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Abstract

Sensor drift is commonly observed across engineering disciplines, particularly
in harsh media such as wastewater. In this study, a novel stabilizing con-
troller for nitrification of high strength ammonia solutions is designed based
on online signal derivatives. The controller uses the derivative of a drifting
nitrite signal to determine if nitrite-oxidizing bacteria (NOB) are substrate
limited or substrate inhibited. To ensure a meaningful interpretation of the
derivative signal, the process is excited in a cyclic manner by repeatedly
exposing the NOB to substrate-limited and substrate-inhibited conditions.
The resulting control system successfully prevented nitrite accumulations for
a period of 72 days in a laboratory-scale reactor. Slow disturbances in the
form of feed composition changes and temperature changes were success-
fully handled by the controller while short-term temperature disturbances
are shown to pose a challenge to the current version of this controller. Most
importantly, we demonstrate that drift-tolerant control for the purpose of

process stabilization can be achieved without sensor redundancy by combin-
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ing deliberate input excitation, qualitative trend analysis, and coarse process

knowledge.
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1. Introduction

Control loops relying on absolute sensor values often suffer from sensor
faults. This study presents a novel control concept to stabilise a reactor for
nitrification of high strength ammonia solutions in the presence of sensor
drift. To this end, the controller is designed to exploit information from the
signal derivatives in a deliberately excited process. In wastewater, biological,
chemical, and physical factors lead to particularly intense wear and tear
of sensors. Hence, even mature sensor hardware such as pH sensors still
exhibit drift when exposed to this harsh medium. This drift occurs at time
scales that are much longer than typical process dynamics, challenging a
comparison with the sensor data history (temporal redundancy) (Ohmura
et al., Submitted). Furthermore, drift tends to occur in all sensors exposed
to the same medium challenging its detection based on redundant placement
of sensors (spatial redundancy). Lack of spatial and temporal redundancy
impedes the application of tools such as active fault tolerant control that
correct drift automatically based on redundant information (Blanke et al.,
2016).

The root causes of sensor drift are generally assumed to be known well
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- e.g., biofilm formation, salt deposition, electrode oxidation etc. - but are
typically hard to quantify. There are a few attempts to investigate drift of
sensors quantitatively by controlled offline experiments (Ohmura et al., Sub-
mitted) or by online experiments (Samuelsson et al., 2018). However, drift
is typically identified by means of on-site manual reference measurements in
practice. This makes drift expensive to detect and correct, particularly when
remote or decentralised systems are considered.

The limited capacity to quantify sensor drift in wastewater processes on
the one hand and the need to control these processes on the other hand,
led to the development of methods that disregard absolute sensor values and
extract information that is represented in the derivatives of the sensor sig-
nal. The most discussed (soft-)sensor signals that reveal relevant information
without relying on a classical notions of accuracy are pH, oxidation-reduction
potential (ORP) (Al-Ghusain et al., 1995), and oxygen uptake rate (Baeza
et al., 2002). Al-Ghusain et al. (1995) used the derivatives of pH and ORP
to operate an aerobic/anoxic sludge digestion reactor. In these cases, the
sequenced operation creates the dynamics in the recorded sensor signals that
enable information extraction. In continuously operated processes, trend-
based monitoring and control is possible thanks to naturally occurring peri-
odicity of the (unmeasured) process input disturbances (e.g. hydraulic load,
nitrogen load, Thiirlimann et al., 2018).

The application of trend-based control concepts is expected to be more

challenging in systems without naturally occurring disturbances. The source-
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separated collection and nitrification of anthropogenic urine for the purpose
of fertilizer recovery is an example of such a system. Separated collection
of undiluted urine at the building or household level enables to smoothen
the hydraulic load with a small buffer tank. Our experience (not shown)
suggests that short-term storage of anthropogenic urine does not affect the
total nitrogen concentration, meaning that the naturally occurring variations
in the nitrogen load to a nitrifying reactor are expected to be small. Despite
the apparent lack of input disturbances, the process is sensitive to inadvertent
nitrite accumulation events, which cause a complete failure of the process in
absence of corrective actions (Fumasoli et al., 2016; Sun et al., 2012).

