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Abstract

Principal component analysis (PCA) is by far the most widespread tool for unsuper-

vised learning with high-dimensional data sets. It is popularly studied for exploratory

data analysis and online process monitoring. Unfortunately, fine-tuning PCA models

and particularly the number of components remains a challenging task. Today, this

selection is often based on a combination of guiding principles, experience, and process

understanding. Unlike the case of regression, where cross-validation of the prediction

error is a widespread and trusted approach for model selection, there are no tools for

PCA model selection enjoying this level of acceptance. In this work, we address this

challenge and evaluate the utility of the cross-validated ignorance score with both simu-

lated and experimental data sets. Application of this model selection criterion is based

on the interpretation of PCA as a density model, as in probabilistic principal compo-

nent analysis. With simulation-based benchmarking, it is shown to be (a) the overall

best performing criterion, (b) the preferred criterion at high noise levels, and (c) very
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robust to changes in noise level. Tests on experimental data sets suggest that the ig-

norance score is sensitive to deviations from the PCA model structure, which suggests

the criterion is also useful to detect of model-reality mismatch.

Introduction

Principal component analysis (PCA) is one of the most popular models for data mining,

machine learning, and process monitoring.1–11 This is partially explained by the widespread

availability of efficient algorithms for data decomposition via PCA. Despite its popularity, it

remains difficult to optimize the single hyper-parameter of PCA models, i.e. the number of

principal components (PCs) that are retained. An associated challenge is that PCA models

can be hard to interpret. In addition, the use of PCA implies that retaining more variance

means capturing more information, an assumption that is often hard to inspect carefully. The

problem of selecting an optimal model hyper-parameter is shared with many unsupervised

learning models.12–14

The adequate selection of the number of PCs is crucial for both applications relying on

data compression (e.g., exploratory analysis) as well as for predictive tasks (e.g., multivari-

ate classification and regression). As a result, a wide variety of criteria for determining the

number of PCs have been proposed.3 A first group of criteria, like the Akaike information

criterion, Kaiser rule, parallel analysis, and the variance of reconstruction error (VRE) are

grounded in theory.15–19 Application of these criteria assumes that (i) the obtained measure-

ments depend linearly on an unknown number of hidden variables and that (ii) the mea-

surement errors are sampled independently from the same univariate normal distribution

and are therefore homoskedastic and uncorrelated. These criteria differ in their definition of

optimality.

When the model structure itself cannot be assumed correct but one still wants to use

PCA for dimensionality reduction, it is recommended to use cross-validated model selection

criteria.16,20 Whereas the use of the cross-validated mean squared residual in linear regres-
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sion21,22 is almost universal, there are no cross-validation methods for PCA that reach this

kind of widespread adoption. The sum-of-squares of prediction error (PRESS) computed

in a row-wise K-fold cross-validation (RKF) pattern is a popular criterion to evaluate PCA

model performance, yet always exhibits a monotonic profile as function of the number of

PCs.23 For this reason, it is inadequate for automated dimensionality selection. Fortunately,

this can be addressed by evaluating the ability of a PCA model to compute another variation

of the PRESS based on missing data imputation. To this end, one repeatedly removes mea-

surements from the data available for model identification and imputes these with the PCA

model24,25. This leads to model selection based on the element-wise K-fold cross-validation

(EKF) of the squared imputation error.26 At this time, the best-known imputation proce-

dures associated with PCA include iterative estimation (ITR), projection to the model plane

(PMP), trimmed score imputation (TRI), and trimmed score regression (TSR). More re-

cently, improved versions of these imputation procedures have been obtained by means of

data augmentation.27 Their imputation performances have been compared for both simu-

lation data and experimental data.27,28 They have not been benchmarked for the purpose

of PCA model selection. Optimal dimensionality selection for data compression with PCA

models forms the focus of our work. Note also that we are particularly focused on finding

methods that enable automation of this modelling step.

An important inconvenience of EKF is that the computational cost does not scale well

with the number of variables in a data set. For this reason, we propose two new criteria for

PCA model selection and compare it to the imputation-based criteria discussed above and

the VRE criterion. The new criteria are based on the application of the ignorance score (IGN)

as a criterion for model selection29 and require that PCA is interpreted as a density model,

as in probabilistic principal component analysis (PPCA).30 Importantly, this approach can

be used with EKF as well as with RKF, in turn leading to a computationally efficient model

selection criterion. To evaluate the performance of both existing and the newly proposed

criteria, we deploy an extensive simulation study of a scale that has not been used before.
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By repeated simulation of benchmarking data sets, we obtain a distribution for the selected

dimensionality, rather than a single selection, in turn making our conclusions stronger.

In what follows, we demonstrate that the overall accuracy of the proposed IGN-EKF and

IGN-RKF criteria is higher than the overall accuracy for a wide range of preexisting model

selection criteria. This is so despite the observed computational savings. We also report on

tests of all considered criteria with two experimental data sets containing light absorbance

spectra. Our tests point out that not a single criterion identifies the expected number of

components. The proposed IGN-EKF and IGN-RKF criteria may however be suited well

to detect this kind of model-reality mismatch. In the following sections, we describe the

simulated and experimental data sets used in this work. We then proceed with a classical

structure including results, discussion, and conclusions.

Materials and Methods

We first describe the simulated and experimental data sets used for this study. After, the

applied methods for data analysis are described in detail. All mathematical symbols are

listed in Table 2. Table 1 lists all acronyms.
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Table 1: List of acronyms

Acronym Full wording

EKF Element-wise K-fold cross-validation

IGN Ignorance score

ITR Iterative estimation

PCA Principal component analysis

PC (PCs) Principal component(s)

PPCA Probabilistic principal component analysis

PMP Projection to the model plane

PRESS Sum-of-squares of prediction error

RKF Row-wise K-fold cross-validation

RMSR Root mean squared residual

RKF Row-wise K-fold cross-validation-wise K-fold cross-validation

TRI Trimmed score imputation

TSR Trimmed score regression

VRE Variance of reconstruction error
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Data sets

Simulated data sets

Simulated data sets are constructed with known numbers of samples (I), variables (J),

and PCs (K). We define the known number of PCs as the number of eigenvalues of the

simulated covariance matrix that are different from the smallest eigenvalue. Each data set

type is indexed as c.s, where c indicates the data set class and s indicates the data set type

in that class. We name the simulated data classes (c) B1, B2, C1, C2, C3, C4 in line with

previous studies.31 The B1 and B2 classes both contain 18 types indicated with s (e.g., c.s =

B1.1,. . ., B1.18). The B1 (B2) class simulates mean-centered data with 9 (18) variables and

the known number of PCs varies between 0 and 7 (13).32 The C1, C2, C3, and C4 classes

simulate 10, 10, 27, and 50 variables with 4, 8, 12, and 15 PCs.27 Each class is simulated with

six different noise levels, which are indicated with s (e.g. c.s = C1.1,. . ., C4.6). The applied

noise levels are 5%, 10%, 20%, 30%, 40%, and 50%. Each simulation of a given data type is

repeated 100 times to enable an accurate evaluation of the expected accuracy of the model

selection criteria. Each repetition is indicated with r (e.g. c.s.r = B1.1.1,. . ., C4.5.100)

The use of repetitions is an important distinction between our benchmark simulations and

earlier studies with this type of simulation data sets. The detailed simulation procedures are

defined in the Supporting Information (Section B).

Experimental data sets

To test the quality of the studied model selection criteria under real-world conditions, we

test their performance also with two experimental data sets. The first one was collected

specifically for this study while the second one was obtained from prior work.33

Nitrogen species data set The first experimental data set was collected in a way that a

PCA model with two PCs is expected to describe the obtained data well. To this end, stock

solutions of nitrite (NO2
– ) and nitrate (NO3

– ) are prepared first. Each of these two stock
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media were prepared as a single batch with target concentrations of 5 g atomic nitrogen per

liter (5 gNO2
– -N/L, 5 gNO3

– -N/L).

