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Abstract: The computation and modeling of extents has been proposed to handle the complexity
of large-scale model identification tasks. Unfortunately, the existing extent-based framework only
applies when certain conditions apply. Most typically, it is required that a unique value for each extent
can be computed. This severely limits the applicability of this approach. In this work, we propose a
novel procedure for parameter estimation inspired by the existing extent-based framework. A key
difference with prior work is that the proposed procedure combines structural observability labeling,
matrix factorization, and graph-based system partitioning to split the original model parameter
estimation problem into parameter estimation problems with the least number of parameters. The
value of the proposed method is demonstrated with an extensive simulation study and a study based
on a historical data set collected to characterize the isomerization of α-pinene. Most importantly, the
obtained results indicate that an important barrier to the application of extent-based frameworks for
process modeling and monitoring tasks has been lifted.

Keywords: extents; graph theory; model identification; observability; optimal clustering; parameter
estimation; state decoupling

1. Introduction

Despite advances in model identification theory, parameter estimation can still be very challenging
in practice. Such challenges include the lack of identifiability, large computational cost, the need
to formulate appropriate experimental designs, and the fact that many methods, such as those
for uncertainty analysis, are still being investigated and therefore not standardized. In this work,
we focus on a novel method to tackle the computational challenge associated with the identification
of kinetic parameters in large dynamic models. Hence, the other challenges associated with
parameter identifiability, experimental design, and uncertainty analysis, though relevant, are not
investigated here.

To handle the computational challenge, it is typical to devise a protocol for model fitting and
model validation. Such protocols can be divided into two broad classes. In the first class, the protocols
are domain specific. For instance, several protocols for the identification of activated sludge models
are discussed in [1]. Similarly, a protocol for environmental system models is proposed in [2]. These
protocols incorporate significant expertise specific to the particular application domain, thereby leading
to protocols that are fine-tuned for that domain. While they tend to be similar on a conceptual level, it
is rather difficult to apply these protocols universally.

The second class includes protocols that are more general and thus—in principle—broadly
applicable. The incremental model identification framework studied in [3–7] is a good example.
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This method is grounded on the computation of extents, which are—loosely speaking—linear
combinations of the original model states and capture the progress of individual dynamic phenomena,
such as chemical reactions. A more precise definition will be given below.

The applicability of the extent-based framework is limited to cases where all extents can be
computed based on measurements and invariant relationships. However, since this is rarely the case
for biological process models, the extent-based framework has been extended in [8] to the case where
each extent is either observable or non-sensed—see below for precise definitions. While this recent
work provides a meaningful improvement, extent-based incremental model identification remains
inapplicable for a wide range of biological scenarios found in practice. For example, this method
cannot deal with the frequent case where an extent is sensed but unobservable.

The goal of this study is to present a novel method for incremental parameter identification that
is more universally applicable. This method is based on the formulation of a generalized framework
for extent computation and the use of a graph-based clustering algorithm. In what follows, we present
the method and demonstrate its applicability to cases that could not be handled in an extent-based
incremental model identification framework before. The expected impact of the newly developed tools
is discussed at the end of this study.

2. Notation and Symbols

The matrix composed of the columns c of the matrix M is denoted M•,c, while the matrix
composed of the rows r of the matrix M is denoted Mr,•. All vectors are column vectors unless
mentioned otherwise. Table 1 lists all symbols used in this study.

Table 1. List of symbols.

Symbol Description Dimensions

εh Measurement error at time t = th M× 1
θ
(

θ(j)
)

Kinetic parameters (in subsystem j) T × 1
(

T(j) × 1
)

Λ
(j)
o , Λ

(j)
θ

Selection matrix ρ
(j)
o × ρo, T(j) × T

ρo
(

ρ
(j)
o , ρ

(j)
o,i

) Number of observable extent directions (in system j,
interpolated in system j) 1× 1

ρu Number of unobservable extent directions 1× 1
ρaug Number of extents and observable extent directions 1× 1
Σε Measurement error variance-covariance matrix M×M
τ Time (integrand) 1× 1
Σχ Estimation error variance-covariance matrix A× A
χaug Extents and observable extent directions ρaug × 1

χo

(
χ
(j)
o

)
Observable extent directions (in subsystem j) ρo × 1

(
ρ
(j)
o × 1

)
χo

(
χ
(j)
o

)
Observable extents and extent directions (in subsystem j) A× 1

(
A(j) × 1

)
χ̃o,h

(
χ̃
(j)
o,h

) Computed observable extents and extent directions
(in subsystem j) A× 1

(
A(j) × 1

)
χ̃o,i

(
χ̃
(j)
o,i

) Interpolated observable extents and extent directions
(in subsystem j) A× 1

(
A(j) × 1

)
χu Unobservable extent directions ρu × 1
χu Unobservable extents and extent directions (R− A)× 1

A
(

A(j)
) Number of observable extents and extent directions

(in subsystem j) 1× 1

a Indices of ambiguous extents Ra × 1
B Reduced row echelon form of G M× R
dh

(
d(j)

h

)
Model prediction residuals at th (in subsystem j) A× 1

(
A(j) × 1

)
e(j) Indices of computed extents and extent directions simulated

by subsystem j A(j) × 1

F
(
F (j)

)
Information flow graph (for subsystem j) −−

f
(

f (j)
)

Rate expressions (in subsystem j) R× 1
(

R(j) × 1
)
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Table 1. Cont.

Symbol Description Dimensions

G Extent-based measurement matrix M× R

Go,Go
Measurement matrix for the observable extent
directions/observable extents and extent directions M× ρo/A

H Number of measurements 1× 1
h Measurement sample index 1× 1
i Subsystem index 1× 1
J Number of subsystems 1× 1
j Indices of extents in subsystem j R(j) × 1
j Subsystem index 1× 1
M Species-based measurement matrix M× S
M Number of measurement samples 1× 1
N Stoichiometric matrix R× S
N o,N u Extent and extent direction-based stoichiometric matrices A/(R− A)× S
n Indices of non-sensed extents Rn × 1
n (n0) Number of moles (at time t = 0) S× 1
o
(

o(j)
)

Indices of observable extents (in subsystem j) Ro × 1
(

R(j)
o × 1

)
P Projection matrix A×M
Q0, Q∗0 , Q(j)

1
Objective function 1× 1

R
(

R(j), Ra, Rn

Ro, R(j)
o , R(j)

o,i , Rs

) Number of reactions (in subsystem j,
ambiguous/non-sensed/ observable/observable in
subsystem j/interpolated in subsystem j/sensed)

1× 1

r Reaction rates R× 1
r Reaction index 1× 1
S Number of species 1× 1
s Indices of sensed extents Rs × 1
T (T(j)) Number of parameters (in subsystem j) 1× 1
t (th) Time (of measurement sample h) 1× 1

U(j), U(j) Mixing matrix ρ
(j)
o /A(j) × R(j)

Vo, Vu
Direction matrix for observable/unobservable
direction directions R× ρo, R× ρu

V Reactor volume 1× 1
W
(

W(j)
)

Weight matrix (for subsystem j) A× A
(

A(j) × A(j)
)

x
(

x(j), xr

)
Extents (in subsystem j, of reaction r) R× 1

(
R(j) × 1, 1× 1

)
y (y0, y(th)) Noise-free measurements (at time t = 0, t = h) M× 1
ỹh Measurements in sample h M× 1

3. Methods

3.1. System Representation and Extents

3.1.1. Dynamic Model in Terms of Numbers of Moles

We study batch process systems whose dynamic behavior is described by a set of differential
equations of the following form:

ṅ(t) = NT V r(t), n(0) = n0 . (1)

In the present work, the above equations represent a single-phase reaction system in a vessel
with constant volume V. n(t) is the S-dimensional vector of numbers of moles; n0 specifies the
initial conditions; r(t) is the R-dimensional vector of reaction rates; N is the (R × S)-dimensional
stoichiometric matrix.

We assume that M noisy measurements, ỹh, are available at the H sampling times th (h = 1, . . . , H),
according to the following equations:
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ỹh := y(th) + εh =
1
V

M n(th) + εh , εh ∼ N (0, Σε) , (2)

where y(th) is the M-dimensional vector of noise-free measurements, εh the M-dimensional vector of
measurement errors, Σε the M-dimensional measurement error variance-covariance matrix, and M is
the (M× S)-dimensional species-based measurement matrix.