An economically viable method to measure nitrite online is UV-Vis ab-
sorbance spectrophotometry. However, this measurement principle lacks
specificity and therefore needs a model to extract the nitrite concentrations
from the absorbance measurement. Despite the availability of robust hard-
ware, extrapolation of such models makes drift of the nitrite signal a very
likely phenomenon (Gruber et al., 2006; Brito et al., 2014; Etheridge et al.,
2014), as is also demonstrated below.

The lack of natural or operational dynamics, the presence of signal drift,
and the open-loop unstable process of urine nitrification motivates the devel-
opment of a specialized control concept. This control concept, as explained
in detail below, extracts the essential information needed to prevent dan-
gerous nitrite accumulation events by means of (i) deliberate induction of

process dynamics (excitation) and (i) trend analysis of a drifting sensor sig-
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nal. In turn, this information extraction process enables the construction of
single-in-single-out (SISO) controller for stabilization of the urine nitrifica-

tion process.

2. Material and methods

2.1. Conceptual model of the control problem

In this paragraph, a conceptual model of the urine nitrification process is
presented. The concept illustrates the different process states (Gujer, 2008),
growth rate of the ammonia oxidizing bacteria (uAOB) and growth rate of
the nitrite oxidizing bacteria (uNOB) and connections indicating the causal
relationships between these variables and the sign of the magnitude of each
influence (positive/negative influence). In the control literature, these signs
are known as the signs of gains (Astrém and Murray, 2008). It is important
to note that this conceptual model only includes the effects considered rel-
evant to tackle the identified process stabilization challenge. Only dynamic
effects with a lower time constant than the controller are considered (e.g.,
biomass concentration stays approximately constant within this time scale).
In addition, direct inhibition of the AOB and NOB activity by ammonia is
considered marginal in the studied operational region (pH 5.9 to 7.0). The
indicated signs of gains are only valid if all other states and rates remain

constant and under constraints given in Fig. 1.
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Figure 1: Conceptual model of urine nitrification. Left panel: Process states, growth
rates, and gains. Blue arrows: positive gains; orange arrows with dot: negative gains;
Green arrows: negative feedback loop; Red arrows: positive feedback loop. Right panel:
Nitrite oxidizing bacteria growth rate (uNOB) as a schematic function of total nitrite
nitrogen concentration. Low nitrite concentration (blue dashes): NOB substrate limited;
High nitrite concentration (orange dashes): NOB substrate inhibited. The top (bottom)
horizontal line indicates the required uNOB to oxidise all the nitrite produced by the AOB

given a high (low) free ammonia concentration.

The blue arrows indicate a positive gain, the orange dot-arrows indicate a
negative gain of the connected elements. For example, an increasing loading
rate leads to an increased pH (i.e., positive gain) and an increasing AOB
rate (uAOB) leads to a decreased pH (i.e., negative gain). The gains can
create loops. Such loops are open loop stable if the product of the gains is
negative (e.g., pH - NH; - nAOB) (green/* circle arrows). This means these
loops are self-stabilizing. For example, an incrase of the pH due to a process

disturbance (e.g. higher hydraulic load, higher pH of influent) will increase
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the free ammonia (NH4 or FA) concentration in the bulk, which in turn raises
the pAOB. In turn, this decreases the pH, therefore stabilising this part of
the process. A loop with a positive product of its gains is a positive feedback
loop and can lead, when not controlled properly, to a complete disappearance
of elements in the loop (i.e., open loop unstable).

