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Abstract6

The study of techniques for qualitative trend analysis (QTA) has been a pop-

ular approach to address challenges in fault diagnosis of engineered processes.

Such challenges include the lack of reliable extrapolation of available models and

lack of representative data describing previously unseen circumstances. Many of

these challenges appear in biological systems even when normal operation can

be assumed. It is for this reason that QTA techniques have also been proposed

for the purpose of fault detection, automation, and dynamic modeling. In this

work, we adopt a shape-constrained spline function method for the purpose of

unknown input estimation. Thanks to data collected at laboratory-scale in a

biological reactor for urine nitrification, this novel approach has been demon-

strated successfully for the first time.
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Acronyms

Acronym Full expression

DO dissolved oxygen

LTI linear time-invariant

MHE moving horizon estimation

OUR oxygen uptake rate

SCS shape-constrained splines

QTA qualitative trend analysis

1. Introduction9

Routine execution of on-line process data analysis is a challenging task for10

many processes. The use of models to extract valuable information from the11

available data is often known as soft-sensing and several such methods for have12

been developed. Widely-known methods include the Kalman filter and its ex-13

tensions (e.g., Romanenko & Castro, 2004; Kravaris et al., 2013; Prakash et al.,14

2014). These techniques provide a systematic approach to the construction of15

such soft-sensors on the basis of dynamic process models. Factors affecting the16

success include the completeness of available process understanding, whether17

or not measured variables include or describe the key process states compre-18

hensively, and whether the process undergoes important changes over time. To19

obtain a useful model, two modeling approaches are distinguished. The first20

consists of white-box modeling and is based models which reflect the mechanis-21

tic understanding of the process. Successful application of soft-sensors based on22

white-box models requires completeness, accuracy, and precision of the applied23

model. If this is not met, systematic deviations, i.e. bias, should be expected24

between the extracted estimates and their true values. When a reliable white-25

box model is not available, one may choose to take the black-box route. In this26

case, one uses historical data to empirically define the relationships between (i)27

data that is available cheaply and reliably and (ii) information that is difficult28
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to obtain directly. Unfortunately, many black-box models (e.g., neural nets,29

regression trees, support vector machines) lack transparency. As a result, such30

models may not be trusted to provide information for safety- or quality-critical31

decisions (see e.g., Liu, 2007; Wang et al., 2010). In addition, black-box models32

often suffer from large estimation errors when extrapolated. Choosing between33

white-box and black-box approaches often entails a trade-off between these as-34

pects. Quite naturally, several authors have proposed a mixed approach, i.e.35

grey-box modeling, to represent the process mechanistically in as much as pos-36

sible while representing the lesser known parts of the process as a black-box37

model.38

In a number of situations, one may simultaneously lack detailed process un-39

derstanding as well as sufficient data to properly define any of the traditional40

models described above. This is true for many processes and has led to the devel-41

opment and application of coarse-grained qualitative modeling and simulation42

techniques (Venkatasubramanian et al., 2003). Such methods are deliberately43

imprecise which leads to predictions that can be trusted (reliability) despite large44

uncertainties. Despite this imprecision, this still enables causal reasoning and45

decision-making, e.g. (e.g., Kuipers, 1989; Maurya et al., 2003; Bredeweg et al.,46

2009; Kansou & Bredeweg, 2014). In the process engineering literature, the qual-47

itative approach has been advocated mainly for the purpose of fault diagnosis48

and is primarily implemented in the form of qualitative trend analysis (QTA,49

Bakshi & Stephanopoulos, 1994; Rengaswamy & Venkatasubramanian, 1995;50

Dash et al., 2004; Charbonnier et al., 2005; Gamero et al., 2006; Charbonnier &51

Gentil, 2007; Maurya et al., 2010; Villez et al., 2012, 2013; Gamero et al., 2014).52

The main motivation is that both process understanding and data describing53

the dynamics of processes subject to rare events are typically extremely limited.54

The same can often be said even for normal conditions for complex biological55

processes. When so, qualitative approaches also become valuable outside of the56

fault diagnosis niche, e.g. for process data mining (Stephanopoulos et al., 1997;57

Villez et al., 2007). More recent work has pushed the application boundary even58

further by enabling fault detection (Villez & Habermacher, 2016), image analy-59
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sis (Derlon et al., 2017), model structure identification (Mašić et al., 2017), data60

reconciliation (Srinivasan et al., 2017), and process automation (Villez et al.,61

2008; Thürlimann et al., 2015) on the basis of the QTA philosophy.62

Existing methods for QTA are useful to describe the qualitative features63

(e.g., maxima, minima, inflection points) of a data series. In contrast, we provide64

a new approach to QTA which describes the qualitative features of a process65

input signal which cannot be measured directly. To this end, the process itself66

is represented by a piece-wise linear time-invariant (LTI) model. The analyzed67

measurement data series is assumed to be univariate, which is typical in the QTA68

literature apart from a few exceptions (e.g., Flehmig & Marquardt, 2006, 2008).69

The unknown input signal is represented as a shape constrained spline function.70

Estimating the parameters of this input signal, i.e. the spline coefficients, by71

fitting the complete model to process data forms the focus of this study.72

The method is applied for estimation of the oxygen uptake rate in an in-73

termittently fed stirred tank reactor for urine nitrification (Udert & Wächter,74