We further assume that kinetic laws for the reaction rates are available. These laws are functions
of the component masses, n(t), and a T-dimensional vector of kinetic parameters, θ:

r(t) := f (n(t), θ) . (3)

In the present study, we assume that the rate laws are known, except for the values of the
parameters θ that need to be estimated.

3.1.2. Dynamic Model in Terms of Extents

We now adopt the definition of the extents of reaction, hereafter simply called extents, as the number
of times each reaction has occurred since t = 0. These extents are measured in moles and defined
mathematically as:

x(t) := V
∫ t

0
r (τ) dτ. (4)

It follows that

n(t) = n0 + NT x(t). (5)

Accordingly, (1)–(3) can be represented equivalently in the following form:

ẋ(t) = V f (n(t), θ) , x(0) = 0 (6)

ỹh =
1
V

M
(

n0 + NT x(th)
)
+ εh

= y0 +
1
V

G x(th) + εh (7)

n(t) = n0 + NT x(t), (8)

where

y0 :=
1
V

M n0 (9)

G := M NT, (10)

with the (M× R)-dimensional matrix G being labeled the extent-based measurement matrix.
Let A denote the rank of G, that is, A := rank (G) ≤ min (M, R).

3.2. Labeling Extents

3.2.1. Definitions

To label the extents, the following definitions are proposed:

• The rth extent xr(t) is labeled sensed if the measurements ỹh are affected by xr(t) through the
measurement Equation (7), that is, if G•,r has at least one non-zero element.

• The rth extent is labeled observable if (i) it is sensed (G•,r not null); and (ii) the change in the
measurements ỹh caused by a change in xr(t) can be unambiguously attributed to the change in
that extent, that is, G•,r is independent of all other column vectors in G.
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The above labeling is based on the structure of G and does not depend on the temporal resolution
or quality of the recorded measurements (ỹh). As such, this means only structural observability is
considered. This terminology is similar to the one used in data reconciliation [9,10] as the labels are
produced without a dynamic model.

3.2.2. Labeling Procedure

To label the extents, one first computes the (M× R)-dimensional reduced row echelon form of G
denoted B:

B := rref (G) . (11)

This (M× R)-dimensional matrix is composed of A non-zero rows and M− A zero rows. Using B,
the extents are labeled with the following procedure:

(a) Label the Rn extents corresponding to zero columns in B as non-sensed and use the vector n to
identify their positions in x. Label the Rs remaining extents as sensed and use the vector s to
identify their positions in x.

(b) Find all rows in B with a single non-zero element and find the column positions of these
non-zero elements. Label the Ro extents corresponding to these column positions as observable
and use the vector o to identify their positions in x. These extents are observable because one
can compute a unique value based on the available information (measurements, extent-based
measurement matrix, and initial conditions).

(c) Label the Ra extents that are sensed but not observable as ambiguous. These extents are
ambiguous because one cannot compute a unique value based on the available information.
The vector a is used to identify their positions in x.

Based on this labeling, the vectors xs(t), xn(t), xo(t), and xa(t) are defined to represent (i) the Rs

sensed extents, (ii) the Rn = R− Rs non-sensed extents; (iii) the Ro observable extents; and (iv) the
Ra = Rs − Ro ambiguous extents. This is illustrated in Figure 1.

all extents 𝒙𝒙 𝑅𝑅

sensed 𝒙𝒙𝐬𝐬 𝑅𝑅s

ambiguous 𝒙𝒙𝐚𝐚 𝑅𝑅aobservable 𝒙𝒙𝐨𝐨 𝑅𝑅o non−sensed 𝒙𝒙𝐧𝐧 𝑅𝑅n

non−sensed 𝒙𝒙𝐧𝐧 𝑅𝑅n

observable 𝒙𝒙𝐨𝐨 𝑅𝑅o non−sensed 𝒙𝒙𝐧𝐧 𝑅𝑅nobservable dir. 𝝌𝝌o 𝜌𝜌o unobservable dir. 𝝌𝝌u 𝜌𝜌u

observable extents and extent directions �𝝌𝝌o (𝐴𝐴) unobservable extents and extent directions �𝝌𝝌u (𝑅𝑅 − 𝐴𝐴)

Figure 1. Labeling of the R extents as sensed, non-sensed, observable, and ambiguous. The ambiguous
extents are spanned by ρo observable and ρu unobservable extent directions. This way, the extent space
can be represented by A = Ro + ρo observable extents and extent directions, and R− A = Rn + ρu

unobservable extents and extent directions.

With the above definitions, (5) can be reformulated as:

n(t) = n0 + Ns,•
T xs(t) + Nn,•

T xn(t)

= n0 + No,•
T xo(t) + Na,•

T xa(t) + Nn,•
T xn(t). (12)

Furthermore, it follows from G•,n = 0M×Rn that
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ỹh = y0 +
1
V

G•,s xs(th) + εh

= y0 +
1
V

G•,o xo(th) +
1
V

G•,a xa(th) + εh. (13)

3.2.3. Practical Cases

Depending on the values of A, M, and R, one can distinguish the following cases:

I. Full-rank extent-based measurement matrix (A = R). This occurs when there are at least as
many measurements as reactions (M ≥ R) and the matrix G is full column rank. As a result,
Rn = 0, Ro = R, and Ra = 0. This is the most frequently studied case, e.g., in [5–7]. This case
enables computing unique values for the R extents by means of a linear transformation [5],
thus allowing the estimation of kinetic parameters for each reaction rate model individually.

II. Rank-deficient measurement matrix (A < R). If A < R, for example because there are fewer
measurements than reactions (M < R), it is no longer possible to compute all R extents from
M measurements without additional information such as an established kinetic model. One
can distinguish two situations within this case:

(a) No ambiguity (Ra = 0). In this case, Ro = A and Ro + Rn = R. As shown in [8],
it is possible in this case to implement efficient parameter estimation by identifying
subsystems of the complete model that include a subset of the kinetic rate laws and
their parameters.

(b) Ambiguity present (0 < Ra ≤ A). This situation results in Ro < A. For this case,
no generally applicable method for incremental parameter estimation is available
until now.

The method proposed in this work is developed with the aim of handling all the above cases in a
single framework for extent-based kinetic parameter estimation.

3.3. Observable and Unobservable Extent Directions

The ambiguous extents are now investigated in more detail to determine observable directions
among them.

3.3.1. Factorization of G•,a

Let ρo be the rank of the (M × Ra)-dimensional measurement matrix G•,a. Then, G•,a can be
factorized into the (M × ρo)-dimensional measurement matrix Go and the (Ra × ρo)-dimensional
matrix Vo:

G•,a = Go Vo
T. (14)

Using the reduced row echelon form B•,a, the matrices Go and Vo are computed as follows:

• Vo
T is obtained by selecting the ρo non-zero rows in B•,a,

• Go is the matrix composed of the columns of G•,a corresponding to the column positions of the
first non-zero elements in the rows of Vo

T.

3.3.2. Definition of Observable and Unobservable Extent Directions

The term G•,a xa(th) in (13) can be expressed as:

G•,a xa(t) = Go Vo
T xa(t) = Go χo(t), (15)
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with χo(t) the ρo-dimensional vector of observable extent directions among the ambiguous extents:

χo(t) := Vo
T xa(t) = Vo

T Ia,• x(t), (16)

where the (Ra × R)-dimensional matrix Ia,• includes the rows a of the identity matrix IR such that

xa(t) = Ia,• x(t). (17)

Equation (15) indicates that while the extents xa(t) cannot be observed individually, their
combined effects on the measurements can be observed as the linear combinations χo(t).

Remark 1. The unobservable extent directions span the null space of G•,a, which is also the null space of Vo
T.