In the present case, nitrite has a negative gain to uNOB when the nitrite
concentrations are high (i.e., orange arrow). A high nitrite concentration
reduces the nitrite oxidation rate. This increases the net nitrite production
rate in turn inducing to an even stronger inhibition of the NOB. Eventually,
this leads to NOB wash-out and process failure. This part of the process is
open loop stable if the nitrite concentration remains low (i.e. blue arrow).
Under such circumstances, marginal increases of the nitrite concentration
increase the NOB activity, which decreases the net nitrite production rate.
Practically, the process can only be stabilised by reducing the AOB activ-
ity whenever the nitrite concentration reaches NOB-inhibiting levels. This
is possible by making the reactor anoxic, in which case nitrite is reduced
by denitrification. This may induce growth of denitrifiers however, in turn
leading to a loss of nitrogen to the environment. For the purpose of fertilizer
production, a better approach consists of reducing the nitrite production rate
by decreasing the pH setpoint. Low pH values induce lower FA concentra-
tions, so that eventually the nitrite oxidation rate is higher than the nitrite
production rate (Fig. 1 right).

More details concerning the influence of the NO,  concentration on the
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NOB activity (uNOB) are shown in the top right box of Fig. 1. It shows
uNOB as a function of the total nitrite concentration (TNN) (full line). The
growth rate is composed of both the substrate limiting effect and the inhibi-
tion effect nitrite has on the NOB. Most studies, but not all, list nitrite as the
substrate and free nitrous acid (FNA) as the inhibiting substance for NOB
(Park and Bae, 2009). This means that the growth rate is pH dependent.
For simplicity, we neglect any effect of the pH and assume that TNN is both
the substrate and the inhibitory substance. In practice the exact value of
the TNN concentration where the effect of substrate inhibition overpowers
the effect of substrate affinity is known only coarsely due to a variety of fac-
tors. These include process-related factors such as (i) the incompleteness of
available knowledge describing the influences of biomass composition, urine
composition, and temperature on the observed nitrite affinity and nitrite
inhibition effects (van Hulle et al., 2007) and (73) insufficient accuracy and
precision of laboratory concentration measurements to determine the critical
nitrite concentration precisely, even under otherwise stable conditions.

The black dashed arrows indicate the existing pH control loop as well as
the newly proposed nitrite control loop for process stabilization. The pH con-
trol loop is described below and is designed to protect the AOB from washout
(cf. 2.2.3). The second dashed arrow indicates the proposed master control of
the pH control loop in the reactor based on the nitrite concentration, which

is aimed at preventing washout of the NOB.
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2.2. Basic reactor set-up and operation

The reactor used for this study is a cylindrical 12 L continuous flow
stirred tank reactor (CSTR) nitrifying source-separated urine. The hydraulic
retention time (HRT) of the reactor system varied between 7 and 13 days,
as is discussed below. The reactor was operated without biomass retention
so that the sludge retention time (SRT) equals the HRT. The reactor was
in operation since 19 months prior to the start of this study. The reactor
includes two recirculation loops. One brings the reactor medium to the UV-
Vis spectrophotometer with a HRT of 10 s. The other brings medium to a pH
sensor pack used in another study (HRT: 20 s, Ohmura et al., Submitted).
The feed composition is described in 2.5.3. The available alkalinity limits the
fraction of the total ammonium converted via nitrite to nitrate to roughly

50% (detailed results below).

2.2.1. Analytics

Samples are taken regularly from the reactor to evaluate if the proposed
controller keeps the nitrite concentration low. To measure chemical species
the following steps are executed. Per sample at least 2 ml of reactor media
are filtered with 0.45 pm GF/PET filter (Art. Nr. 916 02, Macherey-Nagel,
Oensingen, Switzerland) mounted on a sampling syringe. Ammonium, ni-
trite, and nitrate concentrations are measured in every sample. The influent
ammonium and chemical oxygen demand (COD) concentrations are mea-

