate laws with approximately the same shape, we propose to use a single shape-constrained spline47

function for each considered shape. In other words, we replace all candidate rate laws with a given shape48

with a single generic rate law. Initial results obtained with this approach were presented at the DYCOPS-49

CAB2016 conference (Mašić et al., 2016a). The present work expands and completes this study. In Mašić50

et al. (2016a), simplified biological processes were simulated by assuming that the net growth is zero at51

all time. This led to the analysis of univariate processes. In this work, this assumption is removed, thus52

leading to a more general, multivariate approach. In addition, while Mašić et al. (2016a) only dealt with the53

increasing-concave case described above, we consider here rate laws that include inhibition effects as well.54

Furthermore, the simulation study in this work includes (i) more realism, (ii) a single improved parameter55

estimation method for parameter estimation in practical conditions, (iii) a validation test demonstrating56

that extrapolation errors are limited and (iv) a more detailed interpretation and discussion of the results.57

The considered spline functions are flexible thanks to the use of a large number of parameters. As a58

result, they can describe a wide range of kinetic behaviors, akin to black-box modeling approaches (Guay59

et al., 2004). Note that the application of shape constraints ensures the identifiability and straightforward60

interpretation of the resulting models, as will be shown below. Shape restrictions are commonly applied for61

fitting hazard models (Meyer, 2008). More recently, SCS functions were adopted for fault detection and fault62

diagnosis in a qualitative trend analysis framework (Villez et al., 2013; Villez and Habermacher, 2016). The63

main difference with these previous studies is that the SCS functions now appear inside a set of nonlinear64

differential equations.65

2. Differences with prior work66

The differences with the previous DYCOPS-CAB study (Mašić et al., 2016a) are:67

• The substrate and biomass concentrations are considered as state variables, as opposed to the DYCOPS-68

CAB case, where the biomass concentration was assumed constant. As a consequence, the estimated69

parameters are associated with the stoichiometry, the growth rate, and the decay rate, whereas the70

DYCOPS-CAB study only considered the growth rate.71

• The estimation of additional parameters in the multivariate case called for the development of a new72

parameter estimation method (see Section 3.4.2 below).73
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• The simulated experiments have been modified to appear more realistic. In particular, the sampling74

frequency used in the DYCOPS-CAB paper has been reduced significantly.75

• In this work, only one parameter estimation procedure is used for indirect model fitting of every model76

(Section 3.4.2). In contrast, the DYCOPS-CAB study used different parameter estimation procedures77

for the conventional rate laws and the SCS-based rate laws.78

• This work includes a validation test, in which the identified models are tested for their extrapolative79

capability. Such a test was not part of the DYCOPS-CAB study.80

• All figures in this paper are new. Although Figures 4-6b bear similarity with figures in the DYCOPS-81

CAB study, the data and their interpretation have been modified according to the changes made in82

the simulations. Furthermore, Figures 1-3b and 7a-8, which describe new ideas and results, were not83

in the DYCOPS-CAB study.84

• The discussion and conclusion sections were modified and expanded significantly.85

3. Mathematical model & methods86

3.1. Model description87

In this study, simple models describing bacterial growth and decay are used. The models are similar in88

structure to the activated sludge models discussed in Henze et al. (2008). Let S(t) and X(t) denote the89

substrate and biomass concentrations over time t. The change in these concentrations with respect to time90

can be expressed as91

dS

dt
= −rg(S)

Y
X, S(0) = S0 (1)

dX

dt
= rg(S)X − rd(X), X(0) = X0 (2)

where rg(S) and rd(X) are rate laws expressing the bacterial growth and decay as a function of S and X,92

respectively. The metabolic product concentration P (t) can be computed as93

P (t) = S0 − S(t), P (0) = P 0. (3)
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The initial concentrations are S0, P 0, and X0. This model describes growth and decay as distinct processes94

in contrast to Mašić et al. (2016a) which implicitly assumed the two process rates are the same at all times.95

The expression rg(S) for the specific growth rate can be varied to express the effects of substrates,96

products, and other chemical species. In this study, we consider a classical set of rate laws describing both97

uninhibited and inhibited bacterial growth processes. This reflects a situation where no a priori knowledge is98

available about the structure of the kinetic growth-rate law. The considered growth-rate laws are described99

in the next section. For the decay, a rate law that is linear in the biomass concentration is adopted, as is100

usual for activated sludge models:101

rd(X) = bX (4)

with b the specific decay rate constant.102

3.2. Growth-rate models103

In this section, we define eight growth-rate models that are used to simulate biological growth processes104

throughout this manuscript. All rate models are depicted in Figure 1 and defined in Table 1. Only the first105

five of these eight rate laws were considered in the DYCOPS-CAB work (Mašić et al., 2016a).106
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Figure 1: Growth-rate laws considered in this work, as functions of the substrate concentration. The rate laws are defined in
Table 1.

The Monod rate law (6) is by far the most commonly applied rate law in biological wastewater treatment107

models. It has two parameters: µmax, the maximum specific growth rate of the biomass, and KS , the affinity108

constant. The Tessier rate law (8) is an alternative growth-rate law. Both the Monod and Tessier rate laws109
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Table 1: Growth-rate models.