Denoting this null space by the (Ra × ρu)-dimensional matrix Vu ,

Vu = null
(

Vo
T
)

, (18)

with ρu = (Ra − ρo), one can define the ρu-dimensional vector of unobservable extent directions χu(t) as:

χu(t) := Vu
T xa(t) = Vu

T Ia,• x(t). (19)

3.4. Observable Extents and Extent Directions

We further define the vector χo(t) consisting of the A = Ro + ρo observable extents and extent
directions as follows:

χo(t) :=

[
xo(t)
χo(t)

]
=

[
xo(t)

Vo
T xa(t)

]
. (20)

With this definition, the measurement Equation (13) can be rewritten as:

ỹh = y0 +
1
V

G•,o xo(th) +
1
V

Go χo(t) + εh

= y0 +
1
V

Go χo(th) + εh, (21)

with Go, an (M× A)-dimensional matrix, constructed as

Go :=
[

G•,o Go

]
. (22)

Since the (Ra × A)-dimensional matrix Go has full column rank, (21) can be used to compute
the maximum-likelihood estimates χ̃o,h of the observable extents and extent directions directly from
the measurements:

χ̃o,h = P (ỹh − y0) , (23)

with the (A×M)-dimensional matrix P given by:

P = V
(
Go

T
Σ−1

ε Go

)−1
Go

T
Σ−1

ε . (24)

The associated expected variance-covariance matrix of the estimation errors becomes:

Σχ = P Σε PT =
(
Go

T
Σ−1

ε Go

)−1
. (25)
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3.5. Unobservable Extents and Extent Directions

We finally define the vector χu(t) consisting of the R− A = Rn + ρu unobservable extents and
non-sensed extent directions as follows:

χu(t) :=

[
xn(t)
χu(t)

]
=

[
xn(t)

Vu
T xa(t)

]
=

[
In,•

Vu
T Ia,•

]
x(t). (26)

With this definition, the expression for the number of moles (12) can be rewritten as:

n(t) = n0 + No,•
T xo(t) + Na,•

T
(
(Vo)

+T
χo(t) + (Vu)

+T
χu(t)

)
+ Nn,•

T xn(t)

= n0 +N o
T

χo(t) +N u
T

χu(t) (27)

with:

N o :=

[
No,•

(Vo)
+ Na,•

]
(28)

N u :=

[
Nn,•

(Vu)
+ Na,•

]
(29)

3.6. System Partitioning

Incremental parameter estimation is based on the possibility of separating the parameter
estimation problem into smaller problems. Ideally, if all extents of reaction could be computed
from measurements, each reaction could be identified individually, that is, independently of the other
reactions. This way, the parameter estimation problem reduces to the solution of R smaller problems.
As discussed in the previous section, some extents may not be observable. For these situations, it would
still be nice to be able to separate the parameter estimation problem into J smaller problems (J ≤ R).
The objective is therefore to partition the reaction system effectively—with as many small groups of
reactions as possible—to simplify the parameter estimation task. The first step to achieve this consists
of system partitioning.

An algorithm is developed to group the kinetic parameters into J parameter subsets (j = 1, . . . , J),
each represented as a T(j)-dimensional vector θ(j) satisfying the following properties:

• The size T(j) of each parameter subset should be as small as possible.

• The estimates θ̂
(j) in the jth parameter subset can be computed without consideration of any other

parameter subset θ(i), i 6= j.
• Each parameter in θ appears in at most one of the parameter subsets θ(j).

This objective is achieved by means of model reformulation and graph-based system partitioning.
The graph-based procedure can be interpreted as a symbolic manipulation of the process model. It does
not require symbolic differentiation, however.

3.6.1. Step 1—Model Reformulation

An extended model is first defined to describe the dynamics of all extents and all observable
directions among the ambiguous extents. To this end, the following procedure is applied:

(a) Express ẋ(t) as a function of χo(t) and x(t)

The dynamic model (6) is modified by replacing n(t) with the right-hand side of (27):

ẋ(t) = V f (χo(t), χu(t), θ) , x(0) = 0 . (30)
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The vector χu(t) is now replaced with the right-hand side of (26). As a result, the above
system becomes:

ẋ(t) = V f (χo(t), x(t), θ) , x(0) = 0 . (31)

(b) State augmentation

Define the ρaug-dimensional vector χaug(t) :=

[
x(t)

χo(t)

]
=

[
IR

Vo
T Ia,•

]
x(t) that includes all

extents and extent directions, with ρaug = R + ρo. The dynamic behavior of χaug(t) can be
described by a differential-algebraic system including the R differential Equation (31) and the
ρo algebraic expressions (16):

ẋ(t) = V f (χo(t), x(t), θ) , x(0) = 0 (32)

χo(t) = Vo
T Ia,• x(t) . (33)

(c) Interpolation of the observable extents and extent directions

To increase the efficiency of system partitioning, it is useful to account for the fact that the
observable extents and extent directions can be expressed in terms of measurements. However,
since the observable extents and extent directions are only known at H discrete measurement
points, their values always need to be obtained via interpolation. In this work, we apply
piece-wise linear interpolation as follows:

χ̃o,i(t) := χ̃o,h +
t− th

th+1 − th

(
χ̃o,h+1 − χ̃o,h

)
, th ≤ t < th+1 , h = 1, . . . , H, (34)

with which the system (32) and (33) becomes:

ẋ(t) = V f
(
χ̃o,i(t), x(t), θ

)
, x(0) = 0 (35)

χo(t) = Vo
T Ia,• x(t) . (36)

3.6.2. Step 2—Graph-Based System Partitioning

The equation system (35) and (36) is now analyzed by means of a graph partitioning procedure
to determine the smallest groups of kinetic parameters that can be estimated separately. To this end,
the following steps are performed:

(a) Create a graph
One creates a directed graph F with a vertex for every state variable in χaug(t) and every
parameter in θ. Hence, this graph has R + ρo + T vertices. A directed arc is added from vertex
v to vertex w if the vth element of

[
χaug(t)

θ

]
appears in the right-hand side of the wth equation in

(35) and (36) (v = 1, . . . , R + ρo + T, w = 1, . . . , R + ρo). This graph represents the information
flow for simulating (35) and (36). Additional arcs and vertices may be added to describe the
influence of known inputs and the links between extents and measured variables. For system
partitioning, this is however unnecessary and omitted for clarity.

(b) Extents predicted from measurements or simulation
The simultaneous approach uses a complete model of the reaction system to predict the extents
(or concentrations) via simulation. If one wants to partition the reaction system into small
groups of reactions, only the extents belonging to a given group can be generated via the
simulation of that group. The other extents that enter the rate laws must be provided by the
user as quantities known from measurements.
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That information can be included in the graph F by annotating the various arcs. The arcs
that originate at a vertex corresponding to an observable extent or an observable extent
direction are labeled observation arcs, considering that observable extent or an observable extent
direction can be replaced with their measured values (34). They are visualized as dashed-line
arrows. The remaining arcs are labeled simulation arcs and visualized as solid-line arrows. The
observation arcs represent the idea that the elements of χ̃o,i(t) can be regarded as known inputs
for simulating (35) and (36).

(c) Subgraph selection
Identify the J subgraphsF (j) consisting of arcs and vertices inF on directed paths that (i) lead to
a vertex representing an observable extent or an observable extent direction; and (ii) consist of
simulation arcs only. The selected vertices represent an R(j)-dimensional vector of extents x(j)(t),
a ρ

(j)
o -dimensional vector of directions χ

(j)
o (t), and a T(j)-dimensional vector of parameters θ(j).

The positions of x(j)(t) in x(t) are given by the vector j so that:

x(j)(t) := Ij,• x(t) (37)

f (j) (•) := Ij,• f (•) , (38)

and the selection matrices Λ
(j)
o and Λ

(j)
θ are defined so that:

χ
(j)
o (t) := Λ

(j)
o χo(t) (39)

θ(j) := Λ
(j)
θ θ. (40)

This means that each subgraph F (j) represents a subset of Equations (35) and (36) that describes
the dynamics of x(j)(t) and χ

(j)
o (t) without reference to any other state variable:

ẋ(j)(t) = V f (j)
(

χ̃o,i(t), x(j)(t), θ(j)
)

, x(j)(0) = xo (41)

χ
(j)
o (t) = U(j) x(j)(t), (42)

with U(j) := Λ
(j)
o Vo

T Ia,• Ij,•
T .

(d) Add observation arcs and vertices

For every graph F (j), add (i) the observation arcs that have a target vertex belonging to F (j)

and (ii) the source vertices of the added observation arcs. These added source vertices represent
the minimal subset of interpolants in χ̃o,i(t) (34) that are required to simulate x(j)(t) and χ

(j)
o (t)

and are referred to as χ̃
(j)
o,i (t). This means that the graph F (j) now represents all information

required to simulate the observable extents x(j)(t) and the observable extent directions χ
(j)
o (t).

Accordingly, one can rewrite the jth equation subsystem as:

ẋ(j)(t) = V f (j)
(

χ̃
(j)
o,i (t), χ

(j)
o (t), x(j)(t), θ(j)

)
, x(j)(0) = xo (43)

χ
(j)
o (t) = U(j) x(j)(t). (44)

At the end of this procedure, the equation system (35) and (36) is approximated by J smaller
equation subsystems, each including a subset of the kinetic parameters. As intended, every kinetic
parameter appears in at most one of the J subsystems. In addition, the identified subsystems do not
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share any of the observable extents or extent directions as state variables, that is, each observable
extent and extent direction is simulated in only one of the identified subsystems.