sured each time the influent tank was replaced. The exchange dates and con-
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centrations are listed in the Electronic Supplementary Material (Table S1 and
S2). Ammonium concentrations are determined either through a Metrohm
930 Compact IC Flex (Metrohm, Herisau, Switzerland, method: Metrohm
Metrosep C6, 250/4.0), with flow injection analysis (FIA, Lachat QC8500,
Hach Company, Loveland, USA) or with colorimetric test kits (LCK303,
Hach-Lange, Berlin, as all LCK test kits). Nitrite reference concentrations
are determined either colorimetrically with an LCK341 test kit or with strip
tests (MQuant, Merck KGaA, Darmstadt, Germany) to confirm low nitrite
concentrations. Due to dilution, the detection limit with the LCK341 kit
is approximately 2 mg N/L. Nitrate is measured in the laboratory through
a Metrohm 881 Compact IC Pro (Metrohm, Herisau, Switzerland, chemical
suppression Metrosep A Supp 7, 250/4.0) or with an LCK340 kit. For the
measurement, of the COD, LCK314 kits are used. A standard deviation of
the measurement including the dilution procedure is estimated with a sin-
gle triplicate of measurements prior to this study: FIA ammonium: 0.60%
at 2340 mg N /L, LCK 341 nitrite: 0.60% at 45.7 mg N/L, and IC nitrate:
0.55% at 2226 mg N/L.

2.2.2. Sensors
A 2 mm path length spectro:lyser V1 (s::can, Vienna, Austria) is used
to measure the UV-Vis absorbance spectrum of the reactor content in-situ.

The sensor measures the absorbance from 200 to 750 nm with a resolution

of 2.5 nm. The Ez-situ wBM model from Thiirlimann et al. (Submitted) is

10
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used to estimate the nitrite concentrations. Each minute a new absorbance
measurement and in turn a new estimation of the nitrite concentration is
obtained. Furthermore, two pH and two dissolved oxygen (DO) sensors are
installed, one of each is used for control (DO: COS61D and pH: CPS11D,

Endress&Hauser, Reinach, Switzerland)

2.2.8. Low-level control

The DO concentration is controlled between 5 and 6 mg O,/L by on/off
control of the airflow through a fine-bubble diffusor (6 L./min). The feed
pump is pH controlled (cf. 2.3). The reactor is equipped with a water
based heating/cooling system (FN-25, Julabo, Seelbach GmbH, Germany).
The temperature of the reactor was controlled at 25°C with an accuracy of

+0.5°C due to diurnal variations unless stated otherwise.

2.3. Stabilizing Nitrite Control

The ultimate goal of our controller is to ensure that both AOB and NOB
are retained and remain active in the studied reactor in the presence of
typical disturbances. The envisioned control system has to ensure that the
net nitrite production rate is zero, meaning that the ammonia oxidation is
the rate-limiting step and that no ammonia is accumulating in the system.
To this end, the master controller manages the nitrite oxidation (i.e., NOB)
and the slave controller manages the ammonia oxidation (i.e., AOB). At the
top of Fig. 2, the proposed cascaded control loops are illustrated. The slave

control loop, using pH to control the inflow was described by Udert et al.

11
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(2003). It controls the AOB by manipulating the inflow rate based on the
pH setpoint given by the master control. The master control takes the nitrite
concentration estimation as an indicator to decide if the ammonia oxidation
rate is higher or lower than the theoretical maximum nitrite oxidation rate
and sets the pH set point accordingly. The slave controller turns on the
inflow pump when the pH drops below the pH setpoint. Instead of a higher
second pH setpoint the pump is turned off again based on a timer (6 s). In

each pump event 20 + 5 mL of urine is fed to the reactor.

12
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Figure 2: Control loops. Top: Cascade control of AOB and NOB. Bottom: rule based
decision process to change master controller states. The grey box marks the rules based

on the shape constrained splines method.

