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Abstract9

To this day, obtaining reliable characterization of sludge settling properties

remains a challenging and time-consuming task. Without such assessments

however, optimal design and operation of secondary settling tanks is chal-

lenging and conservative approaches will remain necessary. With this study,

we show that automated sludge blanket height registration and zone settling

velocity estimation is possible thanks to analysis of images taken during batch

settling experiments. The experimental setup is particularly interesting for

practical applications as it consists of o�-the-shelf components only, no mov-

ing parts are required, and the software is released publicly. Furthermore,

the proposed multivariate shape constrained spline model for image analysis

appears to be a promising method for reliable sludge blanket height pro�le

registration.
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List of acronyms

Acronyms Full expression

AO Automated, on-line

QR Qualitative representation

SBH Sludge blanket height

SCS Shape constrained splines

VO Visual, o�-line

VS, VS1, VS2 Visual, simultaneous

ZSV Zone settling velocity
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List of Symbols.

Symbol De�nition

β All spline function coe�cients

βk Coe�cients of the kth spline function

θ, θt Transitions (tth transition)

Θ Feasible set for θ

Ω Feasible set for β

b, b, be, be Interval boundaries (for episode e)

d Derivative index

e Episode index

fk kth function

f
(d)
k dth derivative of the kth function

g Objective function

j Pixel index

ĥ, ĥAO, ĥV O,

ĥV S1, ĥV S2

Sludge blanket height (SBH) estimates

(AO/VO/VS1/VS2: see list of acronyms)

hL, hU Physical height corresponding to the top/bottom (U/L)

pixel

i Image index

k Data series index, color channel index

rv Parameter of the Vesilind equation

q Flux

se,d+1 Sign for the dth derivative in the eth episode

u Integration variable

v Settling velocity
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v0 Parameter of the Vesilind equation

x, xh Pixel position (for the hth row in Ỹ )

x Independent data vector, pixel positions

z, zAO, zV O,

zV S

Sludge blanket height (SBH) sampling times

(AO/VO/VS1/VS2: see list of acronyms)

Bk Basis matrix for fk

Dk Maximum considered derivative degree for the shape con-

straints applied to fk

E Number of episodes

I Number of images in an experiment

J Number of functions to �t

H Number of rows in Ỹ

K Number of data series to approximate, number of color

channels

S Matrix describing the qualitative sequence, i.e. series of

primitives

T Number of transitions

Y Model estimates

Ỹ Measurement matrix
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1. Introduction12

Settling is one of the key processes in activated sludge wastewater treat-13

ment plants (WWTPs, Ekama et al., 1997). Its primary function is the14

clari�cation of mixed liquor, thereby preventing wasting organic material15

and nutrients into the water bodies that receive the treated wastewater. In16

addition, settling results in the thickening of sludge thereby increasing the17

e�ciency of biological conversion processes occurring in the reactor tanks18

of the WWTPs. Accurate design of settlers requires a proper characteriza-19

tion of the sludge settling properties. In addition, WWTP operation can be20

improved by avoiding overloaded settler conditions or increasing the reactor21

e�ciency by (i) manipulation of the recycle �ow rate (Balslev et al., 1994;22

Chen and Beck, 2001; Mines Jr et al., 2001), (ii) step feed (also: step aera-23

tion) and step sludge control (Chen and Beck, 2001), or (iii) short-term use24

of the reactor tanks for sludge sedimentation and storage. Settling also plays25

an essential role during the primary clari�cation process. Ine�cient removal26

of suspended solids prior to biological treatment results in higher oxygen27

demand (for oxidizing organic pollution) and lower biogas production. For28

innovative technologies, such as granular sludge processes, settling governs29

the separation of the slow and fast settling biomass, i.e., the selection of the30

granules and the selective removal of �ocs through excess sludge removal. A31

proper characterization of the settling properties of the sludge is thus nec-32

essary for a variety of separation processes that can be found on small and33

large WWTPs.34

Di�erent parameters are available to characterize the sludge settling prop-35

erties (van Loosdrecht et al., 2016): the sludge volume index (SVI), the di-36

5



luted sludge volume index (DSVI), the stirred speci�c volume index at 3.537

min (SSVI3.5), etc. Unfortunately, such measures provide an incomplete38

description of the sludge settling properties (van Loosdrecht et al., 2016).39

A more detailed characterization of the sludge settleability is provided by40

sludge blanket height (SBH) pro�les (van Loosdrecht et al., 2016). However,41

measuring such pro�les is signi�cantly more time-consuming than measuring42

sludge settling properties (SVI, etc.). Therefore, several empirical corre-43

lations were proposed to link the settling model parameters to the sludge44

settling measures that are easy to obtain. Such empirical correlations form45

the basis of today's practice, including control systems (e.g., Traoré et al.,46

2006). and despite known limits reported in several studies (Ozinsky and47

Ekama, 1995a,b; Bye and Dold, 1998).48

A dynamic settling model commonly used in today's practice is the expo-49

nential model �rst proposed in Vesilind (1968). Still, several more detailed50

models have been built and studied (e.g., Cacossa and Vaccari, 1994; Plósz51

et al., 2007; Ramin et al., 2014; Li and Stenstrom, 2016). Critical to any52

study of settling behavior is the collection of SBH pro�les registered dur-53

ing batch settling experiments as discussed above. All of the aforementioned54

studies rely on SBH measurements obtained by visual inspection of a settling55

column during the batch settling experiments. Typical use of SBH pro�les56

may provide only one data point per experiment, e.g. when the zone settling57

velocity (ZSV) measurement corresponding to a single total suspended solids58

concentration is of interest only. As a result, collecting su�cient data to59

empirically describe the zone settling velocity and �ux curves is a cumber-60

some and time-intensive task that can be a�orded within research projects61
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but is rarely executed routinely on WWTPs, as already reported in Daig-62

ger and Roper Jr (1985). The potential of the developed settling models63

for optimization or control of WWTP operation is likely only realized if a64

routinely applicable yet inexpensive method for SBH registration is avail-65

able. The lack of an easy, quick, and reliable method for the measurement66

of batch settling curves is still one of the main limitations for both research67

and practice (Li and Stenstrom, 2014). We therefore focus on the problem68

of batch settling curve registration yet also demonstrate how the resulting69

batch settling pro�les can be used for dynamic modeling.70

Devices for automated SBH registration are available today (e.g., Van-71

rolleghem et al., 2006). However, they are likely too expensive to obtain72

and maintain for routine monitoring purposes. Methods to automate and/or73

advance SBH registration include (i) light intensity scanning (Vanrolleghem74

et al., 1996), (ii) measurement of a radioactive tracer (De Clercq et al., 2005),75