Name Expression Reference

Root rR(S) = µmax

√
5S√
1.5

+ 4− 2√
5S√
1.5

+ 4− 2 +KS

(5) –

Monod rM (S) = µmax S

KS + S
(6) (Monod, 1949)

M+T rMT (S) = µmax

((
1− e−

S
KS

)
+

S

KS + S

)
(7) –

Tessier rT (S) = µmax
(

1− e−S/KS

)
(8) (Tessier, 1942)

Hyperbolic tangent rHT (S) = µmax tanh

(
S

KS

)
(9) –

Haldane rH(S) = µmax S

KS + S + S2

KI

(10) (Haldane, 1930)

Peeters & Eilers rPE(S) = µmax
2(1 + β) S

Sopt

S2

S2
opt

+ 2β S
Sopt

+ 1
(11) (Peeters and Eilers, 1978)

Steele rS(S) = µmax S

Sopt
e

(
1− S

Sopt

)
(12) (Steele, 1965)

(i) are increasing and concave, (ii) are linear in S for small values of S and (iii) are constant for large110

values of S. Each model has two parameters that need to be determined, namely µmax and KS . Still, their111

parameter values cannot be set so that the rate laws deliver the same value at every substrate concentration:112

the two rate laws intersect at S = 0 and in at most two more points for S > 0. In this study, the set of113

Monod and Tessier rate laws are used as the set of candidate rate laws for modeling.114

Table 1 and Figure 1 also include a root law rR, a Monod+Tessier (M+T) law rMT , and a hyperbolic115

tangent law rHT , which all share the increasing-concave shape with the Monod and Tessier rate laws.116

The remaining rate laws (Haldane rH , Peeters & Eilers rPE , and Steele rS) are rate laws that express117

both substrate affinity and substrate inhibition. These rate laws differ from the other rate laws by a118

decreasing trend at high substrate concentrations (substrate inhibition). In Table 1, we introduce the119

substrate inhibition constant KI , the maximum growth-rate concentration Sopt = arg maxS r(S), and the120

attenuation coefficient β.121

In silico experiments are performed by simulating (1)-(4) with every growth rate law in Table 1 and122

using the parameter values in Table 2. The applied parameter values are different from those used in the123
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DYCOPS-CAB work (Mašić et al., 2016a). The simulated measurements are used to fit library rate models,124

namely the Monod and Tessier rate law, as well as the proposed SCS models discussed below.125

Table 2: Parameter values used in the simulated calibration experiments. The same values are used for all calibration experi-
ments (Section 3.4.1 and 3.4.2).

Parameter Value Unit
b 0.04 1/day
KI 20 mg N/L
KS 3 mg N/L
S0 25 mg N/L
P 0 0 mg N/L
X0 5 mg X/L

Sopt (Steele) 8 mg N/L
Sopt (P&E) 2.5 mg N/L

Y 0.1 mg X/mg N
β 3 –

µmax 1.6 1/day
σS 0.5 mg N/L
σP 0.5 mg N/L
σX 0.1 mg X/L

3.3. Shape-constrained spline functions126

3.3.1. General treatment127

In this study, shape-constrained spline functions are introduced as alternative rate laws. These are128

B-spline functions and provide a convenient basis to use with shape constraints (Villez et al., 2013; Papp129

and Alizadeh, 2014; Villez and Habermacher, 2016; Mašić et al., 2016a). For detailed information regarding130

spline functions, we refer to the Supplementary Information and Ramsay and Silverman (2002). The resulting131

growth-rate laws are piecewise polynomial in the substrate concentration and are given as a weighted sum132

of spline basis functions:133

rSCS(S) = b0 (S)
T
θ (13)

with b0(S) the (nk + nd − 1)-dimensional vector of spline basis functions evaluated at the substrate con-134

centration S, and θ the (nk + nd − 1)-dimensional vector of model parameters, where nk is the number of135

knots and nd the degree of the spline function. The piecewise behavior is controlled by the location of the136

nk knots (or nk − 1 segments) between S1 and Snk
. For simplicity, the location of these knots are referred137

to as {S1, S2, . . . , Snk
}.138

Shape constraints on polynomial functions of any order and any nonempty interval of their domain can139

be specified as a finite number of semi-definite cone constraints (Nesterov, 2000). In special cases, these140
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inequality constraints reduce to second-order cones or even linear constraints. In previous work (Villez141

et al., 2013; Villez and Habermacher, 2016), the shape-constrained spline functions were fitted to data pairs142

consisting of values of the function input and output. Assuming Gaussian noise in the output measurements,143

the maximum-likelihood estimation problem is a convex optimization problem. Such problems can be solved144

efficiently to global optimality, even when the number of parameters is large. This property has been145

exploited by Villez et al. (2013), Papp and Alizadeh (2014), and Villez and Habermacher (2016) to fit SCS146

functions to univariate data series.147

Unfortunately, one cannot expect to measure growth rates directly in practice. Instead, one relies148

on dynamic experiments during which concentrations of the substrate(s), product(s), and/or biomass are149

measured. To fit a rate model to such data, one either (i) differentiates the measured time series, thus leading150

to noise amplification, or (ii) integrates the rate model to predict the concentrations. The latter option is151

chosen here for reasons explained in Bhatt et al. (2012). However, this choice (i) requires integration of152

the rate law and (ii) makes the fitting problem nonlinear and possibly non-convex in the parameters of the153

spline function.154

3.3.2. Application155

In this work, cubic B-spline functions are used (nd = 3). In all cases, the knots are placed equidistantly156

between S1 = 0 mg/L and Snk
= 25 mg/L. Three of the studied spline functions are given special attention157

in the results section and are referred to as SCS1, SCS2, and SCS3. The SCS1 function has 5 equidistant158

knots (nk = 5), thus exhibiting nk +nd− 1 = 7 parameters and an inter-knot distance of 6.25 mg N/L. The159