2012; Fumasoli et al., 2016). This process has been developed as part of a system75

to recover resources, in this case a fertilizer, from source-separated wastewater76

streams. In the urine nitrification process, the oxygen uptake rate (OUR) re-77

flects the respiration rate of the ammonia oxidizing bacteria and the nitrite78

oxidizing bacteria in the process. One aims to achieve a low respiration rate at79

the end of each cycle, i.e. right before new untreated urine is fed to the reac-80

tor. Estimates of the OUR can thus be used to maximize the efficiency of the81

process. This is very similar to conventional aerobic sequencing batch reactors82

for wastewater treatment (e.g., Yoong et al., 2000). Estimates of the OUR are83

also essential for wastewater characterization (e.g., Spanjers & Vanrolleghem,84

1995; Spérandio & Etienne, 2000; Choubert et al., 2013), model identification85

(e.g., Vanrolleghem & Spanjers, 1998; Petersen et al., 2001; Ferrai et al., 2010),86

and automation (e.g., Spanjers et al., 1996; Yoong et al., 2000; Gernaey et al.,87

2001). Most typically, one obtains the OUR at infrequent time points by fitting88

a linear line to a short series of dissolved oxygen concentration measurements89

obtained during an unaerated phase. The underlying idea is that the oxygen90
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measurement series are described well by a linear trend, whose slope reflects91

the respiration rate in the selected time window. This approach means that the92

OUR is not available continuously and that nonlinear effects of aeration and93

sensor dynamics are deliberately ignored. With the proposed method, these94

assumptions are not necessary and the OUR is available as a continuous pro-95

cess input estimate. In addition, the method allows estimating the kinetic pa-96

rameters of the aeration system and the sensor simultaneously, thus providing97

additional information regarding the state of the components of the monitored98

system. We demonstrate the method with data obtained in a single batch cycle99

and describe the opportunities that lie ahead.100

2. Materials and Methods101

All symbol definitions required in this text are given in Table 2.102

Table 2: Symbol definitions

Symbol Description

Θ Feasible set for θ

Ω Feasible set for β

β Spline function coefficients

δk Input noise at knot k

εi Measurement error at sample i

σδ Input noise standard deviation

σε Measurement error standard deviation

τ , τc, τy Time constants (for concentration, for measurement)

θ Transitions

D Degree of the spline function

E Number of episodes

I Total number of samples

K Number of spline knots

S Number of process states
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S Matrix describing the shape constraints

T Number of transitions

i Measurement sample index

k Spline index

at Spline basis function evaluated at t

ct Convoluted spline basis function evaluated at t

cDO Dissolved Oxygen (state)

b, b Left-side interval bounds

b, b Right-side interval bounds

d derivative index

e episode index

f Rate of change

g Measurement gains

rOUR oxygen uptake rate (OUR)

s0 Initial state vector

s State vector

t, ti Time (at sample i)

u, u Known binary input

v
(d)
0 Initial values for the unknown process input signal

v, v(d) Unknown process input (dth derivative)

w Integrand

y Measurement

yDO Dissolved oxygen (noise-free measurement)

ỹDO Dissolved oxygen measurement
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2.1. Basic model103

Data-generating model – Theory. In this work, we aim to describe measurement

time series of finite length with the following generative model:

ṡ = f t(s,u, v) (1)

ỹi = gT s(ti) + εi (2)

εi ∼ N (0, σε) (3)

with s = s(t), u = u(t), v = v(t).104

The above model is a continuous-time state-space model composed of a set of105

ordinary differential equations which generates noisy measurements (ỹi) at dis-106

tinct sampling times (ti, i = 1, . . . , I). We further assume that (i) the ordinary107

differential equations are piece-wise LTI in the S state variables (s) and the un-108

controlled input (v(t)), and (ii) that the controlled inputs (u(t)) are piece-wise109

constant. In what follows, the parameters of the piece-wise linear LTI system110

are given as a vector τ .111

The univariate input (v(t)) is assumed to be described well by a signal con-

sisting of K piece-wise polynomial segments of degree D. Each kth polynomial

starts at time tk and ends at time tk+1 (t1 = 0, tk < tk+1, tK+1 = tI , k =

1, ...,K). Every derivative up to the D− 1th derivative of this signal is continu-

ous over the whole domain (0 ≤ t ≤ tI). Such a signal is obtained by simulating

the following model:

v̇(t) = v̇(0)(t) = v(1)(t), v(0)(0) = v
(0)
0 (4)

v̇(d)(t) = v(d+1)(t), v(d)(0) = v
(d)
0 , 1 ≤ d < D (5)

v(D)(t) = δ(t) = δk, tk ≤ t < tk+1 (6)

In the above, δk determines the Dth derivative in the kth segment and can

be interpreted as a piece-wise constant input disturbance. The values for v
(d)
0

(0 ≤ d ≤ D−1) are the initial conditions for the signal and its derivatives. If δk is

a white noise signal then the simulated signal v(t) is an auto-correlated signal.

v(t) is defined completely by the δk sequence (k = 1, . . . ,K) and the initial
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conditions v
(d)
0 (d = 0, . . . , D − 1), which total D +K in number. Of practical

importance is that v(t) is equivalent to a spline function. As in general spline

function theory, the tk are referred to as (spline) knots. Since spline functions

are linear in their parameters, v(t) can be equivalently expressed as:

v(t) = aTt β (7)

with at the D+K spline basis functions evaluated at time t (t1 ≤ t ≤ tI) and β

the parameters, named spline coefficients (de Boor, 1978; Ramsay & Silverman,

2005). Similarly, each of the spline function’s derivatives can be expressed as a

linear function of the same spline coefficients, however using a set of modified

basis functions, a
(d)
t :

v(d)(t) = (a
(d)
t )T β, 1 ≤ d ≤ D (8)