(iii) use of an ultrasonic transducer (Locatelli et al., 2015), and (iv) high-76

speed camera imaging (Mancell-Egala et al., 2016). The applicability of such77

techniques may remain limited unless (i) on-site use is feasible to avoid ef-78

fects of sample deterioration and (ii) the devices are easy to maintain by79

technical sta� on typical wastewater treatment plants.80

The main objective of our work is to produce, demonstrate, and validate81

a novel method for automated image-based SBH registration. Automated82

sample preparation is considered for future study. The proposed method for83

batch settling curve registration consists of (i) using an inexpensive o�-the-84

shelf camera to collect images during multiple batch settling experiments85

and (ii) �tting a shape constrained spline (SCS) model extended for the86
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purpose of image analysis. The main advantage of our method is that the87

experimental method is accessible to researchers and practitioners as only88

inexpensive o�-the-shelf equipment is used. A side bene�t of applying the89

SCS model is that it enables use of multi-channel data present in the collected90

images and avoids di�erentiation of the noisy data during image analysis, in91

contrast to existing methods (e.g., Kim et al., 2011).92

The proposed method exploits knowledge about the expected shape of93

the light intensity pro�le along the vertical dimension of the sludge column.94

Using shape information to characterize settling behavior is not new however.95

For example, it is known that the SBH pro�le obtained with conventional96

batch settling experiments with ideal suspensions is described as a convex97

pro�le, corresponding to a convex section of the solids �ux curve that gov-98

erns such experiments. Similarly, recently proposed batch experiments de-99

liver concave height pro�les governed by concave sections of the solids �ux100

curve. Knowledge about the shape is exploited in Diehl (2007); Bürger and101

Diehl (2013); Diehl (2015). Our work is di�erent from these historical ap-102

proaches in two ways. First, our method allows �tting functions which have103

a changing shape along their domain, as opposed to previous work. In our104

particular study, functions consisting of a concave segment followed by a105

convex segment are estimated. Secondly, the convex-concave shape enables106

explicit accounting of non-ideal behavior during experiments. Indeed, we107

study batch settling experiments where the e�ects of turbulence at the start108

of the experiments cannot be ignored. In what follows, the most important109

aspects of our method and the most signi�cant results are explained.110
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2. Materials and Methods111

2.1. Batch Settling Experiments112

Nine batch settling experiments have been executed. Each of the settling113

experiments is executed for a dilution of a granular sludge sample obtained114

from a column sequencing batch reactor located at Eawag and fed with low-115

strength municipal wastewater. Two such samples were taken directly from116

the reactor as source material for diluted sludge sample preparation. The117

sludge sample index and the applied dilutions for each of the experiments118

are given in Table 1. The total suspended solids concentration on the day119

of experimentation was 2.4 g/L. Throughout experimentation, a 2 L vertical120

glass cylinder is used. Each batch settling experiment was started by �lling121

the glass cylinder with the (diluted) sludge and by ensuring homogeneity at122

the start of the experiment by means of manual stirring with a glass rod.123

A scheme of the experimental set up can be seen in Fig. 1. During each124

experiment, images are taken by means of a digital camera (Camera 1, Canon125

PowerShot G9) equipped with a continuous power supply and modi�ed with126

the Canon Hack Development Kit (CHDK, 2016) software to continuously127

capture images at intervals of 15s. Camera 1 was positioned so that (i)128

the height of the camera corresponds to the top of the sludge column, (ii)129

the central line of sight of the camera is directed at the top of the sludge130

column and (iii) the complete column is visible in the image. Within each131

experiment, the images are indexed with i (i = 1, . . . , I).132

In experiments 5 and 6, two experimenters (experimenter 1 and 2) regis-133

tered the SBH by means of visual inspection of the settling sludge column at134

time intervals of 30s as conventional experimentation (van Loosdrecht et al.,135
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2016) and as close as possible to every 2nd image registration by camera 1.136

Results obtained by the experimenters are indicated with the subscripts VS1137

and VS2 (visual, simultaneous). In addition, a second camera (Camera 2;138

Samsung Galaxy S5, Model No.: SM-G800F, OS: Android 4.4.2) was used to139

collect simultaneous close-up images of the sludge blanket at time intervals140

of 30s by means of frame lapse recording software (Framelapse by Neximo141

Labs, v2.1.1). Camera 2 was moved manually during each batch experiment142

by a third experimenter so to match the visually recognized SBH as close as143

possible. Results obtained with the close-up images are referred to by the144

subscript VO (visual, o�-line).145

2.2. Shape Constrained Spline Function Fitting146

The proposed image-based sludge blanket registration method consists of147

an extension of the pre-existing SCS method reported in Villez et al. (2013).148

Whereas the original method only allows analysis of univariate signals, the149

extended method permits simultaneous �tting of multiple SCS functions to150

multivariate data series. Each of �tted functions is however subject to the151

same shape constraints. Each part of the method SCS method is introduced152

generally followed by a discussion of details pertaining to the analysis of153

image data.154

2.2.1. Modeled Data155

General treatment. The measurements are given as a J × K matrix Ỹ156

of which yj,k is the element in the jth row and kth column and Ỹ ·,k is the157

kth column vector. Each row vector Ỹ j,· is associated with the jth element158

of x which is the J × 1 vector containing the values of a single independent159
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variable.160

Application. The analyzed data sets correspond to rectangular selections161

of red-blue-green images (see the Supplementary Information, Fig. S.1). A162

rectangular section of the image is selected so that the horizontal dimension163

of the selection covers the center of the photographed column and has the 200164

mL and 1000 mL marks on the column as limits in the vertical dimension.165

The width of the section is arbitrarily set to 51 pixels for all experiments.166

The heights of the image sections changed slightly across experiments and167

are reported in Table 1. All color channels (3) are included for analysis.168

The data in each image are initially organized as a 3-D array with dimen-169

sions corresponding to the vertical image dimension, the horizontal image170

dimension, and the color channel. For the purpose of analysis, we consider171

each set of 51 light intensities corresponding to the same vertical position172

and color channel as repeated measurements of the same light intensity. To173

generate a 2-D matrix of the form Ỹ the following unfolding procedure is174

executed. One �rst retrieves the matrix of light intensity values in the top175

row of pixels in the image and de�nes this matrix as Ỹ . This matrix has176

dimensions 51×3. One continues by selecting the same matrix for the sec-177

ond row and places this matrix below the previously obtained matrix. This178

concatenation process is continued until the bottom row pixels are reached179

and added. At this stage, the matrix Ỹ is completed. The corresponding180

vector x contains the row pixel index for each row in Ỹ . In the case of ex-181

periment 6, the dimensions of the matrix Ỹ are J = 1287× 51 = 65637 and182

K = 3. The independent data vector (x) contains the corresponding pixel183

positions, meaning that each of the 1287 vertical pixel positions appears 51184
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times within x.185

2.2.2. Data Model and De�nition of Optimality186

General treatment. The multivariate data series are modeled by means of187

K spline functions, fk(β,x) (k = 1, . . . , K) (Ramsay and Silverman, 2005).188

The choice for spline functions is especially motivated by the fact that shape189

constraints applied to non-empty intervals of a spline function domain can190

be formulated as a �nite number of equality and inequality constraints (see191

e.g., Papp and Alizadeh, 2014; Villez et al., 2013; Villez and Habermacher,192

2016). The degrees of the spline functions are given as Dk. Internal spline193

knots determine where one polynomial segment ends and the next one starts.194

They can be placed in arbitrary locations within [x1, xJ ]. Because of our195

function choice, each function is linear in the spline coe�cients (function196

parameters). More speci�cally, the spline function model generates estimates197

of the measured variables (Y ) given function parameters (β) as follows:198

Y (β) = f(β,x) (1)

with:199

f(β,x) =
[
f1(β1,x) . . . fk(βk,x) . . . fK(βK ,x)

]
=
[
B1(x) β1 . . . Bk(x) βk . . . BK(x) βK

]
(2)

β =
[
β1

T β2
T · · · βk

T · · · βK
T

]T
(3)

In the above, the matrices Bk(x) correspond to the evaluation of the200

spline basis of the kth function in the arguments x.201
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The model is �tted to the data by minimizing the following least-squares202

lack-of-�t:203

g(β) =
J∑

j=1

K∑
k=1

(
Ỹ j,k − Y j,k(β)