3.7. Parameter Estimation Methods

In this work, we solve the parameter estimation problem in two distinct ways. The first way
consists in a simultaneous estimation of all parameters in the maximum-likelihood sense. The second
way consists in an extent-based incremental parameter estimation. The next paragraphs describe how
incremental parameter estimation approximates the simultaneous estimation procedure to minimize
the number of parameters that are estimated together.

3.7.1. Simultaneous Parameter Estimation

Maximum-likelihood estimation of the kinetic parameters can be obtained by solving
minimization of the weighted mean squared error:

Problem P0

θ̂ = arg min
θ

Q0 :=
1

H ·M
H

∑
h
(ỹh − y(th))

T
Σ−1

ε (ỹh − y(th)) , (45)

subject to (1)–(3). This estimation problem can be equivalently formulated in terms of the computed
extents as follows:

Problem P∗0

θ̂ = arg min
θ

Q∗0 :=
H

∑
h

(
χ̃o,h − χo(th)

)T W
(
χ̃o,h − χo(th)

)
, (46)

subject to (6)–(8) and (20) and with W := Σ−1
χ .

3.7.2. Incremental Parameter Estimation

The incremental parameter estimation procedure is obtained by applying two modifications,
A and B, to problem P∗0 .

(a) Modification A: Removing correlation terms. Let A(j) = R(j)
o + ρ

(j)
o and define the A(j)-dimensional

vector of observable extents and extent directions χ
(j)
o (t). This vector includes all observable

extents x(j)
o (t), whose positions in x(j)(t) are given by the vector o(j), and all observable extent

directions χ
(j)
o (t) in Subsystem j. We further define the matrix U(j) so that:

x(j)
o (t) := Io(j),• x(j)(t) (47)

χ
(j)
o (t) =

[
x(j)

o (t)
χ
(j)
o (t)

]
= U(j) x(j)(t) (48)

U(j) :=

[
Io(j),•
U(j)

]
. (49)

The A(j)-dimensional vector χ̃
(j)
o,h is then defined by selecting the elements of χ̃o,h as:

χ̃
(j)
o,h := Ie(j),• χ̃o,h , (50)
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where the vector e(j) gives the positions of χ̃
(j)
o,h in χ̃o,h. Now define the residuals d(j)

h associated
with subsystem j:

d(j)
h := χ̃

(j)
o,h − χ

(j)
o (th) (51)

This way, the objective function Q∗0 defined above can be reformulated as:

Q∗0 =
H

∑
h

J

∑
i

J

∑
j

d(i)
h

T
Ie(i),• W Ie(j),•

Td(j)
h

=
H

∑
h

(
J

∑
j

d(j)
h

T
W(j) d(j)

h + ∑
i,j: i 6=j

d(i)
h

T
Ie(i),• W Ie(j),•

T d(j)
h

)
(52)

and can subsequently approximated with Q1:

Q∗0 ≈ Q1 :=
J

∑
j

H

∑
h

d(j)
h

T
W(j) , d(j)

h (53)

with W(j) := Ie(j),• W Ie(j),•
T. This first modification results in:

Problem P1

θ̂ = arg min
θ

Q1 :=
J

∑
j

H

∑
h

d(j)
h

T
W(j) d(j)

h , (54)

subject to (6)–(8) and (20). This error due to this approximation is referred to as Type A
approximation error. This error is zero if all matrices Ie(i),• W Ie(j),•

T, i 6= j, are zero matrices.

This is true when the correlation between the estimation errors of any element in χ̃
(i)
o,h and any

element of χ̃
(j)
o,h (i 6= j) is zero.

(b) Modification B: Separation of problem P1 into J smaller problems P(j)
1 . An approximation to problem

P1 is now obtained by optimizing each of the J terms in (54) separately and simulating the
values of χ

(j)
o (th) with (43) and (44). We refer to each problem as P(j)

1 :

Problem P(j)
1

θ̂
(j)

= arg min
θ

Q(j)
1 :=

H

∑
h

d(j)
h

T
W(j) d(j)

h (55)

subject to

ẋ(j)(t) = V f (j)
(

χ̃
(j)
o,i (t), χ

(j)
o (t), x(j)(t), θ(j)

)
, x(j)(0) = 0 (56)

χ
(j)
o (t) = U(j) x(j)(t) (57)

d(j)
h = χ̃

(j)
o,h − χ

(j)
o (th) = χ̃

(j)
o,h −U(j) x(j)(th) . (58)

The most important feature of problems P(j)
1 , j = 1, . . . , J, is that each of them involves only a
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small number of parameters θ(j). Please note that the approximation of problem P1 by this set
of problems P(j)

1 is perfect in the special case where the right-hand sides (56) do not involve

interpolated extents, that is, if the vectors χ̃
(j)
o,i (t) (j = 1, . . . , J) are empty. Another error, named

Type B approximation error, is introduced when this is not the case.

Thanks to two modifications of problem P0, one obtains J smaller problems P(j)
1 , each of which

includes only a fraction of the original set of parameters. The price to pay for such a simplification is a
deviation from maximum likelihood due to the introduction of approximation errors (type A & B).
These errors are often marginal as demonstrated below.

As in previous work [5–7], the parameter estimates obtained by solving problem P(j)
1 (j = 1, . . . , J)

can serve as reliable initial guesses to initiate the solution to problem P0. The problem P0 when solved
with these initial guesses is named problem P1+0.

3.8. Implementation

All results can be reproduced with the open-source Efficient Model Identification (EMI) MATLAB
package for efficient model identification [6] that includes all methods and simulations used in this
study. This package is added in the Supplementary Information (Section A).

4. Results

We first explain the results obtained within an extensive simulation study to demonstrate the
method. After that, results obtained with an experimental data set are used to demonstrate real-world
applicability.

4.1. Simulation Study

The developed methods are demonstrated via a batch reaction system and investigating 5 different
measurement scenarios (A–E). The reaction system is described first. Then, scenario A and its results
are discussed in detail. The results for scenarios B to E are only summarized, with the details described
in the Supplementary Information (Section B).

4.1.1. Reaction System

This reaction system has R = 5 reactions involving S = 6 species (A to F) with the following
reaction scheme:

R1 : A+B −−→ C

R2 : 2 A −−→ D

R3 : 2 C −−→ B +D

R4 : D −−→ E

R5 : 2 D −−→ E + F

with

N :=


−1 −1 +1 0 0 0
−2 0 0 +1 0 0
0 +1 −2 +1 0 0
0 0 0 −1 +1 0
0 0 0 −2 +1 +1

 . (59)
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4.1.2. Dynamic Model in Terms of Numbers of Moles

The simulated kinetic rate expressions are:

f (n(t), θ) :=



k1

(
n1(t)

V
n2(t)

V − K1
n3(t)

V

)
k2

(
n1(t)

V

)2

k3
n3(t)

V
k4

n4(t)
V

k5

(
n4(t)

V

)2


(60)

with θ :=
[

k1 k2 k3 k4 k5 K1

]T
. The ground truth values of the kinetic parameters are given

in Table 2.

Table 2. Scenario A—Parameter estimates. Model simulation and parameter estimation results: kinetic
parameters and model fit. All parameter estimates are reported with their standard deviation based on

the Laplacian approximation of the likelihood function (i.e., exp (−Q0), exp
(
−Q(j)

1

)
).

Name Unit True Value P0 P(j)
1 P1+0

θ1 k1 L mol−1 h−1 2.0 1.9490 (±0.0003) 2.0010 (±3.3625) 1.9857 (±0.0001)
θ2 k2 L mol−1 h−1 0.5 0.4929 (±0.0002) 0.5006 (±2.4090) 0.4771 (±0.0001)
θ3 k3 h−1 1.0 1.0056 (±0.0827) 0.8955 (±0.0002) 0.9974 (±0.0805)
θ4 k4 h−1 0.4 0.4342 (±0.4275) 0.4003 (±2.6400) 0.4606 (±0.1309)
θ5 k5 L mol−1 h−1 1.6 1.2285 (±2.5160) 1.6009 (±2.9587) 1.2111 (±0.8018)
θ6 K1 mol L−1 1.4 1.3435 (±0.1016) 1.4001 (±2.9081) 1.3986 (±0.1135)√

Q0
H·M WRMSR − 0.44731 0.47934 0.44771

The initial conditions are n0 :=
[

0.73 0.42 0 0 0 0
]T

mol, and the reactor volume is
V = 1L. In all investigated scenarios, measurements are taken at intervals of 5 min during 10 h
(H = 121, th = 0, 1/12, 2/12, . . . , 10).