The complete model can be described as a sequential process with three112

steps. The first step produces v(t) with the disturbance input δ(t). The second113

step takes v(t) as a disturbance input and u(t) as a control input to produce114

s(t). The last step produces the measurements ỹi. This is depicted graphically115

in Fig. 1.116

Data-generating model – Application. In this work, we use the developed method

to estimate an OUR signal from dissolved oxygen (DO) concentration measure-

ment time series in an intermittently fed continuously stirred tank reactor. The

applied model is: ċDO

ẏDO

 =

 u
τc

(cDO,sat − cDO)− rOUR(t)

1
τy

(cDO − yDO)

 = f

 cDO

yDO

 , u, rOUR

(9)

ỹDO,k = yDO(ti) + εi (10)

εi ∼ N (0, σε) . (11)

cDO and yDO are the DO concentration (state) and the noise-free DO concen-117

tration measurement while u is a binary (0/1) control variable which determines118

8



𝑦  

𝒔 

𝑢 

𝛿 

𝑣 

𝒈𝑇 ∙ 𝒔 + 𝜀 𝜀 

 𝛿 𝑤  𝑑𝑤3
𝑡

0

 

 𝑓𝑤 𝒔, 𝒖, 𝑣  𝑑𝑤 
𝑡

0

 

Figure 1: Schematic representation of the generative model. An discrete-time input distur-

bance signal δ is integrated to produce the piece-wise polynomial signal v (D = 3). This

signal enters fw(s,u, v) as an uncontrolled input, together with the controlled input (u).

This produces the state vector s which is further processed into a noisy measurement (ỹ).

whether the process is aerated (u = 1) or not (u = 0). τc is a time constant de-119

scribing the dynamic effect of aeration while τy is a time constant describing the120

oxygen sensor response. We consider the OUR an unknown input disturbance121

(v(t) = rOUR(t)) and apply the following additional definitions: g =
[

0 1
]T

,122

s =
[
cDO yDO

]T
, y = y = yDO, u = u, τ =

[
τc τy

]T
. Accordingly, the123

model (9)-(11) can be written in the form of (1)-(3).124

The v(t) input signal is described by a cubic spline function (D = 3). In125

Fig. 2, an example of its constituting basis functions (at) are displayed for126

demonstration purposes with a knot added at every 256th measurement sample.127
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Figure 2: Cubic spline function basis – Knots are placed at every 256th sampling point (every

42’40”) over a span of 8H. This means that there are 11 piece-wise polynomial intervals

(K = 11) and 14 basis functions (K+D = 14). The basis functions are shown in grey, except

the 10th (full black line) and the 11th (dashed black line). Apart from the first two first and

the last two basis functions, every basis function is translated copy of the third basis function.

Integral form – Theory. In integral form, the above model becomes:

ỹi = ỹ(ti) = gT
(
s0 +

∫ t

0

f(s(w),u(w), v(w)) dw

)
+ εi (12)

s0 = s(0) (13)

Importantly, the piece-wise LTI nature of the process and the piece-wise polyno-

mial nature of the input disturbance means that this integral can be rewritten

as follows:

ỹi = ỹ(ti) = cti
T

 s0

β

+ εi (14)
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with cti a vector within which the first S columns describe the system’s response128

at ti to the initial conditions whereas the remaining D + K columns describe129

the response of the measurement ỹi to v(t) from 0 to ti. The latter columns130

are obtained by convolution of each of the (piece-wise polynomial) spline ba-131

sis functions with the piece-wise LTI response. This is executed analytically132

thanks to the fact that the response of an LTI system to a polynomial input133

can be described as a linear combination of unit (pulse/step/ramp/parabola/...)134

responses with the linear combination defined by the polynomial coefficients.135

Integral form – Application. In Fig. 3, one can see the D+K convoluted basis136

functions obtained with the spline function displayed in Fig. 2 as well as the S137

basis functions describing the effect of the initial conditions. In the top panel138

one can see the basis functions obtained without aeration (∀t : u(t) = 0). The139

integrating nature of the process (see (12)) is particularly obvious in this figure140

as the basis functions in Fig. 2 are unimodal curves and the convoluted basis141

functions in Fig. 3 are monotonically increasing curves with a single inflection142

point. Moreover, the basis functions in Fig. 2 that are translated copies of each143

other results in convoluted basis functions in Fig. 3 that are also translated144

copies of each other. In the bottom panel, one can see the basis functions145

obtained when u(t) switches multiple times between 0 and 1. In this case,146

the convoluted basis functions decay towards zero in periods where u(t) = 1.147

Indeed, due to aeration the effect of prior oxygen consumption disappears as148

time progresses. Naturally, this is only the case when the aeration is on. This149

is due to the fact that the u(t) signal acts as a modulating signal. Because u(t)150

is aperiodic, the original regular nature of the spline basis functions, including151

the translative properties discussed above, are lost.152

2.2. Problem statement153

In what follows next, all parameters except s0 and β are considered known.154

Thereafter the case where τ is also unknown is considered. The control inputs155

u(t) are assumed known perfectly and v(t), s(t), and y(t) are unknown. Our156
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Figure 3: Convoluted cubic spline function basis – (top) Convoluted cubic spline functions in

the case u(t)=0. The new basis functions are obtained by simple integration of the original

cubic spline functions. This leads to a quartic M-spline basis. Spline basis functions that

are translated versions of each other remain so after convolution. (bottom) Convoluted cubic

spline functions in the switching binary input case. In this case, the convolution leads to a

more complex pattern showing the effects of the on-off controller. Due to an irregular pattern

of the u(t) signal, the convolution does not preserve translation property anymore.