)2

(4)

For primers on spline models, we refer to Hastie et al. (2001) and Ramsay204

and Silverman (2005).205

Application. In the present study, three natural cubic (K = 3) B-spline206

functions are �tted to three column vectors of Y . Internal spline knots are207

placed at every 8th pixel following the �rst pixel for all functions (i.e., x9,208

x17,. . . ). This knot placement was found to deliver su�cient �exibility to209

the �tted functions while ensuring a reasonably short computational e�ort.210

As both the knot locations and independent data vectors are the same for211

each function, the matrices Bk(x) are the same for every function (i.e., B =212

B(x) = Bk(x), k = 1, . . . , K).213

2.2.3. Shape Constraints214

General treatment. During model �tting, the spline functions are con-215

strained to have a prede�ned shape. The assumed shape can be derived from216

expert knowledge or based on rigorous qualitative simulation (Kuipers, 1994;217

Shaich et al., 2001; Bredeweg et al., 2009). In either case, the shape is de�ned218

as a sequence of E episodes (e = 1, . . . , E). These episodes are contiguous219

intervals of the function domain within which a number of the function's220

derivatives do not change sign. Such a sequence is known as a qualitative se-221

quence. It is de�ned mathematically as a matrix S with S(e, d+ 1) = se,d+1222

specifying the sign of the dth derivative in the eth episode. The elements of S223
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can taken on the integer values +1, 0, and −1 to indicate positive, zero, and224

negative signs of the derivatives. When the sign is unspeci�ed, a question225

mark (?) is used instead. The matrix S is speci�ed a priori. The episodes226

themselves are de�ned by T = E − 1 transitions, θ (θt = θ(t); t = 1, . . . , T ),227

which are the function argument values where the episodes meet and which228

need to be estimated. The complete description of the shape of a function229

by means of S and θ is known as a qualitative representation (QR).230

Application. The �tted functions are constrained to have a shape de�ned

by two episodes. The �rst episode has a concave shape, i.e. a negative

sign for the second derivative. The second episode has a convex shape and

decreasing. Consequentially, one writes S as a matrix with two rows, one for

each episode:

S =

 ? ? −1 ?

? −1 +1 ?

 . (5)

The corresponding QR thus exhibits a single transition which corresponds231

to the location of the in�ection point between the two episodes: θ = θ = θ1.232

2.2.4. Optimization233

General treatment. With the above de�nitions, the least-squares SCS234

function �tting problem is written mathematically as follows:235

β̂, θ̂ = arg min
β,θ

g(β,θ) =
J∑

j=1

K∑
k=1

(
|Y j,k − Y (β)j,k|2

)
(6)

s.t. β ∈ Ω(θ,S) (7)

θ ∈ Θ (8)
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and subject to the linear constraints Eq. 1�3. In the above, Θ is the236

set containing all feasible values for θ and Ω(θ,S) is the set containing all237

values for β satisfying the shape constraints. Θ is de�ned mathematically as238

follows:239

β ∈ Ω(θ,S)

m (9)

∀d = 0, . . . , Dk,∀k = 1, . . . , K,∀x ∈ [x1, xJ ] :

f
(d)
k (βk, x)


≥ 0, if be ≤ x ≤ be ∧ S(e, d+ 1) = +1

= 0, if be ≤ x ≤ be ∧ S(e, d+ 1) = 0

≤ 0, if be ≤ x ≤ be ∧ S(e, d+ 1) = −1

b =
[
b1 b2 . . . be . . . bE−1 bE

]
=
[
x1 θ1 . . . θt−1 . . . θT−1 θT

]
b =

[
b1 b2 . . . be . . . bE−1 bE

]
=
[
θ1 θ2 . . . θt . . . θT xJ

]
.

with f
(d)
k (·, u) the dth derivative of fk(·, u) with respect to u.240

The objective function (Eq. 7) is quadratic in β. The shape constraints241

(Eq. 9) are convex in β. In the case of univariate spline functions, as in this242

study, they can be formulated as a �nite number of necessary and su�cient243

inequality constraints (Papp and Alizadeh, 2014). As a result, the problem244

has a single optimum and can be solved e�ciently to global optimality given245

values for θ. Consequentially, the complete optimization problem can be246

solved as a nested optimization problem where the values for β are repeat-247
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edly obtained for considered candidate values for θ. The above problem is248

however non-convex and possibly multi-modal in θ. Still, globally optimal249

estimates for θ can be found by means of the branch-and-bound algorithm as250

used in Villez et al. (2013); Villez and Habermacher (2016). The bounding251

procedures and their proofs are similar to those presented in Villez et al.252

(2013); Villez and Habermacher (2016) and are given in the Supplementary253

Information. Importantly, the bounding gap does not converge to zero in254

the multivariate case, in contrast to results obtained for the univariate case255

(K = 1) studied in Villez et al. (2013). This situation is however similar to256

the case studied in Villez and Habermacher (2016), where the presence of257

discontinuous trends in univariate data series was explicitly accounted for.258

For more details we refer to the Supplementary Information.259

Application. The feasible set for the transition is the function domain,260

i.e. Θ := [x1, xJ ]. Optimization of θ is continued until a tolerance of 1/8261

of a pixel is achieved for the optimal position of the in�ection point. This262

optimization is repeated for each image registered with camera 1 in each of263

the experiments. For a given experiment, the obtained value (θ̂) for image i264

is given as θ̂SCS,i.265

2.3. Sludge Blanket Height Registration Methods266

SBH estimates are obtained with four distinct methods. The �rst two267

methods are automated. A third method is based on o�-line visual inspection268

of the close-up images of the sludge blanket. The fourth method consists of269

registering the SBH visually during the batch experiments by two experienced270

experimenters. More details follow next.271
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2.3.1. Automated Sludge Blanket Height Registration with the Shape Con-272

strained Splines Method273

Following optimization as described above, the location of the in�ection274

points (θ) are given as a vertical pixel position (direction: top-down) within275

the analyzed segment of the images. To obtain the SBH for image i in a given276

experiment, measured from the bottom of the glass column, the following277

linear expression is used:278

ĥSCS,i = hL + (hU − hL) ·

(
1− θ̂SCS,i − xJ

x1 − xH

)
, i = 1, . . . , I (10)

with previously unde�ned parameters given in Table 1. The complete279

time series of SBH estimates is given as the vector ĥSCS and the corresponding280

sampling time vector as zSCS.281

2.3.2. Automated Sludge Blanket Height Registration with the Maximum Slope282

Method283

In Kim et al. (2011) an image analysis method for sludge blanket registra-284

tion is proposed and positively evaluated. For every pixel along the vertical285

column dimension, one computes a slope parameter, Sj, as the di�erence be-286

tween the light intensity at the considered pixel and the light intensity at the287

lowest pixel divided by the absolute distance between the considered pixel288

and the lowest pixel:289

Sj =
yj − yJ
|xj − xJ |

(11)
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with yj and yJ light intensities for a single color channel obtained within290

a single column of pixels. The pixel j corresponding to a maximal slope291

is referred to as the knee in the light intensity pro�le and is identi�ed as292

the sludge blanket height. Note that the de�nition of such a knee is di�erent293

from the de�nition of an in�ection point. In Kim et al. (2011) this is executed294