With the prepared stock solutions, diluted media were obtained adding 600 mL of nano-

filtered water to a glass cylinder first. Then, well-measured amounts of the two stock solutions

are added in steps of 2 mL with a minimum of 1 and a maximum of 16 steps, leading to a

square two-dimensional grid of added volumes of the two stock solutions as shown in Figure

1. As a result, the expected concentrations of both species range from 15.8 mg N/L (1 step

of one stock solution and 16 steps for the other) to 252.4 mg N/L (e.g., 1 step with NO2
–

and 16 steps with NO3
– stock solution). The order in which the samples were prepared

was randomized partially to avoid temporal correlation within the collected data sets. More

details regarding the experimental procedure used to prepare the solutions are found in the

Supporting Information (Section C).

Immediately after preparation of each diluted solution, five replicate absorbance spectra

were collected by submerging an on-line ultraviolet-visible light absorbance spectrophotome-

ter (spectro::lyserTM , S::CAN Messtechnik, Vienna, Austria) into the diluted solution, thus

producing 1280 spectra in total. The applied spectrophotometer has a light path length of

2 mm and produces measurements which are composed of 215 absorbance values taken at

wavelengths between 200 nm and 735 nm with steps of 2.5 nm. PCA models are studied

for a variety of variable selections for reasons explained below. We refer to the resulting

modified data sets as nitrogen species data set 0 (no variable selection, 215 wavelengths),

nitrogen species data set 1 (wavelengths 285-735 nm, 181 wavelengths), and nitrogen species

data set 2 (wavelengths 285-385 nm, 41 wavelengths).

The design of the experiment includes two factors, the nitrite and nitrate concentration.

According to the Beer-Lambert law, the absorbance measurements depend linearly on these

concentrations. Thus, a model with two components should deliver a good representation

of the collected data. In addition, the number of factors in the experimental design can be

used as a gold standard for evaluation of automatic model selection criteria.
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Figure 1: Nitrogen species data – Experimental design and block assignment. Five
spectra are collected for each combination of added volume of the nitrite and nitrate stock
solutions. The obtained spectra are divided in 16 blocks by means of a randomized Latin
square for the purpose of cross-validation. Each block is indicated with a unique shade.

Metal ion data set The second experimental data set consists of UV-Vis spectra for 26

mixtures of three metal ions (Co(II), Cr(III), and Ni(II)) in water containing 4% nitric acid

(HNO3). These mixtures are obtained with a 3×3×3 full factorial design, while one sample

was omitted during experimental data collection. For each of the mixtures, five spectra are

recorded. The original spectra consist of light absorbance measurements at 176 wavelengths

from 300 nm to 650 nm in steps of 2 nm. For more details on the data collection procedure

we refer to the original publication.33 As in this prior work, two of the spectra are considered

outliers and removed prior to analysis, thus leading to a 128× 176-dimensional data matrix.

This data set is considered to have strongly correlated measurement errors.33 In this work,

these data are used primarily to demonstrate that the results obtained with the nitrogen

species data set are likely for experimental absorbance data.
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Methods

We now explain how the dimensionality for the considered PCA models is identified with 11

model selection criteria. In what follows, we assume that an I × J-dimensional matrix Y

without missing entries is available for model selection.

Cross-validation patterns

In this work, we make use of two cross-validation procedures for model selection, named

RKF and EKF. These are explained next.

Row-wise K-fold cross-validation (RKF). In the row-wise K-fold cross-validation

we split the data into B blocks along the row dimension (b = 1, . . . , B). Each block is

a I(b) × J-dimensional matrix Y(b) with the row dimensions (I(b)) distributed as evenly as

possible. The vector i(b) contains the indices of the rows in Y matching the rows of Y(b). This

is visualized in the left panel of Figure 2. Then, cross-validation with any model selection

criterion computes an I-dimensional vector q of model performance measures as follows:

(a) Set v ← 1

(b) Select block v as the validation data matrix Y(v) and compose the I(c)×J-dimensional

calibration data matrix Y(c) by combining the remaining blocks ({b = 1, . . . , B|b 6= v},

I(c) = I − I(v))

(c) Calibrate the model with Y(c)

(d) Evaluate the model performance for each row in Y(v), leading to an I(v)-dimensional

vector of performance measures, named q(v)

(e) Place all elements of q(v) into the positions i(v) of q

(f) If v < B, set v ← v + 1 and go back to step (b). Otherwise, terminate.
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Figure 2: Cross-validation patterns. Example with I = 20 samples and J = 10 variables.
Left: row-wise K-fold cross-validation (RKF) splits the data into B = 5 blocks in the row-
wise direction. In the 4th iteration of RKF, block b = 4 is used for validation (black) while
the other blocks are used for calibration (white). Right: element-wise K-fold cross-validation
(EKF) splits the data into B = 5 blocks in the row-wise direction first. Then, in every
iteration one column in one block (e.g., b = 4 & j = 3, black) is treated as missing data and
imputed on the basis of the data in the other columns (grey) and a model estimated with
the calibration data in the other blocks (white).

At the end of this procedure, all elements of q have been evaluated, meaning that every

row in Y has been used once in the validation step (d). The way the elements of q are

processed further depends on the model being used and is explained below.

In this study, the blocks are defined slight differently for every data set:

• Simulation data sets: The I = 1024 rows are randomly assigned to B = 16 blocks,

each containing Ib = 64 rows of the matrix Y.
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• Nitrogen species data sets: The I = 1280 rows are assigned to B = 16 blocks, each

containing Ib = 80 rows of the matrix Y. The assignment is executed in such a way

that (a) all replicates corresponding to a single set of added stock volumes are assigned

to the same block and that (b) each block b contains data corresponding to each of

the 16 added stock volumes for both stock solutions. Each of these blocks is identified

with a unique shade in Figure 1.

• Metal ion sets: The I = 128 spectra are assigned into B = 9 blocks, with I(1) = 9,

I(2) = 14, and I(b) = 15 (b ≥ 3). This assignment is executed so that (a) all replicates

corresponding to a single set of concentration levels are assigned to the same block

and that (b) every block contains data corresponding to every level for every metal ion

concentration.

Element-wise K-fold cross-validation (EKF). In the EKF, the matrix Y is first

divided into B blocks as with RKF discussed above. Cross-validation then computes an

I × J-dimensional matrix Q of model performance measures by the following procedure,

which is visualized in the bottom panel of Figure 2. :

(a) Set v ← 1

(b) Select block v as the validation data matrix Y(v) and compose the I(c)×J-dimensional

calibration data matrix Y(c) by combining the remaining blocks ({b = 1, . . . , B|b 6= v},

I(c) = I − I(v))

(c) Calibrate the model with Y(c)

(d) For every column j (j = 1, . . . , J):

(i) Select the I(v)-dimensional vector Y
(v)
•,j as the jth column of Y(v) and treat is

the missing data. Call the I(v) × (J − 1)-dimensional matrix composed of the

remaining J − 1 columns of Y(v) the imputation data and note this matrix as

Y
(v)
•,−j (−j = {l = 1, . . . , J |j 6= l}).

11

Page 11 of 59

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



(ii) Compute estimates for the imputed data Ŷ
(v)
•,j on the basis of the calibrated model

obtained in step (c) and the imputation data defined in step (d.ii)

(iii) Compute the I(v)-dimensional vector q(v,j) of model imputation performance mea-

sures

(iv) Place all elements of q(v,j) into the row positions i(v) and jth column of the I×J-

dimensional matrix Q

(e) If v < B, set v ← v + 1 and go back to step (b). Otherwise, terminate.