SCS2 and SCS3 functions have 17 equidistant knots (nk = 17), leading to 19 parameters and an inter-knot160

distance of 1.5625 mg N/L. All SCS functions are constrained to go through the origin and have either161

an increasing-concave shape (SCS1, SCS2) or simply a concave shape (SCS3). Note that none of the SCS162

functions considered here correspond to any of the SCS functions used in Mašić et al. (2016a). This is due163

to (i) the use of a different function domain ([0-25] mg/L instead of [0-26] mg/L) and (ii) the use of differing164

numbers of equidistant knots. Of practical importance in this work is that the knots are added additively165

and dyadically, i.e. with increasing parametric complexity new knots are added but never removed from the166

considered SCS functions.167

For cubic polynomials, these shape constraints can be formulated as a set of conditions that are linear168

in the spline coefficients. More specifically, the following conditions ensure that the rate law goes through169

the origin and is concave:170
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b0(S1)
T
θ = 0 (14)

b2(Sk)
T
θ ≤ 0 ∀k = 1, . . . , nk (15)

with b2(·) the second derivatives of the spline basis functions. The increasing-concave shape is ensured by171

the following additional constraints:172

b1(Snk
)
T
θ ≥ 0 (16)

with b1(·) the first derivatives of the spline basis functions. Figure 2 (top) shows 19 cubic B-spline basis173

functions b0(S) that are used to construct an SCS function defined with 17 knots (e.g., SCS2). Figure 2174

(bottom) illustrates the SCS rate law with its basis functions multiplied by their associated spline coefficients.175
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Figure 2: Visualization of the SCS2 rate law with 19 cubic B-spline basis functions with 17 equidistant knots. Top: The spline
basis functions are defined over the entire domain of the SCS function but they are constrained to be non-zero in a finite
segment of the domain. The black curve highlights a single basis function. The other basis functions are translated and dilated
versions of the black curve, except at the domain boundaries. The basis functions are determined completely by the knot
locations and the chosen degree of the splines. Bottom: The rate law (dashed line) is given as the sum of 19 functions (full
lines), each of which equals a spline basis function (column of b0 (S)) multiplied with the associated spline coefficient (element
of θ).
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3.4. Model fitting176

This section describes the numerical procedure used to identify the parameters of all considered rate177

models. The parameter estimation procedures are the same as in Mašić et al. (2016a) for Section 3.4.1. For178

Section 3.4.2, a new procedure is developed to obtain adequate parameter estimates.179

3.4.1. Part 1: fitting rate models to noise-free rate measurements180

The first part of this study consists in fitting rate models to simulated noise-free rate measurements that181

were generated using a specific rate model evaluated at N = 2501 equidistant points (substrate concentra-182

tions). Noise-free measurements are used in this case to demonstrate the approximation properties of the183

SCS function. The parameters of all models are determined by nonlinear regression. For the Monod and184

Tessier model this is executed with the trust-region-reflective algorithm (in Matlab: lsqnonlin) and for the185

SCS models with the interior-point algorithm (in Matlab: fmincon).186

The number of parameters is chosen by the user by selecting the number of knots between S1 and Snk
.187

To cover the entire range of substrate concentrations, the first and final knots are set to S1 = 0 mg N/L and188

Snk
= 25 mg N/L.189

The optimized quality of fit is the root mean square residual190

RMSRj,k =

√√√√ 1

N

N∑
i=1

(
rj(Si)− rk(Ŝi)

)2
(17)

where, for the increasing-concave growth-rate expressions, j ∈ {R,M,MT, T,HT} is the simulated rate law,191
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k ∈ {M,T, SCS1, SCS2} is the candidate growth-rate model, S is the noise-free substrate concentration,192

and Ŝk,i is the modeled substrate concentration obtained with the candidate model k, at equally spaced193

substrate concentrations Si with i = 1, . . . , N .194

Figures 3a-3b show examples of fitting seven different SCS models to a simulated Monod rate law. The fit195

is poor for the SCS model with a few knots, but it improves with the increasing number of knots. Eventually,196

the improvement levels off as the fit is nearly perfect.197

3.4.2. Part 2: fitting candidate models to noisy concentration measurements198

Since it is highly unrealistic that growth rates can be measured directly, a different approach is taken to199

handle concentration measurements in the second part of our study. The growth-rate model becomes part200

of the system of ordinary differential equations (1)-(2) describing the effects of both growth and decay of201

biomass in a biological reactor. The rate models are fitted by comparing the concentrations obtained via202

integration of 1 and 2 with the corresponding measured concentrations. This means that the parameter203

estimation now involves the specific decay rate and the yield coefficients in addition to the parameters of204

the growth-rate expressions. The quality of the model fit is described by the weighted root mean square205

residual (WRMSR):206

WRMSRj,k =

√√√√√ 1

3 N

 N∑
i=1

(
S̃j(ti)− Ŝk(ti)

σS

)2

+

N∑
i=1

(
P̃j(ti)− P̂k(ti)

σP

)2

+

N∑
i=1

(
X̃j(ti)− X̂k(ti)

σX

)2

(18)

where j ∈ {R,M,MT, T,HT,H, PE, S} indicates the simulated rate law, k ∈ {M,T, SCS2, SCS3} indi-207

cates the candidate growth-rate model, S̃j,i (P̃j,i, X̃j,i) is the noisy measured substrate (product, biomass)208

concentration computed with the rate j, and Ŝk,i (P̂j,i, X̂j,i) is the modeled substrate (product, biomass)209

concentration obtained with the candidate rate law k, at time point ti with i = 1, . . . , N .210