primary interest lies with the estimation of v(t) by finding the best-fitting spline157

coefficients β.158

2.3. Method 1: Conventional input estimation159

Conventionally, input estimation relies on an additional assumption regard-

ing the input disturbances. It is typical to assume that the values of δk are

sampled from a zero-mean normal distribution (white noise) with a given stan-
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dard deviation σδ:

δk ∼ N (0, σδ) (15)

Under such circumstances, one can compute maximum-likelihood estimates of

the coefficients of β by solving the following optimization problem:

β̂, ŝ0 = arg min
β,s0

I∑
i

(
yi − ỹi
σε

)2

+

K∑
k

(
δk
σδ

)2

(16)

subject to

yi = cti
T

 s0

β

 (17)

δk =
(
a
(D)
tk

)T
β (18)

This optimization problem is a quadratic program with linear inequality con-160

straints defining a non-empty set for β. Therefore, the unique globally optimal161

solution can be computed analytically. In practice, the standard deviations σε162

and σδ may not be known. In such cases, it is typical to use the ratio of variances163

λ =
σ2
ε

σ2
δ

as a tuning parameter during estimation. For a given λ, the obtained164

solution will be the same regardless of the exact values of σε and σδ. Setting165

λ to a higher (lower) value means that the variance of the disturbance inputs166

(δk) is penalized more (less) than the variance of the model prediction errors167

(yi− ỹi), further leading to a smoother (rougher) estimate of the δk input series.168

When applied so, λ becomes a smoothing parameter which is fine-tuned to bal-169

ance a good model fit to the measurements against smoothness of the estimated170

signals. This idea is commonly referred to as regularization and is well-known171

in regression (e.g., ridge regression, Marquardt, 1970) and model-based observer172

tuning (e.g., Åkesson et al., 2008).173

2.4. Method 2: Input estimation with shape constraints174

Shape constraints – Theory. In this work, we propose an alternative strategy

which is based on the assumption that one knows the shape of the signal v(t)
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but not its expected distribution. More specifically, we assume that the shape of

v(t) is defined by E contiguous episodes within which the signs of its derivatives

do not change. The derivative signs of the derivatives are given as a matrix

S with S(e, d + 1) corresponding to the sign of the dth derivative in the eth

episode. The T = E − 1 locations in time where one episode ends and the next

episode starts are known as transitions and are given as θ. The desired shape

S is assumed known. In contrast, the transitions θ are not known a priori and

are therefore added to the estimation problem. The solution for β is found by

solving the following fitting problem:

(
β̂, θ̂, ŝ0

)
= arg min

β,θ,s0
g(β,θ, s0) =

I∑
i=1

|ỹi − yi|2 (19)

subject to

yi = cti
T

 s0

β

 (20)

v(t) = aTt β (21)

v(d)(t) =
∂d

∂td
v(t) = a

(d)T

t β (22)

v(d)(t)


≤ 0, if t ∈

[
be, be

]
∧ S(e, d+ 1) = +1

= 0, if t ∈
[
be, be

]
∧ S(e, d+ 1) = 0

≥ 0, if t ∈
[
be, be

]
∧ S(e, d+ 1) = −1

(23)

b =
[
b1 b2 · · · be · · · bE

]
=
[
t1 θ1 · · · θt−1 · · · θT

]
(24)

b =
[
b1 b2 · · · be · · · bE

]
=
[
θ1 θ2 · · · θt · · · tI

]
(25)

θ ∈ Θ (26)

The objective function (19) is quadratic in β. (20) and (21) are linear constraints

and the remaining constraints, (22)-(26), determine the shape constraints. Be-

cause v(t) is described by a spline function, these shape constraints can be
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reformulated as a finite number of equality and inequality constraints which to-

gether describe the feasible space for β as a semi-definite cone, Ω. For details on

how to do this we refer to Nesterov (2000); Papp & Alizadeh (2014); Villez et al.

(2013). Consequentially, a simpler formulation of the optimization problem is:(
β̂, θ̂

)
= arg min

β,θ
g(β,θ) (27)

subject to

g(β,θ) =

I∑
i=1

|ỹi − yi|2 (28)

yi = cti
T

 s0

β

 (29)

v(t) = aTt β (30)

v(d)(t) =
∂d

∂td
v(t) = a

(d)T

t β (31)

β ∈ Ω (S,θ) (32)

θ ∈ Θ (33)

where Θ is the feasible set for θ and where Ω (S,θ) is the convex feasible set175

for β, given the desired shape (S) and the transitions (θ).176

The above optimization problem is a (convex) semi-definite program given177

values for θ. In special cases, the optimization problem is a second-order cone178

program, or even a quadratic program (Nesterov, 2000; Villez et al., 2013; Papp179

& Alizadeh, 2014). The problem is however nonlinear and possibly multi-modal180

in θ. Fortunately however, the bounding procedures developed in Villez et al.181

(2013) apply just as well to this newly posed problem, meaning that globally182

optimal values for θ can be found in a finite number of steps via branch-and-183

bound optimization (Floudas, 1999; Floudas & Gounaris, 2009; Forst & Hoff-184

mann, 2010). The branch-and-bound algorithm is halted when all live nodes185

of the search tree are equal to or completely within a single sampling interval.186