Common steps to all considered models

Standardization. We apply mean centering in all studied cases and do not apply any scal-

ing. This means that we study covariance PCA exclusively. Additionally, this corresponds

to the implicit assumption that all measurement errors are drawn from an isotropic multi-

variate normal distribution, i.e. that they are uncorrelated and homoskedastic. When this

assumption is correct, it follows that the resulting PCA models are optimal in both the total

least-squares and the maximum-likelihood sense.33–36 In what follows, we refer to this as the

spherical noise assumption.

The J-dimensional column-wise mean vector, m, is always computed with the calibration

data in step (c) of the cross-validation procedure and then applied to the validation data

during step (d).

Singular value decomposition (SVD). The calibration data matrix, Y(c), is decom-

posed with SVD so that:

Y(c) = 1 mT + U(c) S VT := 1 mT + T(c) VT (1)

with T(c) the I(c)×K-dimensional matrix of principal scores; U(c) the I(c)×K-dimensional

matrix of standardized principal scores; S the K×K-dimensional diagonal matrix containing
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all non-zero singular values, ordered from largest to smallest; and V the J ×K-dimensional

matrix containing the loading vectors as columns. K is the maximum number of PCs and

equals K := min (I, J).

Model 1: Principal component analysis

We now discuss (i) steps (c), (d.ii), and (d.iii) of the EKF procedure as applied to the PCA

models, (ii) PCA model selection with the EKF procedure, and (iii) a second PCA model

selection procedure based on the variance of reconstruction error (VRE) as proposed in.16

PCA calibration - Step (c) of the EKF procedure. After standardization and

SVD, principal component analysis (PCA) proceeds by selecting a number K ( K ≤ K )

and choosing the firstK columns in U(c) and V and selecting the firstK rows and columns of

S. This leads to the following least-squares optimal approximation of the calibration data:37

Y(c) ≈ Ŷ(c) := 1 mT + U
(c)
•,1:K · S1:K,1:K ·V•,1:K

T = 1 mT + T
(c)
•,1:K · (V•,1:K)T . (2)

PCA validation - Step (d.ii) and (d.iii) of the EKF procedure. Every PCA

model is validated by means of 8 distinct imputation-based model selection criteria. The

imputation procedures are named ITR, PMP, TRI, TSR, cITR, cPMP, cTRI, and cTSR and

have been described in detail in prior work.24,25,27 In view of readability of our study, we

provide the details of step (d.ii) for each of these imputation procedures in the Supporting

Information (Section D).

After computation of the imputed estimates Ŷ
(v)
•,j for a given validation block (v) and

missing data column (j) (step (d.ii)), one evaluates the model performance as the imputation

error (step (d.iii)), i.e. the deviations between the imputed values and the original data:
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q(i,j) := Ŷ
(v)
•,j −Y

(v)
•,j (3)

PCA model selection with EKF. After completing the complete EKF procedure with

steps (c), (d.ii), and (d.iii) as detailed above, one computes the cross-validated PCA model

performance as the root mean squared residual (RMSR), which equals the square root of the

prediction error sum of squares (PRESS) divided by the number of estimated elements:

RMSR =

√
PRESS

I J
:=

√√√√ 1

I J

I∑
i=1

J∑
j=1

(Qi,j)
2 (4)

The RMSR is evaluated with the EKF procedure for every feasible number of PCs (K).

The number of PCs leading to the smallest RMSR is then selected. Note that above averaging

over all samples and variables also implies that the reconstruction error in all variable is

weighed equally. Combined with the fact that the reconstruction errors are squared, this

means that the model selection criterion implies that the reconstruction errors are ideally

homoskedastic and uncorrelated.

Model selection with VRE.

In this work, the VRE criterion is computed by considering faults in individual sensors

and assuming the use of covariance PCA as above. This means we consider J unique fault

directions defined as J-dimensional vectors ξj, each defined as unit vectors with ξj(j) = 1 and

ξj(l) = 0(j 6= l). Then, one projects these fault directions in the residual space conditional

to a PCA model with K component as follows:

ξ̃j =
(
IJ −V•,1:K · (V•,1:K)T

)
· ξj (5)
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Then, the overall VRE criterion for the K-PC model is then computed as:

VRE =
1

J

J∑
j

 ξ̃j
T · Σ̃ · ξ̃j(

ξ̃j
T · ξ̃j

)2 (
ξj
T · Σ̃ · ξj

)
 (6)

with Σ̃ the empirical covariance matrix obtained with the complete data set:

Σ̃ :=
1

I

(
Y − 1 mT

)T (
Y − 1 mT

)
(7)

where m is composed of the column means for the whole data set.

This criterion averages the expected variance of the estimated fault magnitude across all

considered faults. The PCA model with minimum VRE is then selected as the model that

has the best overall ability - in the minimum-variance sense - to estimate the magnitude of

any of the considered (sensor) faults.

Model 2: Probabilistic principal component analysis

The ignorance score is a model performance criterion designed to select models that can

accurately predict densities. PCA can be interpreted as a density model in the form of

PPCA. The PPCA model is discussed first. Step (c) and (d) of PPCA-based model selection

are described after.

PPCA was introduced with the goal of formulating a probabilistic version of PCA.30 The

PPCA model is identified as the maximum likelihood estimate of the following generative

latent variable model:
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xk ∼ N (0,ψk) (8)

ε ∼ N (0, IJ) (9)

y := Wx+ ε (10)

with x the K-dimensional vector of latent variables, xk, each one of them drawn from a

univariate normal distribution ( k = 1 . . . K ), ε a J-dimensional vector of measurement er-

rors drawn from a spherical multivariate normal density, IJ an identity matrix of appropriate

dimensions, W a J ×K-dimensional matrix with full column rank, and y the J-dimensional

vector of recorded measurements. During model calibration one has access to I vectors y

which are organized as row vectors in a I(c)× J-dimensional data matrix. Note that each of

the data simulations discussed above can be represented in this generative form.

PPCA calibration - Step (c) of the RKF and EKF procedures. As in PCA, model

identification proceeds by choosing a number K for the number of PCs. Then, starting with

the SVD result, the density model for the measured data is formulated as the following

multivariate normal distribution:30

y ∼ N
(
0,Σ(K)

)
(11)

where Σ(K) is the maximum likelihood estimate of the covariance matrix given K com-

ponents. To compute this matrix, one first obtains λ, the vector of the first K eigenvalues

of the empirical covariance matrix, as:

λk :=
(Sk,k)

2

I(c)
k = 1 . . . K (12)
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Σ(K) is then available via:

Σ(K) := V•,1:K Ψ (V•,1:K)T + σε IJ (13)

σε :=
1

J

K∑
k=K+1

(Sk,k)
2 (14)

ψk := λk − σε, k = 1 . . . K (15)

Ψ := diag(ψ) (16)

where Ψ is a diagonal matrix with ψ, the vector ofK deflated variances for the K selected

components, on its diagonal, and σε the estimated noise variance. V•,1:K functions as the

estimate of W.

One can compute the scaled scores for the kth principal component, X•,k, with the

variance equal to ψk as:

X•,k := U•,kψk = T•,k
ψk
λk

(17)

In what follows below, we aim to evaluate whether the assumption of spherical measure-

ment noise affects the results with the experimental data sets. To this end, the row vectors

in X are combined with (9) and (10) to generate new samples with spherical noise without

changing the distribution of the first K latent variables.