221 The master controller sets the pH setpoint to the high setpoint (6.8) when
222 the nitrite concentration is such that the NOB are dominated by substrate

223 limitation (i.e., open loop stable, Fig. 1 right, horizontally blue dashed area).
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This is referred to as controller state 1. If nitrite is so high that the NOB
are dominated by substrate inhibition (i.e., open loop unstable, Fig. 1 right,
vertically orange dashed area) the controller sets the pH to the low setpoint
(6.1). This is further referred to as controller state 0. The drift in the
controller input signal forces to design the controller such that it relies on
the information contained in the first and second derivative of the signal to
distinguish between NOB inhibitory and NOB limiting nitrite concentration
levels. The information that is actually used in the controller is the identified
presence of the inflection point in the downward trend (i.e., negative first
derivative, second derivative sign switches from negative to positive). It
is assumed, that in the period during which the inflection point appears
#AOB is constant: First, at this time, the pH has already reached its low
setpoint value and the influent composition is assumed constant, thus there
are no changes in the FA concentration. Second, the temperature is assumed
constant. Furthermore, it is assumed that AOB activity is almost insensitive
to changes in the nitrite concentration at the nitrite concentration level where
the uNOB starts to be dominated by substrate limitation (Fig. 1, TNN,ay)
(Wang et al., 2014). Consequently, when the inflection point appears, the
nitrite dynamics are only driven by the NOB.

When NOB are dominated by substrate inhibition and a low pH results
in low FA availability for AOB (Fig. 1, right, pink dotted line), the NOB ac-
tivity increases as nitrite concentrations are decreasing (Fig. 1, moving from

Point B to Point C). At the landmark value (Kuipers, 1986) TNNay, the

14
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uNOB and in turn the net nitrite degradation rate reach their maxima and
then start to decrease (Fig. 1, moving from Point C to Point A). Thus under
normal circumstances, the appearance of the infection point in the decreasing
signal is linked with the NOB achieving their maximum growth rate (point
C) and the start of substrate limitation dominating the NOB. Note that the
precise value of TNN .« is considered unknown.

Identifying an inflection point in the downward trend requires first and fore-
most that the nitrite concentration has been high enough to induce observable
inhibition of the NOB. Thus, the controller has to be designed in such a way
that NOB-inhibiting conditions are reached in a way that allows reducing the
nitrite concentration as soon as inhibiting conditions are detected. Accord-
ingly, the master controller increases the pH setpoint such that the increased
FA concentration leads to an ammonia oxidation rate (i.e., nitrite production
rate) higher than the maximal nitrite consumption rate (Fig. 1, right, purple
dashed line). The nitrite increase is controlled by monitoring the absolute
increase of the signal value. In our case, the last nitrite value prior to the pH
increase is taken as a reference for a relative increase of 15 mg N/L. Once
this threshold is reached the controller switches from state 1 to state 0.

In control state 0, the controller re-stabilises the process by decreasing
the pH (Fig. 1, right, pink dotted line). As long as the nitrite concentration
in the previous increase never exceeds point B (Fig. 1, right), the reduction
in the FA concentration to the lower line puts the steady state concentration

back to point A and a net nitrite reduction starts. The controller gets the

15



270

271

272

273

274

275

276

277

278

279

280

281

282

284

285

286

287

289

290

291

confirmation of reaching a stable nitratation by identifying the inflection
point in the downward trend. This ends one control cycle. Details concerning
the practical implementation of this controller can be found in the Electronic

Supplementary Material.

2.4. Identification of inflection point

To identify the inflection point in the downward nitrite signal, the signal
is analyzed by means of a qualitative trend analysis (QTA) method. For this
purpose, the shape-constrained spline function (SCS) method described in
earlier works (Villez et al., 2013; Villez and Habermacher, 2016; Derlon et al.,
2017; Masi¢ et al., 2017) is selected. The detailed modifications necessary
for this work, particularly to enable online deployment, are described in the
Electronic Supplementary Material. We illustrate the essence of this method
next.