Parameter estimation is executed in three major steps, namely, (i) computation of denoised and interpo-211

lated substrate and biomass profiles, (ii) computation of initial guesses of all parameters, and (iii) nonlinear212

optimization of the WRMSR value. The first step amounts to fitting SCS functions as proposed in Villez213

et al. (2013). The second and third steps make use of the trust-region-reflective algorithm (in Matlab:214

lsqnonlin). This procedure is explained in detail in Supplementary Information.215

3.4.3. Part 3: model validation216

To validate the identified models, a new batch experiment is simulated with different initial conditions217

(S0 = 15 mg N/L, P 0 = 0 mg N/L, X0 = 3 mg X/L) and all remaining parameters being the same as218
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before (Table 2). This is executed for each of the increasing-concave growth-rate expressions. The length219

of the experiment and the measurement sampling are the same as for the calibration experiments, except220

that no noise is added to the measurements. This way, the capacity of each model to predict the ground221

truth (accuracy) is evaluated. Two fitted models are considered for each simulation: (i) the best-fitting222

conventional model (either Monod or Tessier) and (ii) the SCS2 model. For each simulated experiment and223

fitted model, a new WRMSR value is computed with (18) to summarize the performance of each model.224

This kind of validation experiment was not provided in Mašić et al. (2016a).225

3.5. Software availability226

All computations are performed with the Matlab R2015a (The Mathworks, 2015) environment, including227

the Optimization Toolbox, as well as the following additional software: the Functional Data Analysis toolbox228

by Ramsay and Silverman (2002), the Mosek optimization software by MOSEK ApS (2012), and the SCS229

toolbox by Villez and Habermacher (2016). All software necessary to reproduce the results presented in230

this work is available as part of the Efficient Model Identification (EMI) software package for Matlab. This231

package is (i) self-sufficient, apart from the Mosek optimization software, (ii) is published under the GPL232

v3 open-source license, and (iii) is added in Supplementary Information.233
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4. Results234

4.1. Part 1: fitting rate models to noise-free rate measurements235

The growth rate is simulated first using Monod kinetics (see Figure 4). The simulated noise-free rate236

values are used to fit the candidate models. The Monod and Tessier models are fitted first using the approach237

described in Section 3.4. Then, two SCS models are fitted to the same data. Figure 4 shows the simulated238

rate law, the Monod and Tessier models, and the two SCS models. It is easy to see that the Monod model239

fits the data perfectly, while the Tessier model cannot be adjusted to represent the Monod rate law. Figure240

4 also shows that SCS2, with more knots, fits the data slightly better than SCS1. An analogous figure is241

obtained when the Tessier rate law is used to simulate the rate measurements, for which the Tessier model242

is found to be the best rate in the library (data not shown).243
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Figure 4: The Monod growth rate [1/day] as a function of the substrate concentration [mg N/L]: noise-free simulated growth
rate, Monod model, Tessier model, SCS1 model (5 knots), and SCS2 model (17 knots).

We now assume that the growth rate, which is not known a priori, is any of the monotonically increasing244

rate laws, namely, the root law rR, the M+T law rMT and the hyperbolic tangent law rHT , in addition to245

the Monod and Tessier laws. For each simulated rate, four candidate models are tested, namely, the Monod,246

Tessier, SCS1, and SCS2 models.247

The RMSR values shown in Figure 5 indicate some differences in performance between the four candidate248

models. While the Monod model fits the Monod rate law best, it is not suited well to fit the other rate laws.249

Similarly, the Tessier model fits the Tessier rate law best. The SCS1 model, with only 5 knots, delivers a fit250
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Figure 5: Quality of fit upon fitting the Monod, Tessier, and two SCS models to noise-free growth rates corresponding to five
simulated rate laws, namely, root, Monod, M+T, Tessier, and hyperbolic tangent. The SCS models exhibit 5 (SCS1) and 17
(SCS2) knots.

that is better than the incorrect Monod or Tessier model, but not as good as the correct Monod or Tessier251

model. In contrast, the SCS2 model fits all rate laws very well. Based on these results, and in line with the252

observations in Figures 3a-3b, SCS2 is selected as the candidate model for fitting the rate parameters to253

measured concentrations in Section 4.2. SCS2 shows a good trade-off between an excellent fit and a small254

number of knots.255
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(b) Substrate and biomass concentration residuals with the
1σ measurement error band.

Figure 6: Fitting of Monod and SCS2 models to noisy concentrations obtained with the M+T rate law.