A key observation is that PPCA explicitly accounts for the fact that the principal scores

computed with PCA are subject to noise. Under the assumptions of spherical measurement

noise and given a choice for K, the deflated variances reflect the magnitude of variation in

the PCs that is not interpreted as noise. This also means that the fraction of the variance

associated with a particular principal component that is interpreted as meaningful, i.e. non-

noisy, (a) will be lower than the fraction of explained variance obtained with PCA ( ψk < λk,
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k = 1, . . . K, K < K − 1 ) and (b) will increase with increasing values of K ( K1 < K2 :

ψk|K=K1
≤ ψk|K=K2

, k = 1, . . . K2 ). Note also that K = J − 1 and K = J deliver the same

estimate for Σ(K), the only distinction being the interpretation of the Jth loading vector as

a noisy direction (K = J − 1) or an informative direction (K = J).

PPCA validation - Step (d.ii) and (d.iii) of the EKF. To apply EKF for cross-

validation of the PPCA model, we make use of the ignorance score.29 This criterion has been

used in hydrological modeling for ensemble model calibration38 and has been proposed in data

mining to identify the number of clusters in density-based cluster models.12 The ignorance

score is defined as the negative logarithm of the likelihood of a scalar measurement, y, given

a likelihood function L(•):

I(y) = −ln (L(y,θ)) (18)

with θ the vector of parameters. The ignorance score has the advantage of being a

negatively oriented score,29 so that a minimum value indicates the model which maximizes

the predicted likelihood of a measurement.

The PPCA model is used to compute both the mean and the variance of the jth variable

conditional to the other measurements. This is unlike the EKF for PCA model selection,

which only computes a mean estimate. The computed mean and variance describe the

conditional univariate normal density for each of the missing measurements. Practically, the

imputed estimates Ŷ(v)
•,j are equal to the conditional means:

Ŷ
(v)
•,j := Y

(v)
•,−j ·

(
Σ

(K)
−j,−j

)−1

· (Σ(K)
−j,−j) . (19)

The conditional variances is unique for each validation block v and each variable j and

is equal to:
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φ(v,j) := Σ
(K)
−j,−j − (Σ

(K)
j,−j) ·

(
Σ

(K)
−j,−j

)−1

· (Σ(K)
−j,−j) (20)

This completes step (d.ii). To execute step (d.iii), the univariate normal density is applied

to evaluate the ignorance score for each row and column of the validation data matrix and

record the model performance measure:

q
(v,j)
i := I(Y

(v)
i,j ) = −ln

(
L
(
Ŷi,j,Y

(v)
i,j , φ

(v,j)
))

=
1

2

ln (2π) + ln
((
φ(v,j)

))
+

(
Ŷ

(v)
i,j −Y

(v)
i,j

)2
φ(v,j)

 , i = 1, . . . , I(v) (21)

with i and j indicating the row and column positions of the elements of the validation

data in Y(v).

PPCA model selection with EKF. At the end of the EKF procedure, the overall

performance of the PPCA model to predict the data density is evaluated as the averaged

ignorance score (IGN):

IGN =
1

I J

I∑
i=1

J∑
j=1

(Qi,j)
2 (22)

The selected model is the one producing the minimal value for IGN. We refer to this

model selection procedure as IGN-EKF.

PPCA validation - Step (d) of the RKF procedure. The ignorance score can easily

be extended for application in the RKF procedure. In this case, the ignorance score simply

follows from evaluating the density associated with the PPCA model for each row in the

validation matrix.29 The ignorance score for every row in the validation data matrix Y(v) is
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computed as:

y
(v)
i =

(
Y

(v)
i,•

)T
(23)

q
(v)
i := I

(
y
(v)
i

)
= −ln

(
L
(
y
(v)
i ,0,Σ(K)

))
=

1

2 J

(
J ln (2π) + ln

(∣∣Σ(K)
∣∣)+

(
y
(v)
i

)T (
Σ(K)

)−1
y
(v)
i

)
, i = 1, . . . , I(v) (24)

with i indicating the row position in Y(v). Note that we divide by J on the right hand

side to produce values in the same scale as the IGN-EKF.

Note that the ignorance score in the RKF is equal to the Mahalanobis distance using

the estimated covariance matrix Σ(K) plus a constant, which depends on the chosen K. The

ignorance score is therefore a distance defined in a J-dimensional data space. This distance

assumes equalization of the variances for the residual space as described above. This is

unlike other PCA-based distances like the squared prediction error, which is defined for the

J − K-dimensional residual space (without any equalization), and Hotelling’s T 2 statistic,

which is defined for K-dimensional principal component space. This is discussed further in

the Discussion section.

PPCA model selection with RKF. At the end of the RKF procedure, the overall

performance of the PPCA model to predict the data density is evaluated as the averaged

ignorance score (IGN):

IGN =
1

I · J

I∑
i=1

J∑
j=1

(qi)
2 (25)

Note that we divide by I · J to produce an ignorance score in the same scale as the

EKF-IGN. The selected model is the one producing the minimal value for IGN. We refer to

this model selection procedure as IGN-RKF.
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Benchmarking of the model selection criteria

In the above, we have discussed 8 pre-existing criteria for PCA dimensionality selection based

on the application of EKF and missing data imputation. We name these model selection

criteria according to the applied imputation procedure: ITR, PMP, TRI, TSR, cITR, cPMP,

cTRI, and cTSR. We also described two dimensionality selection criteria based on cross-

validation of the PPCA model: EKF-IGN and RKF-IGN and include one model selection

criterion based on the expected VRE.

The efficiency and accuracy of these selection criteria for model selection are evaluated

with the simulated data sets described above. To quantify the performance of the model

selection procedures, the following criteria are computed:

(a) The fraction of the number of instances of a data set for which the identified number

of PCs matches the ground truth value exactly. This is reported as a percentage.

(b) The average run time, measured in seconds, for a single execution of the studied cross-

validation procedure. All computations are executed on a single machine (Intel(R)

Core(TM) i5-7200U CPU: 2.50GHz, RAM: 8.0 GB; Microsoft Windows 10 Enterprise;

Matlab R2017b).

In addition, we will inspect the histograms of the identified number of PCs as a function

of the data set type and noise level. Evaluating these histograms is possible thanks to

repeated simulations. This kind of intensive simulation benchmarking sets a new standard

in the study of latent variable modelling.

Results

The results with simulated data are discussed first. After that, results obtained with the

experimental data sets are described.
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Simulation data sets

Exemplary cross-validation results

Figure 3 shows the cross-validated criteria obtained with data set C.4.6.11 (class C, type 4,

noise level 6, repetition 11). The results are shown in three distinct panels with each panel

grouping a subset of the applied criteria. This figure arrangement will be repeated below. All

criteria exhibit a unimodal profile (i.e., with a single minimum) which makes the automatic

selection of a number of PCs (K) straightforward. The minimum is however observed at

different locations. The profiles for the ITR, PMP, and VRE profiles are qualitatively similar

with a rather narrow valley and have a minimum at 10 PCs. The TRI and TSR criteria

select 12 PCs and exhibit a smoother profile. The cITR, cPMP, cTRI, and cTSR all exhibit

monotonically decreasing profiles so that the maximum number of PCs is selected. The IGN-

EKF and IGN-RKF profiles are generally smooth. In this case, IGN-EKF and IGN-RKF

are the only criteria that select the known number of PCs (15) perfectly.
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Figure 3: Simulated data set C.4.6.11 – Model selection criteria profiles. Top: ITR,
PMP, TRI, TSR; Center: cITR, cPMP, cTRI, cTSR; Bottom: IGN-EKF, IGN-RKF, VRE.
The model selection criteria are shown as a function of the number of retained PCs. The
selected number of PCs is indicated with a triangle or circle.

Benchmarking with simulated data sets

We first discuss the accuracy for each model selection criteria averaged over all data sets in

the simulated data classes (B1, B2, C1, C2, C3, C4). Inspections that are more detailed

follow after.