with only one column of pixels in the recorded images and with the red color295

channel only. Following pixel location, the sludge blanket height is computed296

by linear interpolation as above ((10)). The maximum slope (MS) method is297

implemented as in Kim et al. (2011) except for the following modi�cations:298

1. Instead of selecting one column of pixels, the light intensity data are299

averaged along the horizontal dimension prior to analysis. The pixel300

selection is the same as for the shape constrained spline method.301

2. Instead of computing the slope for every pixel, the slope is only com-302

puted for the �rst 1250 pixels. This avoids errors due to noise as will303

be demonstrated below.304

The sludge blanket heights obtained with the MS method are reported as305

ĥMS and the corresponding time instants as zMS.306

2.3.3. Visual Sludge Blanket Height Registration via Close-up Inspection af-307

ter Experimentation308

The third method to establish SBH estimates is based on a visual inspec-309

tion of close-up images after the experiment is �nished. The close-up images310

are used as a reference in what follows. The obtained SBHs are given as the311

vector ĥVO. The corresponding time instants are given as zVO.312
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2.3.4. Conventional Sludge Blanket Height Registration during Experimenta-313

tion314

A 4th and 5th SBH estimate is obtained by means of a visual inspection315

of the glass column during the batch experiment. These SBH estimates are316

referred to as ĥVS1 and ĥVS2. The times of registration are the same for both317

estimates and are given as zVS.318

2.4. Zone Settling Velocity Estimation319

Each of the obtained SBH pro�les can be used to model hindered and320

compressed settling in detail as described in Torfs et al. (2016) and as also dis-321

cussed in the introduction. Given our focus on SBH registration, we demon-322

strate the utility of the method by computing the ZSV, which re�ects on the323

hindered settling only and is conceptually simpler compared to compressed324

settling model identi�cation procedures. The ZSV is computed by means of325

locating the in�ection point with negative tangent slope in the considered326

SBH pro�le (e.g., Vanderhasselt and Vanrolleghem, 2000). Indeed, the shape327

of the pro�le is known to consist of a downward concave episode followed by328

a downward convex episode with the transition corresponding to the SBH.329

The sign matrix S thus is:330

S =

 ? − − ?

? − + ?

 (12)

To obtain the ZSV from the SBH estimates obtained via SCS-based im-331

age analysis, the optimization problem described above (Eq. 7�9) is modi�ed332

as follows. The data model is changed so that the univariate vector contain-333
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ing the SBH pro�le are approximated with a single univariate cubic spline334

function with knots at every sampling time:335

K = 1 (13)

Ỹ = Ỹ ·,1 = ỹk = ĥSCS (14)

x = zSCS (15)

All other settings are kept the same so that a least-squares �t of a SCS336

function to the SBH pro�le is obtained. Importantly, the modi�ed optimiza-337

tion problem reduces to the univariate case studied in Villez et al. (2013).338

As a result, the best location of the in�ection point can be determined with339

absolute precision and global optimality. Upon �tting the SCS function, the340

ZSV is obtained by computing the �rst derivative (tangent slope) in the in-341

�ection point. The absolute tangent slope is reported as the ZSV. This is342

executed for every experiment.343

The above computation of the ZSV is also executed for the SBH esti-344

mates obtained with o�-line and simultaneous visual inspection by replacing345

the dependent data vector ỹk with the data series containing the SBH es-346

timates (ĥVO, ĥVS1, ĥVS2, ĥMS) and the independent data vector with the347

corresponding image and SBH registration times. The ZSVs are obtained for348

experiments 5 and 6.349

2.5. Data and Software350

All data and software required to reproduce the results of this study are351

released publicly with a GPL v3 license and are added to the Supplementary352

Information.353
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3. Results354

3.1. Demonstration of the Shape Constrained Splines Method for Automated355

Sludge Blanket Height Registration356

Fig. S.1 shows a section of a single image obtained during experiment 5.357

The pixels selected for further analysis are indicated with yellow lines. Fig. 2358

shows the corresponding light intensity measurement as a function of the359

pixel index for the three channels. While the data series exhibit considerable360

levels of noise, one clearly observes the sludge blanket as an in�ection point361

in the data series. The in�ection point corresponds to the discontinuity in the362

sludge concentration better known as the SBH. Solving the SBH estimation363

problem (Eq. 7�9) delivers three optimized SCS functions -one for each color364

channel- with the same concave-convex shape and the same location for the365

in�ection point. The SCS functions and the pixel index corresponding to the366

identi�ed sludge blanket (1056) are also shown in Fig. 2.367

3.2. Demonstration of the Maximum Slope Method for Automated Sludge368

Blanket Height Registration369

In the top panel of Fig. 3 one can see the average light intensity for the370

red color channel as a function of the pixel index for image considered above.371

The slope values are given in the bottom panel. One can see that selecting372

the pixel with the MS method results in the selection of the second last pixel373

at the bottom the image. This is caused by substantial noise ampli�cation of374

the slope computation especially close to the reference pixel at the bottom375

of the image. The modi�ed method considering the top 1225 pixels selects376

pixel 977, which is a more sensible choice. However, a human observer may377
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instead select pixel 1035 as the knee. This di�erence is again explained by378

noise ampli�cation of the slope computation. However, even pixel 1035 is379

higher in the image compared to the shape constrained spline method result380

(1056). This is explained by the fact that the maximal slope method selects381

a location for a knee point rather than an in�ection point.382

3.3. Sludge Blanket Height Pro�les383

Fig. 4 shows a composite image obtained by collating the analyzed seg-384

ments of the images taken from the 127 consecutive images collected dur-385

ing experiment 5. The image is presented here without any modi�cation,386

mainly to visualize the rather low contrast in the collected images. The pixel387

heights corresponding to the SCS-based in�ection points (θ̂SCS) and the MS388

knee (θ̂MS) are also indicated in the collated image. Close inspection reveals389

that the SCS-based in�ection points correspond to the SBH at the front of390

the cylindrical column. One can see a semi-dark area above the identi�ed391

in�ection points. The top of the semi-dark area correspond to the back of392

the cylindrical column. The fact that the front and back side of the sludge393

blanket can be distinguished is a consequence of the applied position and394

angle of the camera. The MS knee pixel cannot be tied easily to any of the395

two sludge blanket features in the images. In addition, the MS knee pro�le396

appears to be more erratic than the pro�le of the in�ection points. The col-397

lated images with and without SBH estimates obtained for all experiments398

are available in the Supplementary Information.399

In experiments 5 and 6, all considered methods for SBH registration were400

applied. In Fig. 5 one can see the obtained SBH estimates. The SBH esti-401

mates obtained with close-up visual inspection and by simultaneous visual402
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inspection (ĥVO, ĥVS1, and ĥVS2) appear fairly close to each other. The SCS-403

based SBH estimates (ĥSCS) are about 70 mL higher in the concave episode404

(hindered and compressed settling) for experiment 5 and about 30 mL lower405

for experiment 6. For the MS method, the o�set is +100 mL for experiment406

5 and -5 mL for experiment 6.407

Each of the obtained SBH pro�les shown in Fig. 4 and Fig. 5 can be de-408

scribed as a decreasing trend that is composed of a concave episode followed409

by a convex episode. As in previous studies (e.g., Diehl, 2015), the concave410

episode is explained as a result from turbulence stemming from the stirring411

and possibly �occulation before the start of the experiment. Such behavior412

is generally considered non-ideal as the �rst data points do not provide in-413

formation about the settling process. To account for this, one can model the414

e�ect of turbulence explicitly (e.g., Diehl, 2015) or manipulate the data to415

remove the concave episode entirely (e.g., De Clercq, 2006). In this work, we416

�t a shape constrained spline function to the SBH pro�les with the desired417

concave-convex shape. The resulting functions for experiments 5 and 6 are418

shown in Fig. 5. The standard error for each SBH measurement pro�les,419

obtained by taking the �tted curve with the close-up SBH pro�le (ĥVO) as420

a reference, are reported in Table 2. The reference curve �ts the close-up421

SBH pro�le best, as expected since ĥVO were used to �t the reference curve.422

The worst standard error is obtained by the MS method in both experiments423

(ĥMS). The best standard error, apart from the result with close-up data,424

is obtained with the data produced by one human experimenter, which is425

however di�erent in each experiment (ĥVS1, ĥVS2). In each experiment, the426

SCS-based SBH data (ĥSCS) leads to a standard error that is smaller than427
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one of the standard errors obtained by the human experimenters.428