At that time, the best available upper bound solution is selected as the optimal187

solution. In the branching step, the node with the lowest lower bound is always188
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selected for further branching. Further details regarding the implementation of189

this algorithm, including the applied bounding procedures, can be found in the190

Appendix.191

Importantly, the above model does not require knowledge of the input and192

output disturbance standard deviations (σε, σδ), let alone the smoothing pa-193

rameter λ. Instead, the applied shape constraints, defined by S, are used to194

deliver a smoothed estimate of v(t). The shape constraints can be interpreted195

as a prior for the spline coefficients. When so, the optimization procedure de-196

livers the corresponding maximum a posteriori estimates. This is similar in197

philosophy to the model identification method proposed in Vertis et al. (2016)198

and the data reconciliation approach proposed in Srinivasan et al. (2017). A199

notable difference however is that the input estimation only requires knowing200

the sequence of trends or shapes (S) while the transitions (θ) are estimated. In201

contrast, Srinivasan et al. (2017) and Vertis et al. (2016) assume that (i) both202

the sequence of trends and transitions are known priori or (ii) that they can be203

determined by visual inspection.204

Shape constraints – Application. In the studied case, the OUR signal is de-

scribed well as a concave episode followed by a convex episode (E =2). In

addition, the OUR decreases in the second episode. Thus, one writes:

S =

 ? ? −1 ?

? −1 +1 ?

 (34)

with θ = θ describing an inflection point at θ. The symbol ? is used to205

indicate unspecified signs. This inflection point corresponds to the change from206

exogenous to endogenous respiration conditions in the studied process.207

2.5. Method 3: Joint input and parameter estimation with shape constraints208

We now consider the case where the values for τ are unknown. When so,

the following optimization problem needs to be solved to obtain the best-fit β:(
β̂, θ̂, τ̂ , ŝ0

)
= arg min

β,θ,τ ,s0
g(β,θ, τ , s0) (35)
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subject to

g(β,θ) =

I∑
i=1

|ỹi − yi|2 (36)

yi = cti
T

 s0

β

 (37)

v(t) = aTt β (38)

v(d)(t) =
∂d

∂td
v(t) = a

(d)T

t β (39)

β ∈ Ω (S,θ) (40)

θ ∈ Θ (41)

All the above statements regarding (27)-(33) remain valid for this expanded209

optimization problem. Furthermore, the problem is now nonlinear and possibly210

multi-modal in θ and τ . In this work, it is solved by combining the DIRECT211

method with the branch-and-bound optimization (Jones et al., 1993; Finkel &212

Kelley, 2004, 2006). More specifically, the DIRECT method iteratively pro-213

poses values τ . For each proposed vector τ , the branch-and-bound algorithm214

is executed as discussed above to find the corresponding values for θ̂. The215

DIRECT algorithm is a heuristic yet deterministic approach to global opti-216

mization. The DIRECT method does not provide guaranteed global optimality,217

unlike the branch-and-bound algorithm. For each candidate vector τ , the prob-218

lem is solved to find the globally optimal values for β and θ conditional to τ . In219

this case, global optimality of θ̂ is guaranteed conditional to the obtained values220

for τ̂ , which are however not guaranteed to be globally optimal themselves.221

2.6. Experimental data222

The analyzed data is collected in a laboratory-scale (12 L) intermittently-223

fed stirred tank reactor for urine nitrification. The reactor is operated in a224

cyclic manner with each cycle consisting of a short feeding stage and a no-feed225

stage. The feed consists of source-separate urine collected at Eawag with No-226

Mix toilets (Larsen et al., 2001). The oxygen level is controlled continuously227
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by means of a bang-bang controller (on-off control, Levine, 1996)) with 5.0228

and 5.5 mg O2 · L−1as lower and upper control limits. Full nitrification is229

achieved by maintaining the pH above 6.5 with automated base addition (5 M230

NaOH). The oxygen and pH controllers are implemented by means of a WAGO231

PLC with a sampling rate below 1s. Every 10s, the accumulated valve opening232

time, the valve state, and the oxygen concentration measurement are registered233

together with a corresponding time stamp. The total length of the batch was234

17h. The complete data vector consists of I = 2881 samples and covers a period235

of 8 hours, starting at 5h45’ and ending at 13h45’. This period includes the236

point in time when all of the available ammonia and nitrite nitrogen is oxidized.237

The main reason to include only a segment of the available data is the large238

computational demands associated with the SCS model fitting. This challenge239

and possible ways to attack it are discussed below.240

3. Results241

3.1. Experimental data242

The top panel of Fig. 4 displays the valve state and the measured oxygen243

as a function of time. One can see that the cycle starts with a fairly long244

aerated phase as the oxygen concentration slowly approaches the upper control245

limit. This is followed by a sequence of unaerated and aerated phases within246

which the oxygen concentration decreases and increases. The decreasing and247

increasing trends do not immediately follow the switching between aerated and248

unaerated phases. Some overshooting and undershooting is clearly visible. The249

overshooting (undershooting) tends to increase (decrease) as time progresses.250

This is explained as a consequence of a decreasing oxygen uptake rate. The251

bottom panel shows the ratio of the time length of each unaerated phase to the252

time between the start time of the considered unaerated phase and the next253

unaerated phase as a function of time. As time progresses, this ratio increases254

from close to zero (mostly aerated time) to close to one (mostly unaerated time).255

At 4h45’ after the first considered measurement sample, the unaerated phase256
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length is approximately the same as the aerated phase length. The observed257

profile of this ratio is thus also indicative of a decreasing oxygen uptake rate.258

D
is

so
lv

ed
 o

xy
ge

n
co

nc
en

tr
at

io
n 

[m
g/

L]

4.5

5

5.5

6

6.5

Time [h]
0 1 2 3 4 5 6 7 8

P
ha

se
 ti

m
e 

ra
tio

[-
]

0

0.2

0.4

0.6

0.8

1

Figure 4: Experimental data – (top) Dissolved oxygen concentration measurements as a func-

tion of time. Aerated phases are indicated with grey shading. (bottom) Ratio of the time

length of the unaerated phases to the time length between start times of unaerated phases as

a function of time.