Average performance. Figure 4 displays the obtained accuracy of the selected dimen-

sionality as a function of the applied criterion and for every data class. Most importantly,

one can see that the IGN-EKF and IGN-RKF criteria are the only ones leading to an average

accuracy of 85% higher for each data class (B1, B2, C1, C2, C3, C4). In contrast, the cITR,

cPMP, and cTSR criteria deliver 0% accuracy in all data classes. The performance of the

remaining criteria ranges from 0% to 100% and is sensitive to the chosen data class. For

example, the ITR, PMP, and VRE criteria deliver an accuracy around 42% and 55% for the
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data classes B1-B2, and 0% for the data classes C1-C4.
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Figure 4: Simulation data – Overall accuracy. The fraction of correctly identified
number of PCs is shown for each data class (B1-B2, C1-C4) and for each model selection
criterion. The averaged accuracy with IGN-EKF and IGN-RKF is over 85% for all data
classes. These are also the best performances for classes B1, B2, C2, and C3. TRI is the
best criterion for class C1 while TSR is the best for class C4. Among the imputation-based
criteria, TSR is best for classes B1, B2, C3, and C4 while TRI is best for class C1 and cTRI
is best for class C2.

Detailed results for data class B1. Figure 5 displays the obtained accuracy of the

selected dimensionality with all criteria as a function of the data type (B1.1 to B1.18). There

are three important observations that could not be concluded from the average accuracy as

discussed above. First, the performance of the imputation-based criteria ITR, PMP, TRI,

TSR, and cTRI is highly variable, ranging from 0% to 100% accuracy. Among these criteria,

a 0% accuracy is reported for at least 4 data types (criterion: TSR) and a 80% accuracy

or better is reported for at least 7 data types (criteria: ITR, PMP) and at most 13 data

types (criterion: TSR). Second, VRE delivers a performance similar to those obtained with
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ITR and PMP. Third, and most importantly, the accuracy obtained with the IGN-EKF and

IGN-RKF never drops below 85% for a single data type. Note also that IGN-EKF and

IGN-RKF deliver the best accuracy for data types B1.13 and B1.14.
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Figure 5: Simulation data class B1 – Accuracy. The fraction of correctly identified
number of PCs is shown for every data set in the class B1 (B1.1 until B1.6) and model
selection criterion. Top: ITR, PMP, TRI, TSR; Center: cITR, cPMP, cTRI, cTSR; Bottom:
IGN-EKF, IGN-RKF, VRE. The numbers at the top of the figure are (a) the known number
of PCs and (b) the number of variables (in parentheses). The reported accuracy for IGN-
EKF and IGN-RKF is higher than 85% in all cases. These are the only criteria that achieve
a non-zero accuracy for all data types.

It is worth noting that the data types B1.1 to B1.6 are simulated with a covariance

matrix composed of blocks, each of which has the same value in all row-column positions.

The variations of these covariance matrices lead to a gradual decrease in the fraction of

non-noisy variance to the total variance (
∑K

k ψk/
∑

kψk +σε) from just above 45% to below

15%. This coincides with degraded accuracy for data types B1.4 to B1.6 for ITR, PMP,

TSR, cITR, cPMP, cTSR, and VRE. This suggests that these model selection criteria are

particularly sensitive to high levels of noise, in turn implying that the IGN-EKF and IGN-

RKF are particularly robust. Figure 6(top) shows the fraction of non-noisy variance to the
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total variance. This fraction is also lower for data sets B1.17 and B1.18 where almost all

criteria provide an excellent accuracy (above 90%). This means that the fraction of noise

variance alone cannot completely explain our results. For this reason, Figure 6(bottom)

shows the same fraction divided by the known number of PCs, i.e. the average non-noisy

fraction of the total variance contained in a single PC. A comparison of this panel with

the performances in Figure 5 suggests that this property of the covariance matrix correlates

well with the obtained performance: decreasing the relative amount of non-noisy variance

in a single component corresponds to a degraded performance of ITR, PMP, TSR, cITR,

cPMP, cTSR, and VRE. Conversely, the accuracy of IGN-EKF and IGN-RKF appears largely

insensitive to this property, even if the non-noisy fraction of the variance is as low as 2.3%

per component (data set B1.14). To a lesser extent, this is also true for the TRI and TSR

criteria.
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Figure 6: Simulation data class B1 – Non-noisy variance. Top: Fraction of non-noisy
variance to total variance. Bottom: Fraction of non-noisy variance to total variance per
principal component. The numbers at the top of the figure are (a) the known number of
PCs and (b) the number of variables (in parentheses).
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We inspect the distribution of the selected number of PCs for data type B1.6. This dis-

tribution is visualized in Figure 7. Most importantly, one can see that ITR, PMP, and VRE

tend to underestimate the number of PCs while TSR, cITR, cPMP, cTRI, and cTSR over-

estimate the number of PCs. IGN-EKF and IGN-RKF are fairly accurate yet overestimate

the number of PCs with at most 3 PC for less than 15% of the simulated data sets. The

equivalent figures for all remaining data types in the B1 class are shown in the Supporting

Information (Section E).
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Figure 7: Simulation data type B1.18 – Distribution of the identified number of
principal components. For each number of PCs (K, bottom to top), and for every noise
level and every criterion (left to right), a black box is shown with a surface proportional to
the number of data instances for which K component are selected. The vertical line indicates
the simulated value of K (3).
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The average computational requirements are shown per criterion and per data type in

Figure 8. The computational effort appears insensitive to the data type within the B1 class

for all criteria except ITR. The ITR criterion can demand computing times that are up to 10

times larger for the covariance structures with a large number of PCs (B1.7 to B1.14) relative

to the requirements for the other data types (B1.1 to B1.6, B1.15 to B1.18). Secondly, one

can see that the computational requirements are the lowest with VRE, requiring less than 5

ms per repetition of the model selection procedure. This is followed by the IGN-RKF, which

requires under 50 ms per repetition, and TRI, PMP, and IGN-EKF, which require under

100 ms. For some imputation procedures, it appears computationally efficient to implement

the corrected version (e.g., ITR vs. cITR) whereas the original version is most efficient for

others (e.g., TRI vs. cTRI).
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Figure 8: Simulation data class B1 – Average computation time. Top: ITR, PMP,
TRI, TSR; Center: cITR, cPMP, cTRI, cTSR; Bottom: IGN-EKF, IGN-RKF, VRE. The
numbers at the top of the figure are (a) the known number of PCs and (b) the number of
variables (in parentheses).

Detailed results for data class B2.

The results for data class B2 lead to the same general observations as for data class

28

Page 28 of 59

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



B1. A notable exception is that the performance of the IGN-EKF and IGN-RKF criteria

drops below 80% (15% and 75%) for data set B2.14. This is good in comparison to all other

criteria, which deliver 0% accuracy for this data set. The non-noisy fraction of the variance

equals 1.2% per component in this case, which is about half of the next lowest non-noisy

fraction within the B1 and B2 data classes (data type B2.11: 2%). More detailed results can

be found in the Supporting Information (Section F).

Detailed results for data classes C1, C2, C3, and C4.

Figure 9 shows the fraction of the instances where the identified number of PCs matches

the simulated ground truth.