Fig. 3 illustrates two different time points in the analysis of the same
event. The top panels show the data (black dotted) and the three shape-
constrained spline models fitted to the data. These three models are increas-
ingly flexible. One model (U) is constrained to be isotonic (monotonically
increasing). The next model (UD) is constrained to exhibit a unimodal shape
(single maximum, no minimum) with a concave profile after the identified
maximum. The last model (UDA) has a unimodal shape also but is allowed
to have a single inflection point after the identified maximum. The bottom

panels show the corresponding root mean squared residual (RMSR) of the
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three models evaluated with all the data available until this time. In the left
plot, the data already exhibited a maximum and the U model, constrained
to be continuously increasing, starts to fit worse than the two other models.
This can be seen in the almost flat shape the U model (red, wide-dashed)
has from hour 6 on and thus results in an increasing RMSR of the U model
(RMSRy). Both the UD and UDA models approximate the time series well
as their shape constraints are flexible enough.

The right panel shows the time point at which the full data set of the event
is available. Visual inspection reveals that the data exhibits a maximum and
an inflection point in the downward trend - as expected. Shortly after hour
9 it becomes clear that a maximum is present in the time series given that
RMSRy increases dramatically. As desired, the RMSRyp increases once the
curve exhibits a convex form (hour 14), thus leading to the detection of the
downward inflection point shortly after. A video illustrating the incremental
data acquisition and concurrent data analysis can be found in the Electronic

Supplementary Material.
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Figure 3: Shape constrained spline model fitting. Top panels: Raw data with three
different qualitative sequence models fitted to the available data iduring an event. Bottom
panels: Computed root mean squared residuals as a function of time. Left: Information

available after 9h. Right: Information available at the end of the event.

2.5. Unmeasured process disturbances

Three unmeasured disturbances are tested or monitored to evaluate the
robustness of the controller. First, the signal drift itself, which is expected to
occur under any given practical operational condition. Thus, sensor drift is
not actively induced but allowed to occur in a passive manner instead. Sec-
ond, the robustness of the controller is tested against temperature dynamics

and thirdly against influent composition dynamics.
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2.5.1. Determination of drift rate

The nitrite reference measurements are compared with the estimation
of the UV-Vis nitrite signal to monitor if the sensor signal actually drifts.
The rate at which the difference of these two values change is the drift rate.
Periods of drift are selected visually and then described by a piece-wise linear
trend line. Drift is monitored in the whole experimental period (19.03.2018
- 30.05.2018, 72 days) including the periods in which the temperature and

switch of influent source experiments (see below) take place.

2.5.2. Temperature experiments

In the ambient temperature range (10 —35°C) the pAOB increases faster
with temperature than the uNOB (Hellinga et al., 1998). To evaluate whether
such disturbances pose a challenge to our control system the reactor is cooled
or heated by means of the water based cooling and heating jacket. A temper-
ature low experiment was executed twice. Each time the reactor was cooled
down from 25°C to 22°C within 10-12 h and then heated back to 25°C within
10-12 h (16./17.04.2018 and 19./20.04.2018). A temperature high experiment
was executed in two versions. In a long version (23.04.2018-25.04.2018), the
temperature was increased within 8 h from 25 to 28°C, kept there for 36 h
and then cooled down back to 25°C within 10 h. For the two short version
experiments (26.04.2018 and 27.04.2018), the temperature was raised from
25 to 28°C within 10 h and then immediately cooled back to 25°C within

10 h. Note that these temperatures are typical for indoor applications and
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subtropical regions of the world.

2.5.8. Switch of influent source

Changes in the feed composition are another source of unmeasured pro-
cess disturbances. To evaluate whether the controller is robust to this type
of disturbances, we devised an experiment in the reactor feed compisition is
changed deliberately. On April 30th, 2018 at 09:13, the influent was changed
from source-separated urine collected from male toilets and urinals to source-
separated urine collected from female toilets. Both female and male urine
collection system are located in the Forum Chriesbach Building at Eawag
Diibendorf in Switzerland. The urine from female toilets has a lower concen-
tration of ammonia (-31%) and COD (-37%) due to dilution with flushing
water in the NoMix toilets. A more comprehensive overview can be found in
Fumasoli et al. (2016). More details can be found in the Electronic Supple-

mentary Material (Table S2.1 and S2.2).