4.1.3. Scenario A

The first scenario considers the case where the concentrations of B and C and the sum of the
concentrations of E and F are measured, that is,

M :=

 0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 1

 . (61)

The measurement error-covariance matrix is Σε = diag

([
1 1 2

]T
)

10−4 mol2L−2. Figure 2

shows the simulated noise-free and noisy measurements.

Extent labeling

To specify the measurement model in terms of extents (7), one needs to specify y0 and G:

y0 = M n0 =
[

0.42 0 0
]T

(62)

G = M NT =

 −1 0 +1 0 0
+1 0 −2 0 0
0 0 0 +1 +2

 . (63)
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The reduced row echelon form of G is

B =

 +1 0 0 0 0
0 0 +1 0 0
0 0 0 +1 +2

 , (64)

which indicates that there are:

• Rn = 1 non-sensed extent, xn(t) = x2(t),

• Ro = 2 observable extents, xo(t) =
[

x1(t) x3(t)
]T

,

• Ra = 2 ambiguous extents, xa(t) =
[

x4(t) x5(t)
]T

,

which gives:

G•,a =

 0 0
0 0
+1 +2

 . (65)

Observable extents and extent directions

The factorization of G•,a gives:

Go =

 0
0
+1

 , Vo
T =

[
+1 +2

]
, (66)

so that

χo(t) = Vo
T Ia,• x(t) =

[
0 0 0 1 2

]
x(t) = x4(t) + 2 x5(t) (67)

χo(t) =

 x1(t)
x3(t)
χo(t)

 =

 x1(t)
x3(t)

x4(t) + 2 x5(t)

 . (68)

The values of the observable extents and extent directions χ̃o,h :=
[

x̃1,h x̃3,h χ̃o,h

]T
can be

computed from (23) with

P =

 −2 −1 0
−1 −1 0
0 0 +1

 . (69)

The expected estimation error variance-covariance matrix Σχ is:

Σχ =

 +5 +3 0
+3 +2 0
0 0 +2

 10−4. (70)

This demonstrates that the estimation errors in the first and second observable extents are
uncorrelated with the estimation error in the computed observable extent direction. Please note that
the correlation between the estimation errors of the first and second observable extents is fairly high
( 3√

5·2 = 0.95). Figure 3 shows the computed values of the observable extents and extent direction.
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Figure 2. Scenario A—Simulation. Noise-free and noisy measurements as a function of time.
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Figure 3. Scenario A—Extent computation. Observable extents (x1, x3) and observable extent direction
(χo) and their computed equivalents (x̃1, x̃3, χ̃o).

Expression (27) is then fully specified with the following vectors and matrices:

n0 =



1
1
0
0
0
0


(71)

N o :=

 −1 −1 +1 0 0 0
0 +1 −2 +1 0 0
0 0 0 −1 3

5
2
5

 . (72)

N u :=


0 0 0 0 0 0
−2 0 0 +1 0 0
0 0 0 0 0 0
0 0 0 0 + 2

5 − 2
5

0 0 0 0 − 1
5 + 1

5

 (73)
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Since the 2nd and 3rd column of N u are null vectors, it follows that values of ñ2(t) and ñ3(t) can
be computed based on the interpolated estimates χ̃o,i(t) without the need to simulate x(t). A further
exploration of this idea remains out of the scope of this paper, however.

System partitioning

For simplicity of notation, we omit the time dependence in what follows. For example,

the interpolants χ̃o,i(t) are given as χ̃o,i :=
[

x̃1 x̃3 χ̃o

]T
. Following Steps 1(a)–(b) in Section 3.6.1,

the augmented equation system becomes:

ẋ =



k1
V2 [(n0,1 − x̃1 − 2x2) (n0,2 − x̃1 + x̃3)− K1 (n0,3 + x̃1 − 2x̃3)]

k2
V2 (n0,1 − x̃1 − 2x2)

2

k3
V (n0,3 + x̃1 − 2x̃3)

k4
V (n0,4 + x̃3 − χ̃o + x2)

k5
V2 (n0,4 + x̃3 − χ̃o + x2)

2

 , x (0) = 0 (74)

χo = Vo
T Ia,• x =

[
0 0 0 1 2

]
x = x4 + 2 x5 . (75)

Figure 4 shows the graph corresponding to the above equation system. The vertices corresponding
to the observable extents and extent direction are shaded, while the other vertices are white.
The simulation arcs are shown with full-line arrows, while the observation arcs are shown as
dashed-line arrows. To identify possible subsystems, one removes all the observation arcs, which
results in two subgraphs. The first subgraph includes the parameters k1, k2, k4, k5, and K1, which
affect the observable quantities x1 and χo via a network that also involves the unobservable extents x2,
x4, and x5. The second subgraph is much smaller and includes the parameter k3 that influences the
observable extent x3.

x
1
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x
2

x
4

x
5

k
1
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k
3

k
4

k
5

K
1

Figure 4. Scenario A—Graph F . There are three shaded vertices corresponding the observable extents
(x1, x3) and extent direction (χo). The remaining vertices represent the unobservable extents (x2, x4, x5)
and the parameters (k1, k2, k3, k4, k5, K1). The simulation and observation arcs are shown as solid-line
and dashed-line arrows, respectively. Removing the observation arcs and graph partitioning results
in 2 subgraphs for the parameters as shown in the inset: one graph in which k1, k2, k4, k5, and K1 are
connected to the observable quantities x1 and χo, and another graph in which k3 is connected to the
observable extent x3.
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Accordingly, the J = 2 subsystems are:

ẋ(1) =


ẋ1

ẋ2

ẋ4

ẋ5

 =



k1
V2

[
(n0,1 − x1 − 2x2) (n0,2 − x1 + x̃3)

− K1 (n0,3 + x1 − 2x̃3)
]

k2
V2 (n0,1 − x1 − 2x2)

2

k4
V (n0,4 + x̃3 − χo + x2)

k5
V2 (n0,4 + x̃3 − χo + x2)

2

 , x(1) (0) =


x0,1

x0,2

x0,4

x0,5

 = 0 (76)

χ
(1)
o = χo = x4 + 2 x5, (77)

and

ẋ(2) = ẋ3 =
k3

V
(n0,3 + x̃1 − 2x3) , x(2) (0) = x0,3 = 0 . (78)

The information flows in these subsystems are shown in the inset of Figure 4.

Incremental parameter estimation

The resulting partitioning means that estimates of the first set of parameters θ(1) :=[
k1, k2, k4, k5, K1

]
can be obtained by minimizing a weighted least-squares deviation between

the predicted x1(th) and χo(th) and their measured counterparts x̃1,h and χ̃o,h, that is, by solving

problem P(1)
1 :

θ̂
(1)

= arg min
θ(1)

H

∑
h

d(1)
h

T
W(1) d(1)

h (79)

subject to
ẋ1(t)

ẋ2(t)
ẋ4(t)
ẋ5(t)

 =



k1
V2

[
(n0,1 − x1(t)− 2x2(t)) (n0,2 − x1(t) + x̃3(t))

− K1 (n0,3 + x1(t)− 2x̃3(t))
]

k2
V2 (n0,1 − x1(t)− 2x2(t))

2

k4
V (n0,4 + x̃3(t)− χo(t) + x2(t))

k5
V2 (n0,4 + x̃3(t)− χo(t) + x2(t))

2

 ,


x1(0)

x2(0)
x4(0)
x5(0)

 = 0 (80)

χo(t) = x4(t) + 2 x5(t) (81)

d(1)
h =

[
x̃1,h
χ̃o,h

]
−
[

x1(th)

χo(th)

]
, (82)

where

W(1) := L(1)
e Σ−1

χ L(1)
e

T
=

[
+1 0 0
0 0 +1

] 
 2 −3 0
−3 5 0
0 0 1/2

 104

 [
1 0 0
0 0 1

]T

(83)

=

[
2 0
0 1/2

]
104. (84)

The second set of parameters consists of k3 only, θ(2) := k3. Its value can be obtained by
minimizing the least-squares deviation between x3(th) and its measured counterparts x̃3,h, that is,

by solving problem P(2)
1 :
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θ̂(2) = arg min
θ(2)

H

∑
h

(
d(2)h

)2
(85)

subject to

ẋ3(t) =
k3

V
(n0,3 + x̃1(t)− 2x3(t)) , x3(0) = 0 (86)

d(2)h = x̃3,h − x3(th) . (87)

Figure 5 shows the measured concentrations and the simulated profiles obtained with (i) the true
parameters; (ii) simultaneous parameter estimation (P0); and (iii) incremental parameter estimation
(P(1)

1 and P(2)
1 ). All simulated profiles describe the experiment well and are practically indistinguishable.