3.2. Results with method 1259

An estimate of the input signal, v(t), is first obtained by solving the problem260

described in (16)-(18). To this end, the model described by (9)-(11) is completely261

defined by τ =
[
τc τy

]
=
[

3 1
]
min−1. Note that these values for τ are262

deliberately chosen to be close to the optimal values obtained with method 3263

(see below).264

The spline function v(t) is defined with D = 3 and k = i+1
2 − 1 (k =265

1, . . . ,K;K = d I+1
2 e − 1)). This means the spline knots are placed at every266
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second measurement sampling time ti. Consequentially, v(t) is described as267

a spline function of degree D = 3 with K =1441 polynomial segments. β268

therefore contains D +K = 1444 spline coefficients. The smoothing parameter269

λ =
σ2
ε

σ2
δ

was tuned to deliver the same root mean squared residual (RMSR) for270

the model prediction errors (yi − ỹi) as obtained with method 2 (see below).271

This way, the amount of regularization achieved by tuning λ is similar to the272

regularization obtained with the application of shape constraints. In the top273

panel of Fig. 5 one can see that the obtained y(t) profile matches the saw-tooth274

pattern of the DO measurements well. The OUR, shown in the middle panel275

of Fig. 5, can be described as a saw-tooth pattern as well, with values above276

and below zero. This pattern does not correspond to what is generally expected277

from an OUR signal. For instance, the OUR should be positive at all times and278

is usually a decreasing function of time. In addition, the bottom panel shows279

that the residuals between DO measurements and DO predictions are clearly280

auto-correlated. The model generally under-predicts the DO concentration at281

times where the aeration is switched off and over-predicts the DO concentration282

at times where the aeratio is switched on again.283

3.3. Results with method 2284

The model used with method 1 is now used again with method 2. The285

optimization problem (27)-(33) is solved with the shape constraints discussed286

for the example discussed above (34). In Fig. 6 the progress of the branch-287

and-bound algorithm is shown by visualizing the retained sets for θ at every288

iteration. After 14 iterations, the algorithm converged to within 1 measurement289

sampling interval and is halted. The corresponding best fit of the obtained290

model (y(t)) is shown in the top panel of Fig. 7 and corresponds to an inflection291

point at θ = 3h57′56”. One can see that the obtained y(t) profile follows the292

saw-tooth pattern of measurements closely, as was the case with method 1. The293

OUR (v(t)) signal shown in the middle panel appears very different however.294

Importantly, one can see that the OUR curves match the desired shape, namely295

decreasing over the whole domain, concave in the 1st episode, and convex in the296
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Figure 5: Regularized input estimation (method 1) – (top) Dissolved oxygen concentration

measurements (ỹ(t)) and fitted model predictions (y(t)) as a function of time. (middle) Input

signal estimate (v(t)). (bottom) Predictions residuals as a function of time.

2nd episode. The bottom panel of Fig. 7 shows the residuals. These lie between297

-0.2 and +0.2 mg O2 · L−1. The overall RMSR is 0.0563 mg O2 · L−1. This is298

considered to reflect a reasonable fit to the data. A further improvement of the299

fit is however likely if not only θ but also the values of τ are optimized, as is300

discussed next.301

3.4. Simultaneous input and parameter estimation302

The branch-and-bound method is applied to find the optimal values of θ303

conditional to given values for τ . This optimization is nested in a DIRECT304

routine which proposes values for τ . The obtained fit of the model is slightly305

better than the one obtained before since the RMSR is now 0.0550 mg O2 ·L−1.306

Fig. 8 displays the estimates for v(t) and u(t) as well as the residuals, akin to307

21



Time [h]
0 1 2 3 4 5 6 7

B
ra

nc
h-

an
d-

B
ou

nd
 it

er
at

io
n

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Figure 6: Progress of the branch-and-bound algorithm as a function of the branch-and-bound

iteration number. At every iteration (bottom to top), the retained sets in the solution tree

are shown. After 14 iterations, the optimal solution is found at 3h58’.

Fig. 7 yet now with optimal values for τ , which are τ =
[

2.99 0.893
]
min−1308

at convergence. Interestingly, the values suggest a rather high time constant309

for the aeration process, equivalent to a kLa of about 20 h−1. The estimated310

time constant for the oxygen sensor (0.893min−1) is reasonably fast but not311

negligible. The corresponding transition is found at θ = 3h58′30′′. This is very312

close to the value obtained previously with values for τ that deviate from their313

optimum. This suggests that the estimate of θ is rather insensitive to the values314

for τ .315
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Figure 7: Shape constrained input estimation (method 2) – (top) Dissolved oxygen concen-

tration measurements (ỹ(t)) and fitted model predictions (y(t)) as a function of time. (middle)

Input signal estimate (v(t)). (bottom) Predictions residuals as a function of time.