4.2. Part 2: fitting candidate models to noisy concentration measurements256

As a first example, the M+T growth-rate law is used to simulate the concentrations. The simulated257

data points are then corrupted with additive noise (σS , σP , σX , see Table 2) to mimic realistic experimental258

conditions. Figure 6a shows that the substrate concentration decreases with time until it is completely259

depleted. The product concentration increases with time until all the substrate has been converted to260

product. The biomass concentration initially increases until all substrate has been depleted, after which it261

starts decreasing. The figure also shows the fit of the best library model – in this case the Monod model262

– and the fit of the SCS2 model, for all three concentrations. Figure 6b shows the fits of the Monod and263

SCS2 models by displaying the residuals for the substrate and biomass concentrations. These residuals are264

compared to the measurement errors via the indication of the normalized 1σ measurement error bands.265

Both models approximate the measured data well as most residuals are within the 1σ band. There is no266

indication of strongly autocorrelated residuals.267

In a second example, noisy measurements are generated using the Steele rate law and following the same268

procedure as before. The substrate, product, and biomass concentrations are shown in Figure 7a. We can see269

that the concentration profiles are slightly different from those in Figure 6a, in particular the consumption270

of substrate is slower. Figure 7b shows that the Tessier and SCS2 models are not able to fit the simulated271

Steele growth rate well. This is also illustrated by the residuals in Figure 7c, where we can see that they272

are large and autocorrelated. The residuals go far outside the 1σ measurement error band, particularly in273

the period 0-4 h.274

15



time [h]
0 2 4 6 8 10

co
nc

en
tr

at
io

ns
 [m

g/
L]

0

5

10

15

20

25

S measured
P measured
X measured
Monod
SCS2
SCS3

(a) Substrate, product, and biomass concentrations simu-
lated with the Steele growth rate. Fitting of the Monod,
SCS2, and SCS3 models to noisy concentrations.

substrate concentration S [mg N/L]
0 5 10 15 20 25

gr
ow

th
 r

at
e 

r g(S
) 

[1
/d

ay
]

0

0.5

1

1.5

2
true rate
Tessier
SCS2
SCS3

(b) Fitted Tessier, SCS2, and SCS3 growth-rate models
compared with the simulated Steele rate law.

S
 r

es
id

ua
ls

(n
or

m
al

iz
ed

)

-4

-2

0

2

4

P
 r

es
id

ua
ls

(n
or

m
al

iz
ed

)

-4

-2

0

2

4

time [h]
0 2 4 6 8 10

X
 r

es
id

ua
ls

(n
or

m
al

iz
ed

)

-4

-2

0

2

4

Monod
SCS2
SCS3
'<

(c) Substrate, product, and biomass concentration residu-
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Figure 7: Fitting of Monod, SCS2, and SCS3 models to noisy concentrations obtained with the Steele rate law.

The fitting exercise for the Steele rate law is repeated with the SCS3 model (17 knots). Figure 7a275

shows that we obtain a much better fit with the concave SCS3 model than with any of the previously used276

models. Furthermore, Figure 7b illustrates that the SCS3 model is the only one that follows the curve of277

the Steele rate law, which has a typical inhibition shape. Due to their increasing shape, the other growth278

rate models are unable to adjust to the correct shape and instead level off once they reach their maximum.279

The excellent fit of the SCS3 model is also shown by the residuals in Figure 7c, which largely remain within280

the 1σ measurement error band.281

The same exercise is repeated for each of the eight growth-rate laws given in Table 1 and the results282

of this are summarized by the WRMSR values (18) shown in Figure 8. The behavior is similar to that283
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Figure 8: WRMSR values for the Monod, Tessier, SCS2, and SCS3 models fitted to noisy concentrations generated by the
eight simulated growth-rate laws in Table 1.

observed in Figure 5, with the Monod model delivering the best fit for the Monod rate law, and the Tessier284

model delivering the best fit for the Tessier rate law, although the difference is not that large. When the285

other growth-rate laws are simulated, the performance of the Monod and Tessier models can deteriorate. In286

contrast, the SCS2 model has an excellent fit for all cases where the shape is increasing and concave. When287

the shape is not monotonically increasing – for the Haldane, Steele, and Peeters & Eilers rate laws – the288

quality of fit for the Monod, Tessier, and SCS2 models is much worse. However, the SCS3 model leads to a289

good fit for all cases, including the rate laws that exhibit inhibition.290
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4.3. Part 3: model validation291

In this section, the performance of the fitted growth-rate models is investigated by means of validation292

tests. To this end, we compare how well the best-fitting conventional model and the SCS2 model predict293

the noise-free ground truth simulation for newly simulated experiments with different initial conditions.294
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Figure 9: (Top) Simulated concentrations with the true M+T rate law (o), the fitted Monod model (+), and the fitted SCS2
model (x) starting from an initial concentration vector not experienced during the calibration experiment. (Bottom) Prediction
errors comparing the fitted Monod and SCS2 models with the true M+T model.

Figure 9 shows the substrate, product, and biomass concentrations generated with the M+T rate law295

as well as the fitted Monod and SCS2 models for the simulated validation experiment. In the top part of296

Figure 9 we see small differences between the true and the fitted concentration values. These differences are297

better illustrated in the bottom part of the figure, which shows the prediction errors. We see that the largest298

errors are smallest (closest to zero) for the fitted SCS2 model. The WRMSR values are computed as before,299

however using the ground truth as measurements. The WRMSR values are 0.32 and 0.28 for the Monod300

and SCS2 models, respectively. Thus, the SCS2 model performs better in a validation test compared to the301

best-fitting conventional model, in this case the Monod model. A plot of WRMSR values for all validation302

tests is given Figure 10. This graph shows that the WRSMR values are highest when the data are generated303

using the M+T model. The prediction errors are well below the measurement uncertainty in all cases, i.e.304
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WRMSR< 1. The WRMSR values for data generated using the Tessier and the hyperbolic tangent models305

are again smallest with the SCS2 model. However, when the data are generated using the Monod and Root306

models, the opposite is obtained, namely, the best-fitting conventional model predicts the noise-free ground307

truth simulation better than the SCS2 model does. Viable hypotheses explaining these observations include308