The parameter values obtained by solving P0, P(1)
1 , P(2)

1 , and P1+0 are shown in Table 2. All parameter
estimates are in close agreement to each other. It is worth noting that the parameter k2 can be estimated
even if the corresponding extent x2 is labeled non-sensed, i.e., our results suggest that this parameter
is both structurally and practically identifiable.
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Figure 5. Scenario A—Parameter estimation. Measured concentrations and simulated profiles obtained
with (i) true parameters; (ii) simultaneous parameter estimation (P0); and (iii) incremental parameter

estimation (P(1)
1 and P(2)

1 ). The produced simulation results exhibit strong overlap, meaning that the
identified models closely approximate the ground truth model.

4.1.4. Scenario B

Scenario B assumes concentration measurements for the species B and C only:

M :=

[
0 1 0 0 0 0
0 0 1 0 0 0

]
. (88)

The measurement error-covariance matrix is Σε = diag

([
1 1

]T
)

10−4 mol2L−2. The reduced

row echelon form of G is:

B =

[
+1 0 0 0 0
0 0 +1 0 0

]
, (89)

which leads to the following extent labeling:
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• Rn = 3 non-sensed extents, xn(t) =
[

x2(t) x4(t) x5(t)
]T

,

• Ro = 2 observable extents, xo(t) =
[

x1(t) x3(t)
]T

,

• Ra = 0 ambiguous extents.

Please note that the extent-based method proposed in [8] applies in this case since Ra = 0.
Figure 6 shows the corresponding graph F , which can be partitioned into J = 2 subsystems

and a leftover part. The first subgraph includes the parameters k1, k2, and K1 since they all
have some effect on the observable extent x1 via a network that also involves the unobservable
extent x2. The second subgraph includes the parameter k3 that influences the observable extent
x3. The information flows in these subsystems are shown in the inset of Figure 6. The leftover
part includes the parameters k4 and k5 and the extents x4 and x5. These parameters and variables
are not part of any of the identified subsystems because there are no directed paths composed of
simulation arcs from the corresponding vertices to any of the observable extents. Hence, it follows that
these parameters are unidentifiable. This is consistent with the method proposed in [8] (not shown).
Clearly, the graph-based partitioning procedure shows potential for parameter identifiability analysis,
which is discussed as an opportunity below.
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Figure 6. Scenario B—Graph F . There are two shaded vertices corresponding the observable extents
(x1, x3). Removing the observation arcs and graph partitioning results in 2 subgraphs for the parameters
as shown in the inset: one graph in which k1, k2, and K1 affect the observable extent x1, a second graph
in which k3 affects the observable extent x3. The vertices k4 and k5 have no effect on the observable
extents x1 and x3.

4.1.5. Scenario C

Scenario C assumes concentration measurements for the species B, C, E, and F:

M :=


0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 . (90)
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The measurement error-covariance matrix is Σε = diag

([
1 1 1 1

]T
)

10−4 mol2L−2.

The reduced row echelon form of G is:

B =


+1 0 0 0 0
0 0 +1 0 0
0 0 0 +1 0
0 0 0 0 +1

 , (91)

which leads to the following extent labeling:

• Rn = 1 non-sensed extents, xn(t) = x2(t).

• Ro = 4 observable extents, xo(t) =
[

x1(t) x3(t) x4(t) x6(t)
]T

.

• Ra = 0 ambiguous extents.

Figure 7 shows the corresponding graph F , which can be partitioned into 2 subsystems. The first
subgraph includes the parameters k1, k2, k4, k5, and K1 since they all have some effect on the observable
extents x1, x4, and x5 via a network that also involves the unobservable extents x2. The second subgraph
includes the parameter k3 that influences the observable extent x3. The information flows in these
subsystems are shown in the inset of Figure 7. Although the assignment of the parameters is the
same as in scenario A, the parameter estimation problems are different since the fit of subsystem 1 is
determined with respect to x̃1, x̃4, and x̃5 in scenario C, compared to only x̃1 and χ̃o in scenario A.
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Figure 7. Scenario C—Graph F . There are 4 shaded vertices corresponding to the observable extents x1,
x3, x4, and x5. Removing the observation arcs results in 2 subgraphs for the parameters as shown in the
inset: one graph in which k1, k2, k4, k5, and K1 affect the observable extents x1, x4, and x5, and another
graph in which k3 affect the observable extent x3.

4.1.6. Scenario D

Scenario D assumes concentration measurements for the species A, C, and E:

M :=

 1 0 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

 . (92)
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The measurement error-covariance matrix is Σε = diag

([
1 1 1

]T
)

10−4 mol2L−2. The

reduced row echelon form of G is:

B =


+1 0 −2 0 0
0 +1 +1 0 0
0 0 0 +1 +1
0 0 0 0 0

 , (93)

which leads to the following extent labeling:

• Rn = 0 non-sensed extents,
• Ro = 0 observable extents,

• Ra = 5 ambiguous extents, xa(t) =
[

x1(t) x2(t) x3(t) x4(t) x6(t)
]T

.

From A = rank (B) = 3 and Ro = 0, one sees that there are ρo = A− Ro = 3 observable extent
directions among the 5 ambiguous extents. The first two are linear combinations of x1, x2, and x3,
while the third one is a linear combination of x4 and x5. This particular appearance of extents in subsets
of the observable directions stems from the subspace clustering property of the reduced row echelon
form and will be discussed in some more detail below.

Figure 8 shows the corresponding graph F , which can be partitioned into 2 subsystems. The first
subgraph includes the parameters k1, k2, k3, and K1 since they all have some effect on the observable
extent directions χo,1 and χo,2 via a network that also involves the unobservable extents x1, x2, and x3.
The second subgraph includes the parameters k4 and k5 that influence the observable extent direction
χo,3 via a network that also involves the unobservable extents x4 and x5. Hence, this leads to two
parameter estimation problems involving 4 and 2 parameters, respectively. The information flows to
simulate each of the corresponding subsystems are shown in the inset of Figure 8.
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Figure 8. Scenario D—Graph F . There are 3 shaded vertices corresponding the observable extent
directions χo,1, χo,2, and χo,3. Removing the observation arcs results in 2 subgraphs for the parameters
as shown in the inset: one graph in which k1, k2, k3, and K1 affect the observable extent directions χo,1

and χo,2, and another graph in which k4 and k5 affect the observable extent direction χo,3.
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4.1.7. Scenario E

Scenario E assumes concentration measurements of all species:

M := I6 . (94)

The measurement error-covariance matrix is Σε = diag

([
1 1 1 1 1 1

]T
)

10−4 mol2L−2.

The reduced row echelon form of G is:

B =



+1 0 0 0 0
0 +1 0 0 0
0 0 +1 0 0
0 0 0 +1 0
0 0 0 0 +1
0 0 0 0 0


, (95)

which leads to the following extent labeling:

• Rn = 0 non-sensed extents,

• Ro = 5 observable extents, xo(t) =
[

x1(t) x2(t) x3(t) x4(t) x6(t)
]T

,

• Ra = 0 ambiguous extents.

This means that the original framework for extent computation, which assumes A = R
(Section 3.2.3), applies.