4. Discussion316

4.1. Main achievements317

In this study, an SCS-based method is used for input estimation and simul-318

taneous input and parameter estimation and compared to a more conventional319

approach based on regularized fitting. It is shown that the SCS-based method320

leads to a nonlinear optimization problem which can however be solved to global321

optimality in a deterministic manner. The obtained estimation procedure cor-322

responds to maximum a posteriori estimation if (i) the measurement noise is323

Gaussian and independently and identically distributed and (ii) the shape con-324

straints are interpreted as defining a prior likelihood for the input signal. Most325

importantly, it was shown that the conventional approach leads to an OUR sig-326
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Figure 8: Simultaneous input and parameter estimation (method 3) – (top) Dissolved oxygen

concentration measurements (ỹ(t)) and fitted model predictions (y(t)) as a function of time.

(middle) Input signal estimate (v(t)). (bottom) Predictions residuals as a function of time.

nal estimate that is hard to interpret, let alone trust. This is believed to be due327

the inability of the smoothing approach to account for model-reality mismatch.328

In contrast, the method based on shape constraints does not suffer from a lack329

of transparency and thereby leads to a sensible estimates of the process input330

disturbances, mainly by incorporating prior knowledge via the imposed shape331

constraints.332

In addition, the method based on shape constraints has been extended fur-333

ther to enable simultaneous input and parameter estimation. This is shown334

possible through combination of the branch-and-bound algorithm and the DI-335

RECT algorithm. Both the input estimation method and the simultaneous336

input and parameter estimation method are demonstrated with data obtained337
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in a laboratory-scale reactor for urine nitrification. Using such experimental338

data shows that the proposed method can be used in realistic experimental339

conditions.340

4.2. Benefits of the proposed method341

The original SCS method is restricted to the direct analysis of univariate342

signals. This means that the estimated signal shape is required to correspond343

to the shape of the analyzed signal. With this work, this requirement has been344

lifted. Indeed, the estimated shape of the input signal does not need to match345

the shape of the measured signal.346

The chosen approach bears some similarity to the QTA of principal scores as347

studied in Maurya et al. (2005) given that principal component analysis is used348

to uncover latent or hidden signals in measured data. In contrast to this study,349

our method is based on a mechanistic model and enables QTA by analyzing350

the measured data in a single step. This bears some similarity to the work in351

Flehmig & Marquardt (2008), even if the latter study is focused on linear trend352

identification. This decoupling makes it possible to estimate a slowly changing353

input signal that is subject to a fast process. This is especially valuable if the354

fast-changing process is not of primary interest for process monitoring, diagnosis,355

or control. This is the case for many biological processes, where the interesting356

dynamics of the biological process (e.g., OUR) are buried in a fast-changing357

signal (e.g., DO) generated by feedback controllers that maintain macroscopic358

variables in a desired range.359

In comparison to traditional estimation of the OUR, based on infrequent360

OUR estimation at the end of each non-aerated phase, the proposed method361

offers several advantages. These include:362

• All available data is used for estimation, thus likely increasing the precision363

of the estimates and allowing the use of lack-of-fit statistics to check for364

anomalous process conditions (see Villez & Habermacher, 2016)365

• The parameters describing the aeration system and sensor dynamics can366
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be estimated simultaneously with the OUR, meaning that one can monitor367

both the aeration system and the sensor response time with a single model368

and estimation method.369

• The OUR signal can be integrated analytically to obtain the accumulated370

oxygen consumption over time. This is particularly useful for wastewa-371

ter characterization where this integral is conventionally obtained by first372

interpolating the infrequent OUR estimates linearly (Amerlinck, 2015).373

Such an approximation can now be avoided.374

4.3. Future work375

Further study may help to improve the following aspects of the method:376

• The DIRECT method used for optimization of the process parameters377

does not guarantee global optimality. Methods to obtain globally optimal378

estimates may be required if the modeled process structure and/or the379

estimated signal result in an objective function that has multiple local380

minima.381

• The applied model structure was assumed to be LTI. Alternative model382

structures can however be proposed to further improve the obtained fit of383

the model. For general-purpose monitoring, the method appears satisfac-384

tory however.385

• The SCS method has recently been extended for multivariate signal anal-386

ysis (Derlon et al., 2017). This approach can easily be combined with the387

method proposed here and would enable shape-constrained estimation of388

a multivariate input signal. This only works if the shape of each of the389

fitted spline functions is the same, as is the case in Derlon et al. (2017).390

A more general method, permitting use of distinct shapes for each spline391

function, is being developed at the time of writing.392

• In its current form, broad applicability is limited due to a large compu-393

tational demand when the time series exceed 2000 data points and the394
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inter-knot distance approaches the sampling interval, as in our case. This395

demand is partly explained by the need to compute and store large ma-396

trices (consisting of vectors cti(τ )) during optimization. The form of the397

optimization problem (27)-(33) is however very similar to those solved in398

moving horizon estimation (MHE) methods. This signifies that an MHE399

approach may allow reducing the size of the optimization problems, how-400

ever requiring the optimization routine to be repeated in a moving window401

approach.402

5. Conclusions403

A new method for unknown input disturbance signal estimation is presented.404

It is rooted in prior work on qualitative trend analysis and allows estimation of405

a process signal of a known shape based on a linear piece-wise time-invariant406

model of the process dynamics. The method is demonstrated with data obtained407

at laboratory-scale in a high-intensity process for resource408

y from source-separated urine. The results indicate that sensible input es-409

timation is possible while estimates of the parameters describing the dynamics410

of aeration system and the sensor are also produced. The method therefore411

appears promising as a way to maximize the information that can be extracted412

from typical dissolved oxygen concentration profiles in aerobic biological pro-413

cesses.414
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7. Appendix421

7.1. Branch-and-bound optimization422

The branch-and-bound algorithm is a long-standing and broadly applicable423

method for deterministic global nonlinear optimization (Floudas, 1999; Floudas424