Similarly to the B1 and B2 classes, there are four important observations. First, ITR,

PMP, cITR, cPMP, and cTSR fail to identify the correct number of dimensions in the

majority of the simulated data sets (accuracy below 5% for all data types). Second, the

performance of the remaining imputation-based criteria (TRI, TSR, cTRI) is highly variable,

ranging from 0% to 100% accuracy. Among these criteria, cTRI always delivers a 0% accuracy

for the highest two noise levels while delivering excellent performance for the lowest three

noise levels (above 95%). The TSR criterion performs well (accuracy above 80%) at the

lowest three noise levels with data class C1 and C2 yet delivers an accuracy below 20% for

data classes C3 and C4, regardless of the noise level. For the C3 data class, the TRI criterion

appears well-suited (accuracy of 100%). However, this criterion is not robust to noise with

data type C1 and leads to a low accuracy for the C2 and C4 data types (below 5%). Third,

VRE delivers a low accuracy across the C classes with values similar to those obtained with

ITR and PMP. Fourth, and most importantly, the accuracy obtained with the IGN-EKF and

IGN-RKF never drops below 85% and is particularly insensitive to noise. In addition, these

two criteria appear to do better with increasing dimensionality and the number of known

PCs (both increasing from C1 to C4).
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Figure 9: Simulation data classes C1 to C4 – Accuracy. The fraction of correctly
identified number of PCs is shown for every data type in the C classes (C1.1 until C4.5) and
model selection criterion. Top: ITR, PMP, TRI, TSR; Center: cITR, cPMP, cTRI, cTSR;
Bottom: IGN-EKF, IGN-RKF, VRE. The IGN-EKF and IGN-RKF are the only criteria
that achieve an accuracy above 85% for all data sets. IGN-EKF and IGN-RKF are the most
accurate criteria for noise levels of 40% or higher (C1.4-C1.5, C2.4-C2.5, C3.4-C3.5) and for
the whole C4 class (C4.1-C4.5).

Figure 10 shows the relative fraction of non-noisy variance to the total variance for each

data type in the C class in the top panel and the same fraction divided by the known number

of PCs in the bottom panel. The top panel mainly displays the effect of adding noise, which

decreases the amount of non-noisy variance. The fraction of the non-noisy variation divided

by the number of PCs increases both with the added noise fraction and the data type index.

As with the B1 and B2 classes, the accuracy of the IGN-EKF and IGN-RKF criterion is

especially insensitive to low values for this proportion.
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Figure 10: Simulation data classes C1 to C4 – Non-noisy variance. Top: Fraction
of non-noisy variance to total variance. Bottom: Fraction of non-noisy variance to total
variance per principal component.

Figure 11 shows the distribution of identified numbers of PCs for all data set types

in the C4 class. The equivalent figures for the C1, C2, and C3 classes are provided in

the Supporting Information (Section F). Across the C classes, the ITR, PMP, TSR, and

VRE criteria underestimate the dimensionality while the cITR, cPMP, and cTSR lead to

overestimation. The same happens when using cTRI at high noise levels. The TRI criterion

underestimates the number of PCs with at most 3 PCs. The IGN-EKF and IGN-RKF

criteria either overestimate or underestimate the number of PCs although with at most 1

PC for all data types.
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Figure 11: Simulation data class C4 – Distribution of the identified number of
principal components. A black box is shown with a surface proportional to the number
of data instances for which K component are selected. This is executed for each number of
PCs (K, left to right), for every criterion (top to bottom), and for every noise level (increasing
from top to bottom for each criterion). The vertical line indicates the simulated value of K
(15).
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Figure 12 displays the average computational effort, measured in seconds, required to

complete a single run of each criterion. These results lead to similar conclusions as for the

B1 class. However, the data types in the C class exhibit changing numbers of variables and

noise, unlike the B1 and B2 classes. The computational requirements for the imputation-

based criteria and the IGN-EKF increase with about a factor of 100 when increasing the

number of variables from 10 (C1, C2) to 50 (C4). Each of these criteria uses the EKF

pattern. In contrast, the computational requirements increase less for the IGN-RKF and

VRE criterion, with a factor around 10.

Note that the average run times remain fairly low for all criteria due to the use of a 16-fold

cross-validation pattern in the row/sample direction. Exploratory experiments (not shown)

suggest that the computational time depends linearly on the number of folds. A ball-park

estimate for the run time when applying a leave-one-out pattern in the row direction can be

obtained by multiplying the computed run times by 64.
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Figure 12: Simulation data classes C1 to C4 – Average computation time. Top:
ITR, PMP, TRI, TSR; Center: cITR, cPMP, cTRI, cTSR; Bottom: IGN-EKF, IGN-RKF,
VRE. The numbers at the top of the figure are (a) the known number of PCs and (b) the
number of variables (in parentheses).
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Experimental data sets

Nitrogen species data sets

Nitrogen species data set 0 – Wavelengths 200-735 nm Figure 13 displays the com-

plete set of absorbance measurements associated with the first validation block. One can

see that the spectra are sensitive to variations of nitrite and nitrate concentrations in the

range from 200 nm until about 420 nm. One can also clearly observe the known secondary

absorbance peak of nitrate around 300 nm and of nitrite around 355 nm.39 On the left hand

side of the spectra, i.e. below 250 nm, one can observe high but rather insensitive absorbance

measurements. This is a region where the Beer-Lambert law for absorbance measurements

does not apply as the device is subject to saturation phenomena, i.e. virtually all light in

this wavelength range is absorbed leading to meaningless readings by the device, as was

demonstrated before for this kind of device.40 As a result, analyzing these data by PCA, let

alone using these data to test the proposed model selection criteria, makes little sense. For

this reason, we continue below with an analysis based on a subset of the absorbance mea-

surements, which are expected to depend linearly on the nitrite and nitrate concentrations

in the experimental solutions.
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Figure 13: Nitrogen species data – Validation block 1. Absorbance measurements are
shown as a function of the wavelength. The inset on the top-right shows a detailed view on
the measurements taken at 260 nm or higher wavelengths.

Nitrogen species data set 1 – Wavelengths 285-735 nm All model selection criteria

are tested after the absorbance measurements corresponding to wavelengths below 285 nm

are removed (nitrogen species data set 1). Figure 14 shows the profiles of all model selection

criteria. These profiles all share the property that the model selection criterion decreases

fast over the first two to three PCs, as one might expect given the anticipated number of

PCs (2). However, the minima of these criteria are observed from five PCs (TRI) to 180 PCs

(e.g., TSR, cTSR). TRI and cTRI are the only criteria delivering reasonable estimates of

five PCs (TRI) and 20 PCs (cTRI). All other criteria deliver dimensionality estimates that

are significantly higher (above 50 PCs). This is not so surprising for these imputation-based

criteria as these were shown to select too many PCs with the simulated data sets also. This

is more surprising for IGN-EKF and IGN-RKF, which select the maximum number of PCs

here, a stark contrast with the accurate estimates obtained with the simulated data sets.
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Figure 14: Nitrogen species data set 1 – Model selection criteria profiles with
original data. Top: ITR, PMP, TRI, TSR; Center: cITR, cPMP, cTRI, cTSR; Bottom:
IGN-EKF, IGN-RKF, VRE.

To investigate this further, Figure 15 shows the eigenvectors corresponding to the 3rd,

4th, and 5th PC. Assuming that the Beer-Lambert law is valid - and thus also the PCA

model structure - these loading vectors should mainly reflect uncorrelated noise properties

of the data. In contrast, one can see that the 3rd PC appears to explain a uniform effect

across the wavelengths in the visible range (400-735 nm). This cannot be explained by an

effect of the absorbing nitrogen species and is therefore considered an artifact in the data,

suggestive of strongly correlated type of measurement errors. The scores for this PC were

inspected visually to check for a temporal effect in the experimental data but none could

be identified. The 4th and 5th PC appear to represent strongly correlated features with

relatively large magnitudes in the red range of the spectrum (600-700 nm). This cannot

be explained by an effect of nitrite or nitrate either. Since the oscillations follow a regular

pattern with a peak-to-peak distance of about 30 nm and there is no physical relationship
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to known light absorbing properties of nitrite and nitrate, we speculate that this is a result

of strongly correlation measurement errors at neighboring absorbance wavelengths. Similar

patterns are observed for higher-order PCs as well (k ≥ 6, not shown).
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Figure 15: Nitrogen species data set 1 – Loading vectors for PC 3 to 5.