Figure 9 shows the graph F , which can be partitioned into 5 subsystems that include the
parameters as follows: (i) k1 and K1; (ii) k2; (iii) k3; (iv) k4; and (v) k5. Hence, one obtains 5 entirely
decoupled parameter estimation problems. This set of optimization problems is the same as those
obtained with the original extent-based model identification method as is also clear from the inset of
Figure 9.

x
1

x
2

x
3

x
4

x
5

k
1

k
2

k
3

k
4

k
5

K
1

Figure 9. Scenario E—Graph F . All extent vertices are observable and thus shaded. Removing the
observation arcs results in 5 subgraphs for the parameters as shown in the inset: k1 and K1 are estimated
from x1, k2 from x2, k3 from x3, k4 from x4, and k5 from x5.
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4.2. Experimental Study

To explore the applicability of the novel incremental parameter estimation method with realistic
laboratory data, we execute parameter estimation for the α-pinene batch experiment first reported
in [11] and later studied in [12–16]. The reaction network consists of 5 species. These species are
labeled A, B, C, D, and E and correspond to α-pinene, dipentene, allo-ocimene, pyronene, and dimer.
The reaction network is:

R1 : A −−→ B

R2 : A −−→ C

R3 : C −−→ D

R4 : C −−→ E

R5 : E −−→ C

As in [12], the model is defined with the following stoichiometric matrix and process rates:

N :=


−1 +1 0 0 0
−1 0 +1 0 0
0 0 −1 +1 0
0 0 −1 0 +1
0 0 +1 0 −1

 (96)

r :=


k1

n1(t)
V

k2
n1(t)

V
k3

n3(t)
V

k4
n3(t)

V
k5

n5(t)
V

 . (97)

At the start of the batch experiment, only A is present. As explained in [12], the concentrations
of all species but D are measured. The concentrations of D are obtained by assuming that 3%
of the transformed A is present as D at all times. Finally, all concentrations are normalized to
1 (100%). Figure 10 shows the experimental data reported in [12]. As the initial numbers of moles
and the volume are unknown, we express both the concentrations and the extents as dimensionless
fractions of the numbers of moles relative to the initial numbers of moles of A. Hence, we can write

n0 :=
[

1 0 0 0 0
]T

.

Extent labeling

For extent labeling, we assume that all species are measured with independent zero-mean
Gaussian measurement errors, similar to the least-squares approach of [12]:

M := I5 . (98)

It follows that

G = M NT =


−1 −1 0 0 0
1 0 0 0 0
0 1 −1 −1 1
0 0 1 0 0
0 0 0 1 −1

 . (99)
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The reduced row echelon form of G is

B =


+1 0 0 0 0
0 +1 0 0 0
0 0 +1 0 0
0 0 0 +1 −1

 , (100)

which indicates that there are:

• Rn = 0 non-sensed extents,

• Ro = 3 observable extents, xo(t) =
[

x1(t) x2(t) x3(t)
]T

,

• Ra = 2 ambiguous extents, xa(t) =
[

x4(t) x5(t)
]T

,

which delivers:

G•,a =


0 0
0 0
−1 +1
0 0
+1 −1

 . (101)

Observable extents and extent directions

The factorization of G•,a gives:

Go =


0
0
0
+1

 , Vo
T =

[
+1 −1

]
, (102)

so that

χo(t) = Vo
T Ia,• x(t) =

[
0 0 0 1 −1

]
x(t) = x4(t)− x5(t) (103)

χo(t) =


x1(t)
x2(t)
x3(t)
χo(t)

 =


x1(t)
x2(t)
x3(t)

x4(t)− x5(t)

 . (104)

Figure 11 shows the computed values of the observable extents and extent direction assuming
these definitions. The corresponding error variance-covariance matrix is:

Σχ =


+0.8 −0.6 −0.2 −0.2
−0.6 +1.2 +0.4 +0.4
−0.2 +0.4 +0.8 −0.2
−0.2 +0.4 −0.2 +0.8

 σ (105)

with σ the (unknown) measurement error variance.
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Figure 10. α-pinene—Parameter estimation. Measured concentrations and simulated profiles obtained

with (i) incremental parameter estimation (P(j)
1 , j = 1, . . . , 4) followed by (ii) simultaneous parameter

estimation (P1+0). The produced simulation results exhibit strong overlap, meaning that both models
produce very similar results.
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Figure 11. α-pinene—Extents. Computed extents and simulated profiles obtained following

incremental parameter estimation (P(j)
1 , j = 1, . . . , 4).

System partitioning

As above, we omit the time dependence in what follows. Following Steps 1(a)–(b) in Section 3.6.1,
the augmented equation system becomes:

ẋ =


k1 (n0,1 − x̃1 − 2x̃2)

k2 (n0,1 − x̃1 − 2x̃2)

k3 (n0,3 + x̃2 − x̃3 − χ̃o)

k4 (n0,4 + x̃3)

k5 (n0,5 + χ̃o)

 , x (0) = 0 , (106)

χo = x4 − x5 . (107)

Figure 12 shows the graph corresponding to the above equation system. Removing all the
observation arcs generates 4 subgraphs. The first three subgraphs represent the first three reactions
and include: k1 and x1 (j = 1) ; k2 and x2 (j = 2); and k3 and x3 (j = 3). The fourth graph includes
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the parameters k4 and k5 via a network that also involves the observable extent direction χo and the
unobservable extents x4 and x5 (j = 4).

x
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Figure 12. α-pinene—Graph F . There are four shaded vertices corresponding the observable extents
(x1, x2, x3) and extent direction (χo). The remaining vertices represent the unobservable extents (x4, x5)
and the parameters (k1, k2, k3, k4, k5). The simulation and observation arcs are shown as solid-line
and dashed-line arrows, respectively. Removing the observation arcs and graph partitioning results
in 4 subgraphs for the parameters as shown in the inset: (i) one with vertices for k1 and x1; (ii) one
with vertices for k2 and x2; (iii) one with vertices for k3 and x3; and (iv) one with vertices k4, k5, x4, x5,
and χo.

Accordingly, the J = 4 subsystems are:

ẋ(1) = ẋ1 = k1 (n0,1 − x1 − 2x̃2) , x(1) (0) = x0,1 = 0 , (108)

ẋ(2) = ẋ2 = k2 (n0,1 − x̃1 − 2x2) , x(2) (0) = x0,2 = 0 , (109)

ẋ(3) = ẋ3 = k3 (n0,3 + x̃2 − x3 − χ̃o) , x(3) (0) = x0,3 = 0 , (110)

ẋ(4) =

[
ẋ4

ẋ5

]
=

[
k4 (n0,3 + x̃2 − x̃3 − χ̃o)

k5 (n0,5 + χ̃o)

]
, x(4) (0) =

[
x0,4

x0,5

]
= 0 , (111)

χ
(4)
o = χo = x4 − x5, (112)

The information flows in these subsystems are shown in the inset of Figure 12.

Incremental parameter estimation

The resulting partitioning means that estimates of the k1, k2, and k3 can be obtained by solving
the following three single-parameter estimation problems (P(1)

1 , P(2)
1 , P(3)

1 ):

P(1)
1 : k̂1 = arg min

k1

H

∑
h
(x̃1,h − x1(th))

T W(1) (x̃1,h − x1(th)) (113)

subject to

ẋ(1) = ẋ1 = k1 (n0,1 − x1 − 2x̃2) , x(1) (0) = x0,1 = 0 (114)
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where

W(1) := 5/4 (115)

P(2)
1 : k̂2 = arg min

k2

H

∑
h
(x̃2,h − x2(th))

T W(2) (x̃2,h − x2(th)) (116)

subject to

ẋ(2) = ẋ2 = k2 (n0,1 − x̃1 − 2x2) , x(2) (0) = x0,2 = 0 (117)

where

W(2) := 5/3 (118)

P(3)
1 : k̂3 = arg min

k3

H

∑
h
(x̃3,h − x3(th))

T W(3) (x̃3,h − x3(th)) (119)

subject to

ẋ(3) = ẋ3 = k3 (n0,3 + x̃2 − x3 − χ̃o) , x(3) (0) = x0,3 = 0 (120)

where

W(3) := 5/4 (121)

The fourth set of parameters, k4 and k5, are estimated by solving the following problem:

P(4)
1 : k̂3, k̂4 = arg min

k3,k4

H

∑
h
(χ̃o,h − χo(th))

T W(4) (χ̃o,h − χo(th)) (122)

subject to

ẋ(4) =

[
ẋ4

ẋ5

]
=

[
k4 (n0,3 + x̃2 − x̃3 − χ̃o)

k5 (n0,5 + χ̃o)

]
, x(4) (0) =

[
x0,4

x0,5

]
= 0 (123)

χ
(4)
o = χo = x4 − x5, (124)

where

W(4) := 5/4 (125)

Please note that the (unknown) measurement error variance σ can arbitrarily be set equal to
one during parameter estimation without affecting the parameter estimates. This, however, means
that parameter uncertainties cannot be quantified in this case without estimating σ as well. This
estimation and subsequent uncertainty analysis is considered out of scope for this study. Figure 11
shows the simulated extent profiles obtained after solving the optimization problems (P(j)

1 , j = 1, . . . , 4).
There is a reasonable fit in all cases, except for the third extent of reaction (x3). This, in the mind of
the authors, demonstrates a tangible benefit of the extent-based model framework. Indeed, one can
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identify which parts of the model could be improved, e.g., by reconsidering the reaction rate expression
corresponding to the computed extents that are approximated poorly. However, this is not explored
further in this work.