The curve-�tting is also executed for the other experiments by using the429

SBH pro�les obtained the MS and SCS methods. Table 3 lists the obtained430

coe�cients of determination (R2). One can see that R2 is above 0.995 in all431

cases except for the MS method, which delivers R2 values as low as 0.235.432

This means that the SBH measurement pro�les satisfy the expected concave-433

convex shape very well, except for the pro�les obtained with the MS method.434

The corresponding SBH pro�les (ĥMS) and the �tted curves are displayed in435

the Supplementary Information. Visual inspection allows to conclude that436

the MS method remains extremely sensitive to noise. Indeed, the MS method437

frequently identi�es pixels that are close to the bottom of the image due438

to the high noise in the computed slopes. Several tests were executed to439

evaluate whether the considered set of pixels could be expanded or reduced440

(above/below 1225 pixels). However, in the 8th and 9th experiment the441

sludge blanket at the end of the experiment is located close to the 1225th442

pixel so that further decreases are di�cult to motivate. At the same time,443

the results for experiment 1 show sensitivity to noise at the start of the444

experiment. Expanding the considered pixel selection makes things even445

worse. It is therefore impossible to de�ne a single set of top-most pixels446

to be considered in the MS method in such a way that low sludge blanket447

levels can be identi�ed while also avoiding errors due to noise ampli�cation448

for pixels close to reference pixel at the bottom of the images. Given such449

poor performance, further analysis excludes results on the basis of the MS450

method.451
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3.4. Zone Settling Velocity Estimation452

As indicated above, computing the ZSV is one way to usefully interpret453

the obtained SBH pro�les. The curve �tting described above identi�es the454

location of the in�ection point at the concave-convex intersection of the SBH455

pro�le. As is typically assumed, the ZSV corresponds to the slope of the456

tangent in the in�ection point located at the transition from the concave457

to the convex episode. In experiment 1 to 8, the obtained tangent lines458

appear sensible based on visual inspection (see Fig. 5 and the Supplementary459

Information. For experiment 9 the time needed for the transition from the460

zone settling phase to the compressed settling phase is extremely short which461

likely a�ects the accuracy of the estimated slope of the tangent line, as also462

discussed in van Loosdrecht et al. (2016).463

All slopes of the identi�ed tangent lines correspond to settling velocities464

and are shown in the top panel of Fig. 6. As expected, the obtained settling465

velocities follow a decreasing concave trend. In addition, the results obtained466

with visual estimates are generally consistent with the SCS-based results467

(maximum 27% relative di�erence). A conclusive validation would however468

require additional samples. A �t of the Vesilind equation (v(c) = v0 e
−rv c,469

with c the sludge concentration, v(c) the ZSV, and v0 and rv parameters) is470

shown as well and delivers an R2 value of 0.95. As an alternative, a �t of a471

rational equation (Eq. 28, Diehl, 2015) is also shown. This rational equation472

has three parameters and delivers an R2 value of 0.86. Both equations thus473

�t the data well and cannot not be discriminated easily. The bottom panel474

shows the corresponding settling �ux (q(c) = v(c) · c) which is typically used475

for the determination of the settling capacity of secondary settlers. Note476
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that the Vesilind and rational equations are designed to describe the settling477

behavior at relatively high concentrations where zone settling occurs. It is478

therefore not surprising that the curves have a di�erent shape in the low479

concentration region.480

4. Discussion481

4.1. Main Results and Major Bene�ts of the Proposed Method482

Image analysis was executed for the �rst time by means of a method483

for qualitative trend analysis, particularly on the basis of an SCS model.484

Furthermore, automated SBH registration is benchmarked for the �rst time485

against a pre-existing image analysis method for SBH registration and con-486

ventional SBH registration by human experimenters. Based on our results,487

several bene�ts of the proposed method when applied for image analysis488

during batch settling experiments have been demonstrated:489

• The images were obtained with an o�-the-shelf digital camera, all code490

is released publicly, and both experiments and image analysis can be491

executed in a standard laboratory environment. Consequentially, the492

method is accessible to many in the �eld, in contrast to alternatives493

which rely on equipment and software that is expensive to obtain and494

maintain.495

• The SCS data model allows automatic SBH estimation based on light496

intensity pro�les extracted from digital images recorded during batch497

settling experiments. As demonstrated, this is also possible despite the498

collection of rather noisy images. In contrast, the pre-existing maxi-499

mum slope (MS) method is very sensitive to noise. Because of this,500
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we expect our method to fare well even in cases where the supernatant501

remains turbid, e.g. when pin-point �ocs are present.502

• The SCS data model �ts curves to the complete light intensity pro�les503

and all color channels at once. Put otherwise, (i) all available informa-504

tion is incorporated in the image analysis, (ii) noise ampli�cation due505

to di�erentiation is avoided, and (iii) information removal and biasing506

e�ects of data �ltering are absent.507

• The combined experimental and data-analytic method prevents human508

error and subjective analysis by automating the SBH registration via509

deterministic optimization. In contrast, conventional approaches may510

su�er from uncertainty stemming from subjectivity of human experi-511

menters as well as variability of the exact method. Such variability may512

stem from the application of di�erent practices in di�erent regions, in513

individual wastewater treatment plants, by individual operators, and514

over time.515

In its current form, our image-based analysis is considered attractive to516

academic experimenters primarily as a way to increase the e�ciency of ex-517

perimental data collection, possibly enabling the execution of measurement518

campaigns over long periods or with a high measurement frequency. It may519

also be useful in full-scale activated sludge WWTPs where an early-stage520

warning of deteriorating sludge settling properties is warranted. Importantly,521

routine application requires as much sample preparation as is necessary to522

obtain the diluted sludge settling index (DSVI) given that the time spent on523

sludge blanket registration with the human eye can be omitted.524
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At the same time, our results lead to acceptable but still considerable devi-525

ations between the results obtained with the SCS-method and those obtained526

with human-eye based SBH pro�les. The number of experiments executed to527

develop and demonstrate the SCS-method are however too low to establish528

whether the observed deviations are of a systematic or random nature. In529

addition, it is unclear whether the larger errors should be expected in the530

human-eye SBH pro�les or the SCS-based pro�les. Our initial experiences531

suggest that human-eye SBH pro�les can exhibit some lag during the time532

zone-settling dominates, especially when the sludge blanket is not de�ned533

well yet. Indeed, the fast-forming and fast-moving sludge blanket can be534

hard to track in time by the human eye. Regardless of such di�erences, the535

SCS-based method also o�ers the ability to obtain an objective SBH reading536

rather than a reading prone to human error and subjectivity.537

4.2. Expanded Range of Qualitative Trend Analysis Applications538

Historically speaking, qualitative trend analysis methods, including the539

original SCS method, were proposed to tackle extrapolation issues in fault540

diagnosis (see e.g. Maurya et al., 2007; Villez et al., 2013). Recent work541

expanded the range of applicability of such methods to fault detection in542

sequencing batch reactors (Villez and Habermacher, 2016), ammonia control543

(Thürlimann et al., 2015) and dynamic model identi�cation (Ma²i¢ et al.,544

2017). SCS-based data modeling is especially valuable when models which545

are entirely mechanistic in nature are prohibitively expensive to obtain. The546

current study expands the application range of the SCS data model further547

into the �eld of image analysis and characterization of separation processes.548

Thus, our current results further demonstrate the general applicability of549
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qualitative trend analysis methods and SCS-based methods in particular.550