(i) that there is a lack of convergence during parameter estimation, and (ii) there is a trade-off between bias309

and variance which is different for every ground truth model simulation.310
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Figure 10: WRMSR values for the best-fitting conventional model (Monod or Tessier) and the SCS2 obtained with noise-free
measurements in an independent simulation generated by the five increasing-concave growth-rate laws in Table 1.
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5. Discussion311

The numerical studies performed in this paper indicate that the SCS functions can be a very useful312

tool for biokinetic process modeling. Specific case studies focus on the most important benefits of SCS-313

based rate laws, namely, (i) their ability to universally approximate functions of a predetermined shape, as314

demonstrated with rate laws expressing substrate affinity effects without inhibition, and (ii) their usefulness315

as a diagnostic tool during model development, as demonstrated by a clear improvement of the lack-of-fit for316

rate laws expressing substrate inhibition upon removing the “increasing” shape constraints. The first benefit317

was demonstrated in Mašić et al. (2016a). In addition to the related conclusions in Mašić et al. (2016a), this318

work also demonstrates how one can choose an appropriate number of knots in the SCS functions. The use319

of the SCS functions as a diagnostic tool is newly proposed with this work. The next paragraphs provide320

an in-depth analysis of all results.321

5.1. Near-universal approximation322

As expected, the fitting of the Monod and Tessier models to noise-free rate measurements generated323

with the Monod and Tessier models, respectively, is excellent. When the assumed growth-rate model is324

incorrect, the quality of fit can decrease significantly. If, for model identification purposes, one would only325

rely on conventional rate models such as Monod or Tessier, slightly deviating bacterial kinetics might not326

be captured to a satisfactory degree. In other words, the parametric flexibility of classic biokinetic models327

proves insufficient to capture a wide range of qualitatively identical rate laws. The limited model coverage328

shrinks even further if only the (default) Monod model is used for all modeling purposes. In contrast,329

the SCS models are shown to provide improved generalization properties. In fact, the SCS models are330

near-universal approximators in the sense that any rate law (universal) can be approximated to arbitrary331

precision by adding knots to the fitted SCS function as long as it satisfies the considered shape (near-). In332

our study, 17 knots were shown to be sufficient to approximate the considered increasing-concave rate laws333

well.334

The difference in quality between the Monod and Tessier models on the one hand, and the SCS models on335

the other, is not as pronounced when the concentration data exhibit the increasing-concave shape (Section336

4.2). However, the SCS models offer the advantage that only a single model needs to be fitted. In addition,337

selecting the best of a few candidate models does not guarantee that the overall best model is found. In338

contrast, the SCS models deliver a fit that is guaranteed to be better than any other model with the same339

increasing-concave shape, provided that a sufficient number of knots are used. By means of a number of340
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validation tests, it was established that the SCS models can provide predictive accuracy on par with the341

best-fitting conventional model selected from a library. However, a detailed analysis of the bias-variance342

trade-off is still missing.343

5.2. Diagnostic capability344

Section 4.2 also evaluated the fit of the proposed SCS models to concentration data generated using rate345

laws that are not increasing-concave but only concave in shape. The fit of the increasing-concave SCS2346

model is clearly worse when the imposed shape is incorrect. In contrast, the only-concave SCS3 model347

delivers comparable fits whether or not an increasing growth rate can safely be assumed. As a result, the348

fitting of SCS models with different shapes can be helpful to automatically assess what kind of effects are349

present in the modeled process. In particular, similar fit of the SCS2 and SCS3 models would suggest the350

absence of a decreasing trend in the rate law, that is, the absence of substrate inhibition, whereas a dissimilar351

fit would suggest the presence of substrate inhibition. This diagnostic capability is a major benefit of the352

proposed SCS modeling framework, given that parameter estimation for only two models (with and without353

the increasing constraint) is sufficient to arrive at this conclusion.354

5.3. Limitations of the study355

The results of this study are limited in certain aspects, including (i) that all rate and concentration356

measurements are obtained by numerical simulation and (ii) that high-quality and frequent measurements357

are assumed available for all process states, including the biomass. In this study, highly informative data was358

necessary to effectively demonstrate all of the reported benefits of SCS models. While lack of informative359

data does not prevent the use of SCS rate models, it may lead to lack of structural or practical parameter360

identifiability (Dochain et al., 1995; Vanrolleghem et al., 1995; Bonvin et al., 2016). Lack of structural361

identifiability may be addressed by model transformation and lumping of parameters as applied in Mašić362

et al. (2016b). Lack of practical identifiability is typically addressed by means of experimental design or363

by selecting a smaller number of identifiable parameters, while using a reasonable guess for the remaining364

parameters. Note also that the models studied in this work are similar to any conventional activated sludge365

model (ASM) in the sense that the complex metabolism of bacteria is approximated by means of a single366

differential equation for growth and decay of functionally similar bacterial clades.367

In order to establish shape-constrained spline models as alternative biokinetic models, it is necessary to368

(i) study more complex problems involving multiple biomass concentrations, (ii) use real measurements from369
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a batch experiment, and (iii) demonstrate the suitability of SCS models for rate law shape determination,370

as a preparatory step for detailed biokinetic modeling.371

5.4. Perspectives and outlook372

Future work will consider additional shapes for the SCS functions, always trying to mimic the rate laws373

in the library, but with more flexibility. Although the SCS functions are described by more parameters374

than conventional growth-rate laws, the computation time is comparable to that obtained with library375

models. This new methodology is expected to be beneficial in various applications, including the biological376

nitrification of collected source-separated urine for resource recovery, the success of which relies on a good377

model of the nitrification process.378

An important application of the diagnostic capability of the SCS functions lies in the determination of379

the model shape as a preparatory modeling step. By firstly identifying the shape of the underlying rate law,380

thereby narrowing down the possible model choices, future work could aim at finding a conventional model381

that fits the data best. This represents a significant advantage of the SCS modeling approach.382