& Gounaris, 2009; Forst & Hoffmann, 2010). For details regarding the branch-425

and-bound optimization methods for SCS fitting, we refer to Villez et al. (2013);426

Villez & Habermacher (2016). In what follows, we only discuss the bounding427

procedures. This is the only element in the branch-and-bound optimization that428

has been changed compared to the method in Villez et al. (2013).429

7.2. Bounds for input estimation430

As in Villez et al. (2013); Villez & Habermacher (2016), values for β can be431

obtained by greedy or convex optimization given values for θ. Therefore, joint432

optimization of θ and β is possible by a nested strategy which obtains values433

for θ by branch-and-bound optimization. Values for β are repeatedly obtained434

by optimization given θ. For estimation of v(t) the same strategy is applied.435

The bounding procedures and their proofs are analogous to those in Villez et al.436

(2013). We therefore give the bounding procedures without proofs.437

In what follows, we consider that during optimization the jth (hyper)rectangular

set of considered values for θ, Θj , is described as:

θ ∈ Θj ⇔ θ ≤ θ ≤ θ (42)

with vector inequalities applied element-wise. Any feasible vector θ within this

set must satisfy the following monotonicity constraint:

θ ∈ Θj ⇔ ∀t = 1, . . . , T : θt ≤ θt ≤ θt (43)

Upper bound. An upper bound is easily found by solving (19)-(25) for β given438

any vector θ satisfying (42)-(43). We refer to the corresponding parameter439

values as θU and βU and the objective function value as g (Θj) = g
(
βU ,θU

)
.440

If no value for θ can be found that satisfies 42 and 43, then the set Θj is empty441

and the upper bound is set equal to g (Θj) = +∞.442
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Lower bound. If Θj is empty, then the lower bound is equal to +∞. If Θj is

not empty, the following relaxed optimization problem is solved:

β̂
L

= arg min
β
g(β,Θj) (44)

subject to

g(β,Θj) =

I∑
i=1

|ỹi − yi|2 (45)

yi = cti(τ )
T
β (46)

v(t) = aTt β (47)

v(d)(t) =
∂d

∂td
v(t) = a

(d)T

t β (48)

β ∈ Ω (S,Θj) (49)

with Ω (S,Θj) defined as:443

β ∈ Ω (S,Θj) ⇔



v(d)(t)


≤ 0, if t ∈

[
be, be

]
∧ S(e, d+ 1) = +1

= 0, if t ∈
[
be, be

]
∧ S(e, d+ 1) = 0

≥ 0, if t ∈
[
be, be

]
∧ S(e, d+ 1) = −1

b =

[
b1 b2 · · · be · · · bE

]
=

[
t1 θ1 · · · θt−1 · · · θT

]
b =

[
b1 b2 · · · be · · · bE

]
=

[
θ1 θ2 · · · θt · · · tI

]

(50)

The value for g(β̂
L
,Θj) is a valid lower bound (without proof).444
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Åkesson, B. M., Jørgensen, J. B., Poulsen, N. K., & Jørgensen, S. B. (2008).549

A generalized autocovariance least-squares method for kalman filter tuning.550

Journal of Process Control , 18 , 769–779.551

33



Ramsay, J. O., & Silverman, B. W. (2005). Functional Data Analysis. Springer,552

New York, NY, USA.553

Rengaswamy, R., & Venkatasubramanian, V. (1995). A syntactic pattern-554

recognition approach for process monitoring and fault diagnosis. Engineering555

Applications of Artificial Intelligence, 8 , 35–51.556

Romanenko, A., & Castro, J. A. (2004). The unscented filter as an alternative to557

the EKF for nonlinear state estimation: a simulation case study. Computers558

& Chemical Engineering , 28 , 347–355.559

Spanjers, H., & Vanrolleghem, P. . (1995). Respirometry as a tool for rapid560

characterization of wastewater and activated sludge. Water Science and Tech-561

nology , 31 , 105–114.562

Spanjers, H., Vanrolleghem, P., Olsson, G., & Dold, P. (1996). Respirometry in563

control of the activated sludge process. Water Science and Technology , 34 ,564

117–126.565

Spérandio, M., & Etienne, P. (2000). Estimation of wastewater biodegradable566

COD fractions by combining respirometric experiments in various So/Xo ra-567

tios. Water Research, 34 , 1233–1246.568

Srinivasan, S., Billeter, J., Narasimhan, S., & Bonvin, D. (2017). Data reconcili-569

ation for chemical reaction systems using vessel extents and shape constraints.570

Computers & Chemical Engineering , 101 , 44–58.571

Stephanopoulos, G., Locher, G., Duff, M., Kamimura, R., & Stephanopoulos, G.572

(1997). Fermentation database mining by pattern recognition. Biotechnology573

and Bioengineering , 53 , 443–452.574

Thürlimann, C. M., Dürrenmatt, D. J., & Villez, K. (2015). Evaluation of575

qualitative trend analysis as a tool for automation. In Proceedings of the 12th576

International Symposium on Process Systems Engineering and 25th European577

Symposium on Computer Aided Process Engineering (PSE2015/ESCAPE25),578

Copenhagen, Denmark, May 31 - June 4, 2015, 2531-2536 .579

34
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