4.3. Perspectives551

Given the promising results in this study, several new questions can be552

raised. The following topics are of primary interest:553

1. Is the image analysis method robust enough to handle several sludge554

types without further modi�cation?555

2. Can the image analysis method also be used for experimentation with556

highly diluted sludges whose settling is of Stokesian nature?557

3. Are the obtained SBH pro�les useful for more complex modeling tasks558

such as the joint modeling of hindered and compressed settling? This559

may be the case but it is unclear yet whether the SCS-based SBH560

pro�les are of su�cient quality.561

4. Can the time savings obtained by avoiding human-eye sludge blan-562

ket reading be increased further by enabling the execution of multiple563

simultaneous settling experiments and/or by providing a sludge sam-564

ple preparation device that does not modify the �occulation state? If565

possible, the SBH registration method combined with automated sam-566

ple preparation will �nally enable the evaluation of predictive control567

strategies based on solid �ux theory, including automated control of568

the recycle �ow rate, step feed �ow rate, step sludge �ow rates, and569

temporary sedimention in aeration tanks.570

Based on current experience the authors are convinced that the answer to571

each of the above questions is yes. However, further experimental evidence is572
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warranted. In any case, our experiments suggest that the desired experimen-573

tal evidence can now be collected in an objective and time-e�cient manner.574

5. Conclusions575

Automatic registration of the sludge blanket height in settling experi-576

ments is demonstrated to be feasible via image analysis. The image analysis577

procedure is based on a multivariate extension of the shape constrained spline578

method. Promising results were obtained with inexpensive equipment acces-579

sible to any laboratory. It is especially noteworthy that the shape constrained580

splines method appears fairly robust against large levels of noise and the ob-581

tained results compare fairly to conventional sludge blanket height registra-582

tion methods. Most importantly, we consider our study the �rst step towards583

a fully automated, reliable, and economical alternative to existing methods584

for sludge blanket height registration.585
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Table 1: List of batch settling experiments. Experiments marked with (∗) are those ex-

periments for which visual registration of the sludge blanket height was performed by two

human experimenters (during the experiment) and by visual inspection of close-up images

(after the experiment).

Experiment index Original sludge sample Concentration Pixel height

g/L J

1 1 2.40 (no dilution) 1275

2 1 1.92 1282

3 1 1.54 1285

4 1 1.22 1285

5 (∗) 2 1.20 1286

6 (∗) 2 1.00 1287

7 2 0.86 1289

8 2 0.74 1279

9 2 0.58 1287

Table 2: Standard error (in mL) obtained by considered the deviations between the SBH

measurements and the curve �tted to the SBH measurement obtained by close-up image

inspection (VO).

Experiment index Method

SCS MS VO VS1 VS2

5 18.3 37.9 2.51 7.37 32.6

6 23.9 36.3 5.19 41.1 21.5
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Table 3: Coe�cients of determination (R2) for the curves �tted to each of the sludge

blanket height pro�les.

Experiment index Method

SCS MS VO VS1 VS2

1 0.9999 0.5607

2 0.9999 0.9972

3 0.9999 0.8036

4 0.9997 0.8795

5 0.9998 0.9972 1.0000 1.0000 0.9975

6 0.9990 0.9989 0.9994 0.9998 1.0000

7 0.9993 0.8027

8 0.9990 0.8580

9 0.9954 0.2353
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2000 mL 

Camera 1 

Camera 2 

Human 
reading 

Figure 1: Scheme of the experimental setup. Camera 1 is positioned level to the top

surface of the sludge sample. Camera 2 is adjusted manually during each experiment to

take close-up images of the sludge blanket. Human inspection is executed in such a way

that the lines of sight of the cameras are not interrupted.
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Figure 2: Experiment 5 - Image 42. Dots: Light intensity data; Dashed white lines:

Fitted shape-constrained spline functions; Full black vertical lines: Identi�ed in�ection

point location. The shape constrained splines method located the in�ection point in the

light intensity data successfully and is consistent with a visual assessment of the sludge

blanket height.
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Figure 3: Experiment 5 - Image 42. (Top) Dots: Averaged red channel light intensity data;

Dotted vertical line: Pixel location obtained with maximal slope method considering every

pixel; Dashed vertical line: Pixel location obtained with maximal slope method considering

only the �rst 1225 pixels; Full vertical line: Pixel location obtained via shape-constrained

spline function �tting; Circles and connecting full line: vizualization of the maximal slope

when considering only the �rst 1225 pixels. (Bottom) Dots: Computed slopes; Dotted

vertical line: Pixel location obtained with maximal slope method considering every pixel;

Dashed vertical line: Pixel location obtained with maximal slope method considering only

the �rst 1225 pixels; Full vertical line: Pixel location obtained via shape-constrained spline

function �tting; Circles and horizontal full line: vizualization of the maximal slope when

considering only the �rst 1225 pixels. The maximum slope method delivers results that

are fairly di�erent from the result obtained with the shape constrained splines method.
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Figure 4: Experiment 5. Composite image showing data from 127 consecutive images.

Green arrows are used to indicate the sludge blanket at the front and back of the column

recognized by close visual inspection. Yellow cross-hairs indicate the sludge blanket height

estimates obtained by means of the shape constrained splines method and correspond to

the front of the column. Red cross-hairs indicate the sludge blanket height estimates

obtained by means of the maximum slope method. The red cross-hairs do not match any

obvious feature in the image and follow an irregular pattern.
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Figure 5: Registered batch settling curves: Top: Experiment 5; Bottom: Experiment 6.

SCS-based sludge blanket height pro�les (green dots, ĥSCS), MS-based sludge blanket

height pro�les (blue dots, ĥMS) and pro�les based on visual registration (red, yellow, and

purple dots; ĥVO, ĥVS1, and ĥVS2). A spline function with a concave-convex shape (full

grey line) is �tted to the ĥSCS data (SBH data - SCS). The tangent line in the in�ection

point of the shape constrained splines function is shown with a dashed black line. The

modeling errors (grey circles) show that the curve �ts the data well in both experiments.
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Figure 6: Use of the ZSV to characterize dynamic sludge settling properties. Top: Zone

settling velocity (ZSV) as a function of the sludge concentration. All ZSVs are shown

together with a least-squares �t of the Vesilind and Diehl equations. The experiment

number is added at the top of the image right above the corresponding solids concentration.