Figure 10 shows the measured concentrations and the simulated profiles obtained with (i)
incremental parameter estimation (P(j)

1 , j = 1, . . . , 4), followed by (ii) simultaneous parameter
estimation with estimates obtained through incremental parameter estimation (P1+0). The parameter
values obtained by solving P0, P(1)

1 , P(2)
1 , and P1+0 are shown in Table 3. Note the final values obtained

with both P0 and P1+0 are equal within numerical precision.

Table 3. α-pinene—Parameter estimates. The parameters obtained with simultaneous estimation (P0)
and incremental estimation (P1+0) are practically the same.

Name Unit P0 P(j)
1 P1+0

θ1 k1 % h−1 0.213 0.214 0.213
θ2 k2 % h−1 0.107 0.106 0.107
θ3 k3 % h−1 0.074 0.074 0.074
θ4 k4 % h−1 0.989 1.037 0.989
θ5 k5 % h−1 0.144 0.148 0.144√

Q0
H·M WRMSR − 0.66 0.67 0.66

5. Discussion

A novel procedure for model parameter estimation is proposed. The procedure combines
two important features: (i) a new framework for extent computation based on the computation
of observable directions among the set of sensed but ambiguous extents; and (ii) a graph-based system
partitioning procedure that identifies the groups of equations and kinetic parameters that can be
simulated independently from the remaining part of the dynamic model. The latter is possible by
approximating the original equation system via interpolation of observed extents and extent directions.
The proposed procedure enables splitting the parameter estimation problem into smaller problems in
cases that could so far only be handled with simultaneous model identification methods (e.g., scenario
A, C, and D in Section 4.1). It also subsumes preexisting methods under special conditions such as
complete observability (e.g., scenario E in Section 4.1, [5–7]) or absence of ambiguity (e.g., scenario B
in Section 4.1, [8]). Thus, this procedure is applicable to parameter estimation for any multivariate
differential equation model under a large range of structural observability conditions.

This work removes an important bottleneck for the implementation of incremental model
identification to biological systems. Indeed, by providing a method that can be applied to any
known stoichiometric matrix N and measurement matrix M, incremental model identification is now
applicable to biological processes where the number of measurements M is lower than the number of
modeled reactions R. Computationally speaking, the extent computation and graph-based partitioning
are expected to scale well with the number of modeled reactions. The effects on the computational
efficiency of the parameter estimation step will however depend primarily on the lengths of the state
vectors in the identified subsystems. In turn, these lengths depend strongly on model structure and
the available measured variables and less so on the number of states in the complete system.

A remaining obstacle is the fact that both M and N are assumed to be known. While
several techniques exist to handle this, including methods based on extents [17], some coefficients
in these matrices may be unidentifiable based on atomic and stoichiometric balances alone.
For this reason, dealing with unknown stoichiometry (M) or ill-defined measurements (N) deserves
continued attention.

Another aspect open for exploration is that no global optimization method has been tested so far to
solve the smaller parameter estimation problems P(j)

1 that result from system partitioning. Inspiration
can be drawn from existing parameter estimation methods even if these methods (i) might be complex
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yet without publicly available implementation [18]; or (ii) remain limited to cases where all extents are
observable and therefore modeled as univariate processes for parameter estimation [19,20].

5.1. Generalized Framework for Extent Computation

The addition of new concepts, such as ambiguous extents and observable extent directions
expands the framework for extent computation beyond its original range of applicability. In this study,
the focus has been given to the problem of parameter estimation. However, the same generalized
framework is likely to be applicable and useful for challenges that have been handled with earlier
extent-based methods such as data reconciliation [7], model structure identification [6], and process
control [21]. Moreover, there are no obvious limitations that hinder applications involving multi-phase
or distributed system models [22,23] or models including algebraic constraints [6,22].

5.2. Optimal System Partitioning

According to our understanding, the proposed procedure delivers the most efficient system
partitioning given the available measurements and model information M, f (·), N, and n0. In other
words, the procedure generates the subsystems with the smallest number of parameters that can be
estimated independently from parameters in other subsystems. However, this is stated here without
formal proof. The factorization of G•,a based on the reduced row echelon form of G, as described
in Section 3.3.1, plays a crucial role. Indeed, it follows from work on subspace clustering methods
for noise-free data [24,25] that this factorization minimizes the presence of simulation arcs from the
ambiguous extents to the observable directions, thereby leading to the best possible system partitioning.

Please note that the obtained generalized extent framework is optimal only for the purpose
of parameter estimation. For instance, one could consider a factorization of G•,a which identifies
directions that exhibit uncorrelated estimation errors, thereby improving the statistical quality of the
computed observable directions and possibly avoiding Type A approximation error. This could be
achieved via singular value decomposition of G•,a. However, singular value decomposition cannot
guarantee optimal system partitioning [26]. Consequently, it follows that the optimal factorization of
G•,a depends on the objective of this factorization. This stands in contrast to the existing body of work
concerning extents, which do not involve any such purpose-dependent factorization steps.

Note also that the proposed procedure is designed for the definition of optimality used here.
For instance, if one relaxes the constraint that parameters can only appear in one subsystem
(Section 3.6), then the proposed graph partitioning procedure is not optimal. For example, in scenario
A, one may be able to estimate the parameters in 3 subsets rather than 2, namely, (i) k1, k2, and K1

by simulation of x1(t) and x2(t); (ii) k2, k3, k4, and k5 by simulation of x2(t), x4(t), x5(t), and χo,1(t);
and (iii) k3 by simulation of x3(t). This leads to 3 parameter estimation problems with 3, 4, and
1 parameters, which may be easier to solve than the 2 parameter estimation problems with 5 and
1 parameters as obtained with the proposed procedure. It is however non-trivial to identify a procedure,
including both factorization of G•,a and system partitioning, that guarantees the best partitioning
when applying this relaxed definition of optimality, nor is it clear whether such a procedure exists.

5.3. New Opportunities

This work also hints at several new applications of the generalized framework for
extent computation:

(a) Identifiability analysis. While not a core objective of this work, it has been shown that the
graph partitioning method can help identify unidentifiable parameters. Given that this labeling
is based on a model reformulation and does not depend on the temporal resolution or quality
of the collected measurements, it follows that the method identifies structurally unidentifiable
parameters. Unlike other methods [27], the proposed approach does not require symbolic
differentiation. It remains to be explored whether this can also be used to positively identify
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structurally identifiable parameters. For a discussion on the evaluation and use of indicators of
structural and practical parameter identifiability we refer to [28].

(b) Soft-sensing. The appearance of observable directions among the ambiguous extents is closely
related to the concepts of observability and detectability in the context of state estimation [29].
Note however that the observability labels in this work are based on the stoichiometric balances
and measurement equations alone, thus excluding the dynamic model. At the same time, it is
suspected that the extents corresponding to vertices that are not on directed paths to vertices
representing observable extents or extent directions can be labeled as structurally unobservable,
again observing that the exact timing and quality of the measurements does not play any role in
this labeling. Similarly to the identifiability analysis discussed above, such an approach would
not rely on symbolic differentiation. Whether this can be used to unambiguously determine
observability and detectability for all model states remains to be studied.

(c) Experimental design. The labeling of extents and directions as observable or unobservable
suggests that experimental design may be used to optimize the selection of measured variables.
A method to do so has been applied in [30] to enumerate all Pareto-optimal flow sensor layouts
in wastewater treatment plants. In [31], symbolic computation enabled the identification of
optimal experimental designs. Similar approaches could be applied as a measurement selection
method for metabolic flux analysis and the monitoring of complex systems.

6. Conclusions

In this work, an incremental parameter identification procedure has been developed and tested
based on a generalized extent-based framework. This generalized framework enables incremental
parameter estimation in cases where the previous methods based on the computation of extents did
not permit this. Importantly, through study of simulated and experimental medium-sized examples,
the generality of the developed procedure has been demonstrated and new opportunities offered by
this framework have been identified.
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