Last but not least, the proposed SCS rate laws satisfy requirements that enable global optimization383

(Mašić et al., 2016b). Furthermore, it is considered likely that the flexibility of SCS rate laws can reduce384

model bias to the point that reliable predictions can be ensured without the need to account explicitly for385

model bias as in Reichert and Schuwirth (2012) and Villez et al. (2015). However, these features remain to386

be demonstrated.387

6. Conclusions388

In this work, shape-constrained spline models have been integrated into a set of differential equations389

to simulate and model biological wastewater treatment processes. The proposed dynamic SCS models can390

fit qualitatively similar growth-rate laws in a universal manner and require less computational efforts than391

searching through a library of rate laws. The SCS model is a black-box model in essence, but the ease of392

interpretation gives it a white-box flavor. When faced with an unconventional growth rate that is not part393

of a library, it is still possible to estimate a good predictive model with the SCS approach, as long as the394

assumed overall shape remains valid. In addition, when faced with an unknown shape, the SCS approach395

is useful for shape-based diagnosis of the model by determining whether the observed growth rate possesses396

certain features. Such a shape-based exclusion is practically impossible with the library approach.397

Future work aims at using the SCS approach with different and more complex shapes, with particular398

emphasis on the determination of the model shape as a preparatory step in conventional white-box modeling.399
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Moreover, one can use the SCS model and perform a sensitivity analysis that provides insights on the model400

suitability for process design and optimization. Finally, experimental evaluation is necessary to investigate401

the performance of SCS on real measured data.402
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Supplementary information474

In this section, we describe the construction of spline functions and the application of shape constraints475

to such functions. Furthermore, we describe in detail the parameter estimation procedure used to obtain476

reasonable parameter initial guesses and the final nonlinear optimization.477

S.1. Splines: construction478

Spline functions are constructed as smooth curves that approximate a set of points. In essence, each479

spline function is a sum of several piecewise polynomial curves, each defined on a certain segment of the480

domain. The number of segments is determined by the number of knots that divide the domain into intervals.481

In this paper, we use cubic basis spline (B-spline) functions.482

Cubic B-splines. Let the domain be divided into nk−1 intervals with nk knots bounding the intervals. The483

location of these knots in the domain are referred to as S1, S2, . . . , Snk
. We define a B-spline of order 4 as484

a piecewise polynomial function of degree nd = 3. For the sake of simple demonstration, we will use the485

SCS1 function which is defined by its nk = 5 knots. The SCS1 function can thus be expressed as a linear486

combination of B-splines487

SCS1(S) =

nk+nd−1∑
i=1

Bi,3(S) θi (S.1)

where θi are the spline coefficients (parameters) and Bi,3 are the B-splines of degree 3. These B-splines can488

be constructed by the recurrence relation489

Bi,nd
(S) =

S − Si

Si+nd
− Si

Bi,nd−1(S) +
Si+nd+1 − S
Si+nd+1 − Si+1

Bi+1,nd−1(S) (S.2)

where the functions Bi,0 are given by490

Bi,0(S) =


1, Si ≤ S ≤ Si+1

0, otherwise.

(S.3)

For the purpose of such a construction, the first knot is repeated nd + 1 times in the series of knots.491

Thus, to construct a cubic spline function recursively the values for Si used in the above recursion are492

S1, S1, S1, S1, S2, S3, . . . , Snk
(de Boor, 1978). Conventionally, the spline coefficients are fitted by minimizing493

a convex objective function. Most typically, a least-squares fit is obtained (as in Section 3.4.1 of our work).494
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Regularized fitting is also popular (e.g., Ramsay and Silverman, 2002). Figure S.1 shows the basis functions495

of SCS1 and SCS1 itself.496
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Figure S.1: Visualization of the SCS1 function with 7 cubic B-spline functions and 5 knots. (Bottom) All the 7 basis functions.
(Top) The basis functions multiplied by their parameters. The dashed line shows the sum of the basis functions.

S.2. Splines: applying shape constraints497

In order to enforce a shape on the spline function, one can constrain the parameters in such a way that498

the desired shape is maintained. In this study, we use a concave shape and a monotonically increasing499

concave shape. For the concave shape, we require the first derivative in all knots to be less than or equal to500

zero (see (15) in Section 3.3). To obtain the monotonically increasing shape, we require the second derivative501

in the final knot to be nonnegative (see (16)). In general, such shape constraints amount to semi-definite502

cone constraints which can be reduced to second order cone inequality constraints, quadratic inequality503

constraints, or linear inequality constraints. This is discussed at length in Nesterov (2000); Villez et al.504