Bottom: Settling �ux curve obtained based on the �tted Vesilind and Diehl equations.
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S. Supplementary Information732

The Supplementary Information includes additional details regarding the733

experimental method (Section S.1), the SCS modeling method (Section S.2),734

additional �gures (Section S.3), and all data and software to reproduce our735

results (separate .zip �le).736

S.1. Experimental protocol737

The following description of a single experiment is added to ensure broad738

applicability of the SCS-based SBH registration method.739

S.1.1. Hardware and consumables740

Prior to the experiment, collect and prepare the following materials:741

1. A 2 L clear glass cylinder with coloured tape added to mark the 200742

mL and 1000 mL levels. Take note of the distance between these two743

levels.744

2. A white panel to place behind the 2 L cylinder.745

3. An o�-the-shelf digital camera, equipped with a continuous power sup-746

ply and programmed to continuously collect an image at a �xed time747

interval.748

4. A diluted sludge sample of at least 2 L with known solids concentration.749

5. A stirring rod750

S.1.2. Protocol751

Execute the following steps in the laboratory:752

1. Place the camera, cylinder, and panel on a single line on a horizontal753

platform.754
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2. Position the camera so that the line-of-sight corresponds to a horizontal755

line aligned with the 2000 mL mark on the cylinder.756

3. ensure that the positions of the camera, cylinder, and panel do not757

change during the experiment.758

4. Start the image collection program on the camera.759

5. Fill the cylinder with the 2 L of the diluted sludge sample.760

6. Stir the sample with the stirring rod.761

7. Stop stirring right before the recording of an image and record the time762

stirring was halted.763

8. Let the sludge settle for as long as considered necessary (e.g., 30 min-764

utes).765

9. Stop the image collection program on the camera.766

10. Empty and clean the cylinder.767

The following steps are executed after the experiment is executed.768

1. Collect all images from the camera.769

2. Select all images of interest starting with the image where stirring was770

stopped �rst.771

3. Select a section in the images corresponding to the center of the cylinder772

and covering the 200 mL to 2000 mL range of the column.773

4. Apply the SCS method to �nd the pixel corresponding to the sludge774

blanket in an image section. Apply this to every image section.775

5. Convert the sludge blanket pixels to a sludge blanket height (SBHs) by776

linear interpolation.777
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S.2. Description and proofs of applied bounding procedures778

In the next paragraphs, the necessary elements contributing to the glob-779

ally optimal solution of the SCS optimization problem discussed in the text780

are explained in detail. Additional symbols not used in the main text are781

given in Table S.1.782

Table S.1: List of symbols used only within the Supplementary Information

Symbol De�nition

βL Lower bound values for of all spline function coe�cients

βU Upper bound values for of all spline function coe�cients

ε Bounding gap tolerance

θt Lower bound for θt

θt Upper bound for θt

θQP Upper bound solution for θ

Θl lth considered set for θ during optimization

g Lower bound to the objective function

g Lower bound to the objective function

The complete optimization problem is written as follows:783
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β̂, θ̂ = arg min
β,θ

g(β,θ) =
J∑

j=1

K∑
k=1

(
Ỹ j,k − Y j,k(β)

)2

(S.1)

s.t. ∀k = 1, . . . , K :

Y (β) = f(β,xk) (S.2)

β ∈ Ω(θ,S) (S.3)

θ ∈ Θ (S.4)

S.2.1. Solving for β784

The SCS function �tting problem discussed in the main text is a pseudo-785

convex program as long as values for the transitions (θ) are �xed and known.786

Depending on the applied sign constraints and the exact objective function,787

the problem can be reduced to a semi-de�nite program, a second order cone788

program, or even a quadratic program (QP). This is discussed at length in789

Papp (2011); Villez et al. (2013); Papp and Alizadeh (2014).790

S.2.2. Solving for β and θ791

The original problem described in the main text requires simultaneous792

optimization of the transitions θ. This is a nonlinear problem. However, and793

similar to prior work, this kind of problem can be solved to global optimal-794

ity in a deterministic manner by means of the branch-and-bound algorithm795

(Villez et al., 2013). To this end, the algorithm repeatedly divides the set796

of feasible values for θ (Θ) into smaller subsets until convergence. We refer797

to the lth generated subset during algorithm execution as Θl (Θl ⊂ Θ). For798

each subset, a lower and upper bound value to the objective function is com-799

puted. These bounds allow ignoring branches in the resulting solution tree800
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during the remainder of the optimization algorithm execution as soon as it801

is guaranteed that those branches cannot include the global optimum. The802

exclusion of such branches from the algorithmic search is known as fathom-803

ing. In what follows, the bounding procedures enabling such fathoming are804

explained and proven.805

S.2.2.1. Step 1: Finding a feasible solution for θ. Consider a candidate so-806

lution set, Θl. Any such set corresponds to a hyper-rectangular set within807

the feasible solution space and can be described completely as follows:808

θ ∈ Θl ⇔ ∀t ∈ {1, 2, . . . , T} : θt ≤ θt ≤ θt (S.5)

with θt and θt describing the interval containing the considered values for809

θt.810

In addition, each feasible solution within this set satis�es the following811

order relationship:812

∀t ∈ {1, 2, . . . , T − 1} : θt ≤ θt+1 (S.6)

A practical way to propose a feasible solution is obtained by solving the813

following QP subject to the above conditions (Eq. S.5�S.6):814

min
θ

T∑
t=1

(θt − θt)2 + (θt − θt)2 (S.7)

The solution, if the problem is feasible, is further referred to as θQP. If815

the set de�ned by Eq. S.5�S.6 is empty, one cannot �nd a feasible solution.816

This case is dealt with separately.817
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S.2.2.2. Step 2a: No feasible solution available. When no feasible solution818

for θ can be found, the bounding procedures are trivial.819

Procedure. In this case, the bounding procedures are very straight-820

forward. As in prior work, both the upper bound (g(Θl)) and lower bound821

(g(Θl)) are set to +∞:822

g = g(Θl) = g = g(Θl) = +∞ (S.8)

Proof. The proof of these bounds is straightforward. Indeed, if no823

feasible solution can be found θ, then there no solution can be found with824

any objective function value lower than +∞. This automatically also de�nes825

the upper bound at the same value. This concludes the proof.826

S.2.2.3. Step 2b: A feasible solution is found. Computing the upper and827

lower bounds is more involved when a feasible solution for θ, namely θQP,828

has been found.829

Upper bound � Procedure. An upper bound value for the objective830

function is computed by replacing θ with the proposed solution (θQP) in the831

original problem (Eq. S.1�S.4). This means the following problem is now832

solved:833
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β̂
U

= arg min
β
g(β) =

J∑
j=1

K∑
k=1

(
Ỹ j,k − Y j,k(β)

)2

(S.9)

s.t. ∀k = 1, . . . , K :

Y (β) = f(β,xk) (S.10)

β ∈ Ω(θQP,S) (S.11)

This problem is again at least pseudo-convex and can thus be solved to834

deterministic global optimality by means of interior-point algorithms. The835

corresponding vector containing all spline coe�cients is referred to as β̂
U
.836

The resulting objective function is an upper bound to the objective function:837

∃θ ∈ Θl,∃β ∈ Ω(Θl,S) : g(β,θ) ≤ g = g
(
β̂
U
)

(S.12)

Upper bound � Proof. Any feasible solution, including the computed838

pair (βU,θQP), corresponds to an upper bound as its existence automatically839

implies that at least one solution exists which delivers an objective function840

value which is the same or lower value than the computed one, g(βU,θQP).841

As such, this proves the validity of the computed upper bound.842

Lower bound � Procedure. A lower bound can be computing by843

means of the following relaxation of the problem. For the considered subset844

Θl, one applies only those sign constraints which are applied universally for845

all solutions θ within the set Θl. Practically, the original problem is relaxed846

by replacing the instances of θt with either θ or θ as follows:847
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β̂ = arg min
β
g(β) =