Nitrogen species data set 2 – Wavelengths 285-385 nm Considering that the

higher-order PCs appear to describe variation in the visible range of the absorbance spectra

(400-750 nm) primarily, we now apply the studied model selection criteria to the nitrogen

species data set 2, which only contains absorbance measurements for wavelengths between

285 and 385 nm. Figure 16 shows the obtained results. In this case, TRI and cTRI deliver

the anticipated number of PCs (2). This suggests that the distribution of the noise in the

non-absorbing region of the spectra affects the accuracy of these two criteria. In contrast, all

other criteria select 30 PCs or more. A possible explanation is that the presence of correlated

data features identified before could not be removed entirely and that TRI and cTRI are

relatively robust to such features.
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Figure 16: Nitrogen species data set 2 – Model selection criteria profiles with
original data. Top: ITR, PMP, TRI, TSR; Center: cITR, cPMP, cTRI, cTSR; Bottom:
IGN-EKF, IGN-RKF, VRE.

Figure 17 shows the eigenvectors associated with PC 3, 4, and 5. Each of these exhibits

an oscillating profile, suggesting that correlated noise remains present in the absorbance

measurements in the ultraviolet range, i.e. where both nitrite and nitrate absorb light.
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Figure 17: Nitrogen species data set 2 – Loading vectors for PC 3 to 5.

Simulated data set – Wavelengths 285-385 nm

To evaluate the idea that non-spherical noise is a key factor in the performance of the model

selection criteria, we simulate data with a PPCA model with 2 PCs identified with the

nitrogen species data set 1. That is, we identify the mean and Σ(K) with the complete data

set and assuming K = 2. We simulate a new data set of the same dimensions according to

the PPCA model. We use the computed scores obtained with (17) to do this. This means

that the distribution of the simulated components is similar to the distribution of the two

most important principal components in the experimental data. The resulting data does

not adhere to a normal distribution, due to the experimental design, while the distribution

of the measurement noise adheres to the spherical noise assumption. We then repeat each

of the proposed model selection criteria on this artificial data set. The result of this is

shown in Figure 18. In this case, 7 out of the 11 criteria select two PCs (ITR, PMP, TSR,

cTRI, IGN-EKF, IGN-RKF, VRE). TRI selects one PC in this case whereas the remaining
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criteria continue to overestimate the number of PCs (cITR, cPMP, cTSR). By forcing the

noise properties of the data to adhere to the assumed PCA model structure, we obtained

the expected result with most model selection criteria.
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Figure 18: Nitrogen species data set 1 – Model selection criteria profiles with
simulated data. Top: ITR, PMP, TRI, TSR; Center: cITR, cPMP, cTRI, cTSR; Bottom:
IGN-EKF, IGN-RKF, VRE.

Metal ion data set

The results obtained with the metal ion data set are shown in the Supporting Information

(Section G). The nature of these results is very similar to the results obtained with the

nitrogen species data sets. However, the higher-order loading vectors (PC 4 and higher) do

not exhibit an oscillatory pattern with a regular peak-to-peak distance in this case. This

leads us to speculate that nonlinear effects of the absorbing metal ions on the absorbance

spectra could contribute to the difficulty in identifying the known number of experiment

factors. Still, this data set is considered to exhibit correlated noise as well33.
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Discussion

Cross-validated ignorance score as a tool for dimensionality selection

With this study, we propose a new criterion for dimensionality selection in PCA. It is based on

the application of the ignorance score to the PPCAmodel. Simulation results show that using

the ignorance score delivers excellent accuracy in identifying the correct number of PCs when

the assumed PCA model structure is correct. Most interesting is that this model selection

criterion clearly outperforms all imputation-based criteria in overall accuracy of the selected

dimensionality. Moreover, this approach appears most fruitful when the fraction of non-noisy

variance (information) is small and spread thinly over many components. In addition, the

ignorance score can be applied successfully with a row-wise K-fold cross-validation (RKF)

pattern. The row-wise K-fold cross-validated ignorance score is therefore the first known

PCA model selection criterion with the following properties: (i) it produces an accurate and

meaningful minimum in the cross-validated performance criterion, (ii) it is tuned well to the

purpose of data compression, and (iii) its efficiency scales well with the dimensionality of the

data set. Both IGN-EKF and IGN-RKF are reliable estimators as long as the linear model

structure and the least-squares objective matches the analyzed data. In practice, this level

of match between model and reality may be hard to attain, so that a human-in-the-loop

approach remains advised for PCA model selection as of yet.

It is worth noting that the proposed IGN-RKF criterion is the only model selection

criterion which can be interpreted as a distance in the J-dimensional data space. In addition,

it is the only known RKF-based criterion producing a clear minimum when plotted against

the number of principal components, while using validation data only during model testing

and not during model calibration. Thus, the model selection criterion effectively avoids data

leakage,41 which consists of using the same data twice for calibration and prediction. We

speculate that this is one of the reasons for the rather poor performance of some of the tested

criteria. For instance, the cITR, cPMP, cTRI, and cTSR criteria all use the imputed data
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during the data augmentation step before treating these as missing data, thus leading to

imputation errors which depend on the imputed data. A definite proof that the prevention

of data leakage is the key factor in the robust performance of IGN-EKF and IGN-RKF is

considered beyond the scope of this work.

Cross-validated ignorance score as a tool for detection of model struc-

ture deficits

Tests with experimental data sets indicate that all considered criteria select a number of PCs

that is higher than expected. Results generally improve when variables that contain mostly

noise are removed or when using simulated approximations of the experimental data without

correlated noise. This suggest that the experimental data contain artefacts that cannot be

explained by the Beer-Lambert law. Instead, it is likely that the data exhibit nonlinear effects

and measurement errors with unequal variances or strong correlation. Indeed, the PCA and

PPCA models are only optimal in the maximum likelihood sense when the measurement

errors are drawn from the same univariate normal distribution. The presence of non-spherical

measurement errors and nonlinear effects may in part explain why relatively complex models,

i.e. with a large number of PCs, are necessary to obtain good predictive performance in

practice.40 In the opinion of the authors, this means that the studied model selection criteria

can be a viable tool to detect deviations from the assumed model structure, possibly including

the presence of heteroskedastic and/or correlated noise or nonlinear effects in the data.

Utility of the imputation-based model selection criteria

This study concentrates on finding a good model selection criterion for the purpose of data

compression with PCA. We conclude that many imputation-based methods are ill-suited for

this purpose as they lead to inaccurate dimensionality selection. It is important to note

however that these criteria select models based on their ability to impute missing data. It
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follows that the best model selection criteria for data compression are not the same as the

best model selection criteria for optimal imputation of missing data. This is one of the

main messages in earlier work27 and is also supported by this study. A cursory look into

the RMSR profiles (not shown) suggests that the TSR method is optimal for least-squares

data imputation, in line with existing recommendations27. The utility of describing missing

data with both a mean and a variance, as used for computation of IGN-EKF, remains to be

studied in detail however.

VRE as a proxy for ITR and PMP

The profiles of the ITR, PMP, and VRE criteria are very similar for most simulated data

sets. The similarity between ITR and PMP is not a surprise as they deliver the same result

except in numerically challenging cases27. ITR and PMP imputation both minimize the

reconstruction error of a single variable in the least-squares sense so that ITR- and PMP-

based cross-validation leads to a minimization of the variance of this reconstruction error.

The VRE computed for faults in single sensors, as in this study, is an estimate of this

variance. It is therefore also not surprising that the VRE criterion could be an excellent

and fast approximation to the ITR and PMP criterion. Note however that VRE assumes

that the PCA model structure is correct during model selection whereas the ITR and PMP

criterion do not. Note that the ITR and PMP criteria and the VRE criterion are not as

similar in the case of the experimental data sets. This corroborates the idea that the PCA

model structure may be inadequate for these experimental data sets.