(2013); Papp and Alizadeh (2014). In the specific cases studied in this work, these shape constraints are505

described completely as linear inequality constraints in the parameters.506

S.3. Parameter estimation procedure507

The following parameter estimation procedure provides reasonable estimates for the parameters for508

every considered model. It is noted that this procedure does not guarantee that globally optimal parameter509

estimates are found. An extension of the global parameter estimation method in Mašić et al. (2016b) for510
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the models considered in this work is currently being developed. The following steps are repeated for every511

simulated experiment and every considered model.512

S.3.1. Step 1 – Denoising and interpolation513

Denoising and interpolation of the substrate concentration and the biomass concentration is executed by514

fitting two SCS functions with the method provided in Villez et al. (2013). The first function (F1) is fitted515

to the series obtained by subtracting the product concentration measurements minus the initial substrate516

concentration from the substrate concentration measurements followed by division by two. This series is517

a least-squares estimate of the substrate concentration given the stoichiometric balance. This function is518

constrained to consist of two episodes (as defined in Villez et al. (2013)). The first episode has a decreasing-519

concave shape; the second one a decreasing-convex shape. This shape corresponds to the true shape of any520

substrate profile that can be obtained with any of the considered models and irrespective of the presence of521

inhibition. This can be proven via qualitative simulation (not shown, Kuipers, 1994; Bredeweg et al., 2009).522

The second function (F2) is fitted to the biomass concentration series and is constrained to consist of four523

episodes which are increasing-convex, increasing-concave, decreasing-concave, and decreasing-convex. This524

is again the only feasible shape of the biomass profile for any of the considered models. After fitting the two525

functions, the spline functions are resampled at equidistant times with an interval of 0.01 h. The two fitted526

functions are shown in Figure S.2 for the calibration experiment simulated with the M+T rate expression.527

S.3.2. Step 2 – Initial parameter guesses528

Initial parameter guesses are obtained via a sequence of three substeps (Step 2(a), Step 2(b), and Step529

3(c)). This estimation problems solved in each of these steps are executed with the trust-region-reflective530

algorithm (in Matlab: lsqnonlin.m).531

Step 2(a) – Guesses for the specific substrate utilization rate parameters. An initial guess for the growth rate532

parameters are obtained with the F1 and F2 obtained in Step 1. An interpolated substrate consumption533

rate is computed analytically as the 1st derivative of F1 at the interpolating points. A corresponding534

biomass concentration is obtained by evaluation of F2 at the interpolating points. We divide the substrate535

consumption rate by the biomass concentration to obtain an estimate of the substrate utilization rate. These536

substrate utilization rates are estimates of rg(S)/Y and are set out against the corresponding substrate537

concentrations for nonlinear regression. To this end, Y is arbitrarily assumed to be 1 in this step. For the538

conventional models, this means that the obtained parameter estimate for µmax should be divided by Y539
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Figure S.2: Fitting of shape constrained spline functions to denoise and interpolate the substrate measurement profile (top)
and the biomass measurement profile (bottom). Vertical dashed lines indicate the identified inflection points. The full line
indicates the maximum in the biomass profile.

when an estimate for Y becomes available. Similarly, all spline coefficients for the SCS functions should be540

divided by Y as well. An example is shown in Figure S.3.541
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Figure S.3: Computation of an initial guesses for the substrate utilization parameters. The estimated substrate utilization rate
against the substrate concentration (blue dots) is approximated by manipulating the parameters of rg(S) in the expression
rg(S)/Y for the specific utilization rate (red line).
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Step 2(b) – Guess for the decay rate expression parameters. An initial guess for the decay rate parameter542

is obtained by evaluating F2 in the second half of the experiment (t=5-10h). During this time, the biomass543

concentration dynamics are governed by biomass decay only as all of the provided substrate has been544

depleted. The first derivative of F2 is set out against F2 and a linear line going through the origin is fitted545

in the least-squares sense to these data pairs. The slope of this line corresponds to a guess for the specific546

decay rate (see Figure S.4).547
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Figure S.4: Computation of an initial guess of the decay parameter. The estimated decay rate against the biomass concentration
(blue dots) is approximated by a linear line through the origin (red line). Note that the fitted line does not fit the estimates
well in this case.

Step 2(c) – Guess for the yield parameter. The cumulative volume-specific substrate consumption is com-548

puted by evaluating F1 and subtracting it from the initial substrate concentration. The accumulated biomass549

lost through decay is obtained by integrating the decay rate with its parameter guess obtained in Step 2(b)550

and using the function F2 to obtain biomass concentrations at every time. This lost biomass is added551

to the interpolated values of the biomass profile (F2) and the initial biomass concentration is subtracted.552

This delivers the accumulated volume-specific biomass production that was generated through the growth553

process. The accumulated volume-specific biomass production and the cumulative volume-specific substrate554

consumption are plotted against each other and a line is fitted in the least-squares sense to these data pairs.555

The slope of this line corresponds to a guess for the yield coefficient. This is demonstrated in Figure S.5.556

The initial guesses for µmax or the spline function coefficients describing rg(S)/Y identified in Step 2(a) are557

30



now modified by multiplying them with the guess for the yield coefficient. These scaled parameters now558

describe the initial guess for rg(S). This completes the computation of initial parameter guesses.559
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Figure S.5: Computation of an initial guess of the yield parameter. The estimated cumulative biomass production against the
cumulative substrate utilization (blue dots) is approximated by a linear line through the origin (red line).

S.3.3. Nonlinear optimization560

The final parameter estimates are obtained by manipulating all parameters simultaneously in order to561

minimize the WRMSR value. This is executed by means of the trust-region-reflective algorithm (in Matlab:562

lsqnonlin.m) which uses the parameter guesses obtained in Step 2 as the initial parameter vector. In Figure563

S.6, a simulation with both initial guesses and final parameters of the SCS2 model is shown.564
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Figure S.6: Measurements (dots), initial model simulation (dashed lines), and final model simulation (full lines).
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