J∑
j=1

K∑
k=1

(
Ỹ j,k − Y j,k(β)

)2

(S.13)

s.t. ∀k = 1, . . . , K :

Y (β) = f(β,xk) (S.14)

β ∈ ΩL(θ,θ,S) (S.15)

where ΩL(θ,θ,S) is the relaxed feasible set for β, which is de�ned as848

follows:849

β ∈ ΩL(θ,θ,S)

m (S.16)

∀d = 0, . . . , Dk, ∀e = 1, . . . , E, ∀t = 1, . . . , T, ∀k = 1, . . . , K :

f
(d)
k (βk, x)


≥ 0 if be ≤ x ≤ be ∧ se,d+1 = +1

= 0 if be ≤ x ≤ be ∧ se,d+1 = 0

≤ 0 if be ≤ x ≤ be ∧ se,d+1 = −1

bL =
[
bL1 bL2 . . . bLe . . . bLE−1 bLE

]
=
[
x1 θ1 . . . θt−1 . . . θT−1 θT

]
bU =

[
bU1 bU2 . . . bUe . . . bUE−1 bUE

]
=
[
θ1 θ2 . . . θt . . . θT xH

]
This relaxed problem is again pseudo-convex and can thus be solved to850

deterministic global optimality by means of interior-point algorithms. The851
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obtained spline function parameters are referred to as βL. The resulting852

objective function is a lower bound to the objective function:853

∀θ ∈ Θl,∀β ∈ Ω(Θl,S) : g = g(βL) ≤ g(β,θ) (S.17)

Lower bound � Proof. Because the applied constraints in the modi-854

�ed lower bounding problem are always applied for any particular choice of θ855

for the original problem, one can write that the feasible set for β in the lower856

bound case, ΩL(θ,θ,S), includes the feasible set for any feasible proposal for857

θ for the original problem:858

∀θ ∈ Θl : Ω(θ,S) ⊆ ΩL(θ,θ,S) (S.18)

Given that the objective function and remaining constraints remain un-859

changed in the lower bound procedure, it holds that this procedure leads to860

a proven lower bound. This proves the validity of the lower bound.861

S.2.2.4. Bounding gap. In a number of special cases, it can be shown that862

the lower bound solution will deliver the globally optimal solution within863

a considered set, Θl. This is only possible when the considered intervals864

de�ning Θl do not contain any spline basis knot inside their boundaries.865

Furthermore, this is only guaranteed when the transitions correspond only866

to changes in the signs of derivatives which are piece-wise linear or piece-wise867

quadratic in the function's argument. In the case of cubic spline functions,868

as used in this work, this corresponds to in�ection points (2nd derivative is869

piece-wise linear) and extrema (1st derivative is piece-wise quadratic). This870
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was demonstrated in Villez et al. (2013) for the univariate case (J = 1, K =871

1). This property of the optimization problems means that the bounding gap872

during branch-and-bound optimization becomes zero in a �nite number of873

steps, leading to absolute precision of the reported globally optimal solution.874

This property also holds for the extended SCS model studied in this work,875

however only when the number of considered spline functions is 1 (J = 1,876

without proof). No restrictions are required for the number of measured877

variables (K, without proof). In the general case (J ≥ 1), an ε-optimal878

solution can be found in a �nite number steps, with ε an arbitrary small879

strictly positive number.880

S.2.2.5. Discontinuous trends. Locally discontinuous trends are not consid-881

ered explicitly in this study, unlike Villez and Habermacher (2016). To allow882

the �tting of SCS functions with discontinuities one only needs to apply the883

additional relaxations of the optimization problem discussed in Villez and884

Habermacher (2016) to the multivariate case studied here. This leads again885

to a valid lower bound (without proof). The upper bound provided in this886

work remains valid in its current form (without proof). Even though such887

adjustments are not studied in detail in this work, they are implemented888

within the provided software toolbox for SCS function �tting.889
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S.3. Additional �gures890

S.3.1. Setup891

Figure S.1: Experiment 6 - Image 42. This image is registered with camera 1. The yellow

rectangle indicate the selected area for analysis. Camera 2 is visible at the bottom of the

image left of the column.
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S.3.2. Experiment 1892

Figure S.2: Experiment 1 � Composite image.
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Figure S.3: Experiment 1 � Composite image with indications of the sludge blanket height

identi�ed via shape constrained spline �tting.
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Figure S.4: Experiment 1 � Batch settling curve, in�ection point, and tangent line obtained

with the SCS and MS method for SBH registration.

S.14



S.3.3. Experiment 2893

Figure S.5: Experiment 2 � Composite image.
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Figure S.6: Experiment 2 � Composite image with indications of the sludge blanket height

identi�ed via shape constrained spline �tting.
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Figure S.7: Experiment 2 � Batch settling curve, in�ection point, and tangent line obtained

with the SCS and MS method for SBH registration.

S.17



S.3.4. Experiment 3894

Figure S.8: Experiment 3 � Composite image.
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Figure S.9: Experiment 3 � Composite image with indications of the sludge blanket height

identi�ed via the SCS (yellow) and MS (red) method.
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Figure S.10: Experiment 3 � Batch settling curve, in�ection point, and tangent line ob-

tained with the SCS and MS method for SBH registration.
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S.3.5. Experiment 4895

Figure S.11: Experiment 4 � Composite image.
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Figure S.12: Experiment 4 � Composite image with indications of the sludge blanket height

identi�ed via the SCS (yellow) and MS (red) method.
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Figure S.13: Experiment 4 � Batch settling curve, in�ection point, and tangent line ob-

tained with the SCS and MS method for SBH registration.
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S.3.6. Experiment 5896

Figure S.14: Experiment 5 � Composite image.
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Figure S.15: Experiment 5 � Composite image with indications of the sludge blanket height

identi�ed via the SCS (yellow) and MS (red) method.
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Figure S.16: Experiment 5 � Batch settling curves, in�ection points, and tangent lines

obtained with all SBH pro�les.
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S.3.7. Experiment 6897

Figure S.17: Experiment 6 � Composite image.
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Figure S.18: Experiment 6 � Composite image with indications of the sludge blanket height

identi�ed via the SCS (yellow) and MS (red) method.
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Figure S.19: Experiment 6 � Batch settling curves, in�ection points, and tangent lines

obtained with all SBH pro�les.
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S.3.8. Experiment 7898

Figure S.20: Experiment 7 � Composite image.
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Figure S.21: Experiment 7 � Composite image with indications of the sludge blanket height

identi�ed via the SCS (yellow) and MS (red) method.
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Figure S.22: Experiment 7 � Batch settling curve, in�ection point, and tangent line ob-

tained with the SCS and MS method for SBH registration.
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S.3.9. Experiment 8899

Figure S.23: Experiment 8 � Composite image.
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Figure S.24: Experiment 8 � Composite image with indications of the sludge blanket height

identi�ed via the SCS (yellow) and MS (red) method.

S.34



Figure S.25: Experiment 8 � Batch settling curve, in�ection point, and tangent line ob-

tained with the SCS and MS method for SBH registration.
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S.3.10. Experiment 9900

Figure S.26: Experiment 9 � Composite image.
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Figure S.27: Experiment 9 � Composite image with indications of the sludge blanket height

identi�ed via the SCS (yellow) and MS (red) method.
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Figure S.28: Experiment 9 � Batch settling curve, in�ection point, and tangent line ob-

tained with the SCS and MS method for SBH registration.
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