Links to work in statistical process control

The ignorance score as used for IGN-RKF was shown to be equivalent to the well-known

Mahalanobis distance, however computed with the covariance matrix estimated through the

PPCA model. This makes it similar – yet not equal – to (a) the Mahalanobis distance based

on the empirical covariance matrix,2,42,43 (b) the Mahalanobis distance based on exploratory
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factor analysis,44 or (c) the combined index composed of the Hotelling’s T 2 statistic and

the squared prediction error statistic.45 Logically, this means that ignorance score could be

a useful statistic for anomaly and fault detection based on principal component analysis.

Importantly, the ignorance score corresponds to a distance in the original J-dimensional

space and neither in the principal component or the residual space alone. This is similar to

the combined index.45 For this reason, we speculate that interpreting this combined index

as a log-likelihood also enables its use for model selection based on RKF, similar to the

IGN-RKF criterion.

Open avenues for research

In view of clarity, this work is focused on demonstrating the use of the ignorance score

for dimensionality selection in the most trivial case for principal component analysis, i.e.

assuming linear effects and homoskedastic and uncorrelated noise. Considering that our

results suggest that the experimental data studied in this work do not share this property,

we explore below whether the ignorance score could also be applied to alternative model

structures, which may be better adjusted to these data sets.

Variational auto-encoders46,47 and Gaussian process latent variable models48 are inter-

preted as nonlinear versions of PPCA and permit a generative, probabilistic interpretation.

Exploratory factor analysis49 and target factor analysis50,51 may be used to find an optimal

K-dimensional hyper-plane describing a data set similar to PCA, yet allowing for unequal

noise variance estimates in the diagonal error covariance matrix. Other models, such as

combined PCA-ICA models52 and the heteroscedastic latent variable model53 are explic-

itly developed to account for non-Gaussian distributions of the non-noisy variations in the

data. These models deal explicitly with nonlinear effects but not with deviations from the

uncorrelated noise assumption.

In recent years, several modified PCA models have been proposed to allow for non-

diagonal forms for the error covariance matrix. This matrix can be assumed known,34 es-
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timated independently,33,36 or estimated simultaneously.9 In a recent article54, this type of

models have been evaluated for the purpose of missing data imputation, but not yet for

the purpose of model selection. Note that each of these models are similar to PCA in the

sense that the eigenvalues associated with the residual space are not modified. Applying

the ignorance score for dimensionality selection in such models thus requires modifications

of these models, e.g. by applying the variance deflation step as in PPCA.

Other approaches to deal with correlated noise may consist of feature engineering prior

to PCA analysis. For example, multi-scale principal component analysis55–57 and functional

principal component analysis6,58 are both based on the computation of new features, which

typically are linear combinations of the original data prior to model calibration. This trans-

formation may very well produce features with a noise covariance matrix approximating a

diagonal matrix more closely. When so, this may improve the fit of the PPCA model and

reduce the selected dimensionality. Conversely, specialized PCA models and feature genera-

tion should be explored as a way to enhance the robustness of the cross-validated ignorance

score, specifically by accounting for nonlinear effects and for unknown or poorly understood

noise properties.

Conclusions

This work addresses the important yet challenging selection of the optimal number of la-

tent variables in principal component analysis (PCA). Two variations of a newly proposed

cross-validated ignorance score for PCA model selection are compared to established model

selection criteria. Our most important findings are:

• Benchmarking results reveal that the proposed ignorance score delivers performances

of 80% or higher for every simulated data set. This is unlike any other model selection

criterion included in our study, all of which deliver an accuracy of 0% for at least one

of the data types.
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• Simulation results show that our proposed ignorance score is the most accurate model

selection criterion for data sets with relatively low proportions of non-noisy variation

spread over relatively large numbers of principal components.

• Experimental results revealed that devices for in-situ measurement of spectrophoto-

metric absorbance spectra in aquatic systems are prone to produce data that violate

the PCA model structure. This is true for two experimental data sets collected for

the development and evaluation of latent variable models. One probable cause for

this is the presence of measurement errors with a non-spherical distribution, i.e. with

heteroskedastic and correlated measurement errors.

• The ignorance score is a valuable addition to the tool set for both PCA model selection.

It is likely useful to detect PCA model structure deficits and may be a promising

statistic for fault detection as well.

Acknowledgement

The authors would like to thank Karin Rottermann, Sylvia Richter, and Kai Udert for their

contributions to the work presented in this paper. The study has been made possible by

the Swiss National Foundation (project: 157097) and Eawag Discretionary Funds (grant

number: 5221.00492.012.02, project: DF2018/ADASen).

Supporting Information Available

The Supporting Information consists of a single package including:

• Detailed procedures for data simulation

• Detailed procedures for experimental data collection

• Detailed procedures for PCA-based imputation

46

Page 46 of 59

ACS Paragon Plus Environment

Industrial & Engineering Chemistry Research

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



• Detailed results not discussed in the main body of the text

• Self-contained software, which produces all results, presented in this work

• All experimental data collected for the purpose of this study
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Table 2: List of symbols

Symbol Description Dimensions

ξ (ξ̃ ) Fault direction J × 1

ε Vector of measurement errors J × 1

θ Distribution parameters

λ Vector of eigenvalues K × 1

Σ̃ (Σ(K)) Covariance matrix (estimate) J × J

σε Estimated noise variance 1× 1

φ Expected variance of imputed value 1× 1

Ψ Diagonal matrix with latent variable

variances on the diagonal

K ×K

ψ Vector of latent variable variances K × 1

A Matrix of regression coefficiens K ×K

B Number of data blocks 1× 1

b Data block index 1× 1

c Simulated data class 1× 1

d Vector of intercepts K × 1

e Simulated data noise level 1× 1

IJ Identity matrix J × J

I(y) Scalar-valued ignorance function 1× 1

I (I(c) , I(v)) Number of samples / rows (for cali-

bration, validation)

1× 1

i (i(c), i(v)) Sample / row index (rows for cali-

bration, rows for validation)

1× 1

J Number of variables / columns 1× 1

j Variable / column index 1× 1

Continued on next page
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Table 2 – Continued from previous page

Symbol Description Dimensions

−j Indices of all variables except j (J − 1)× 1

K (K) Number of principal components

(maximum)

1× 1

k Index of principal component 1× 1

L(•) Scalar-valued likelihood function 1× 1

l Variable / column index 1× 1

Q Matrix of model performance mea-

sures

I × J

q (q(v), q(v,j)) Vector of model performance mea-

sures (for block v, variable j)

I × 1 (I(v) × 1)

r Simulated data repetition 1× 1

S Diagonal matrix of singular values K ×K

s Simulated data type 1× 1

T (T(c), T(v) ) Principal scores (calibration, valida-

tion)

I ×K
(
I(c) ×K

)

U (U(c) ) Standardized principal scores (cali-

bration)

I ×K
(
I(c) ×K

)

V (V(∗) Matrix of loading vectors (for aug-

mented data)

J ×K (J + (K)×

K)

v Validation data block index 1× 1

W Matrix of data-generating loading

vectors

J ×K

X Matrix of latent variables I ×K

x Vector of latent variables K × 1

Continued on next page
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Table 2 – Continued from previous page

Symbol Description Dimensions

Y (Y(c) , Y(v)) Noisy measurement matrix (calibra-

tion, validation)

I × J (I(c) × J ,

I(v) × J)

Y(c) (Y(c,∗) , Y(v,∗)) Augmented calibration data (cali-

bration, validation)

I×(J+K) (I(c)×

(J + K), I(v) ×

(J +K))

Ŷ (Ŷ(c) , Ŷ(v)) Estimated measurement matrix

(calibration, validation)

I × J

y Vector of measured variables J × 1

y Scalar measurement 1× 1
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