3. Results

3.1. Control behaviour

The following paragraph describes one control cycle during which the
complete control system was in autonomous use (Fig. 4). At around 12:00,
the controller state is 1 and the pH controller setpoint is 6.8 (high pH set-
point, 3'4 panel). This induces an increase in nitrite, as expected (top panel).
After reaching the threshold for a maximal difference to the previously de-

fined baseline (i.e., Rule 1) the controller state is set to 0. The pH setpoint

20
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is reduced to 6.1 (low pH setpoint, 2% panel). From this time on, the nitrite
signal is recorded for analysis by the SCS models. After collecting the mini-
mal number of nitrite measurements in this time series, the SCS models are
fit for the first time. In the 4" panel one can see the incremental changes of
the RMSR of the three different models U, UD, and UDA as new nitrite mea-
surements are added to the analyzed data series. One can see that RMSRy
is always larger than RMSRyp and RMSRypa. The interpretation is that
the control algorithm recognises that the peak nitrite concentration has al-
ready occurred before this first time of comparative analysis. At 02:30 the
RMSRuyp starts to deviate visually from the RMSRuypa. The vertical line in
the bottom panel indicates when Rule 3 was evaluated as true shortly before
07:00, meaning that the controller now considers the presence of an inflection
point in the nitrite signal as a sure thing. Shortly before 09:00 the 2 h timer
Rule 4 is also evaluated true and the controller switches back to state 1 (high
pH setpoint). Consequently, the controller memorises the last nitrite value
to reference the next nitrite increase and increases the pH setpoint to 6.8.

This completes one autonomous cycle of the proposed controller.
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Figure 4: Operational data from one event as a function of time. 1% panel: Nitrite signal
(controller input). 2"¢ panel: Controller state. 3'¢ panel: pH sensor signal with two

setpoints. 4" panel: RMSR of the three fitted SCS models.

3.2. Controller performance

Fig. 5 illustrates nitrite end of cycle concentrations (ECC) measured after
the detection of the inflection point but before the pH is increased again (T5,
see Electronic Supplementary Material). The recorded ECC values represent
substrate limiting conditions for the NOB during the complete experimental
period. The ECC progressively decreased during the period of autonomous
control. The solid retention time (i.e., equals the hydraulic retention time)
never exceeds 13 days (Fig. 6 bottom panel) meaning that the experimental
period covers more than 5.5 time the HRT (and SRT). Thus, the controller

not only kept the nitrite concentration low in the short term, but also suc-
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Figure 5: Nitrite end of cycle concentrations after identification of inflection point but
before the start of next event (T5, see Electronic Supplementary Material). Vertical lines

indicate the end of a cycle.

Despite the very noisy input signal, the visual inspection of the results
reveals that the model selection by means of comparing the RMSRs of the
three models has never resulted in a false negative or false positive identifi-
cation of the maximum or the inflection point. It has to be noted that most
likely there is a certain delay in the identification due to the chosen value
for the knot distance. To quantify the delay, in every cycle the ground truth

about TNN,ax (Fig. 1) would need to be determined.
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3.3. Unmeasured process disturbances

3.8.1. Drift

The controller input signal drift is illustrated in the top panel of Fig. 6.
Drift occurred during the entire experimental period. The estimated drift
rates, obtained with the fitted piece-wise linear trend line, range from - 0.8
to 1.1 mg NO, -N/L/d. Thus, one can conclude that the observed signal drift
poses a meaningful challenge for process control, which has been mitigated
successfully by the proposed control system. It is noted that the changes in
the drift rates can only be explained partially. The vertical grey dashed lines
indicate sensor cleaning. Sign changes of the drift rate are unexpected for
this kind of intervention (i.e., a signal jump is expected when biofilm and
solids are removed from the sensor.) Note that the initial difference between
the UV-Vis based nitrite value and the nitrite reference measurements has
been caused by drift in the 9 months in between the calibration period and

the start of this study.

3.8.2. Switch of influent source

The change in influent composition (Fig. 6, 30.04.2018, yellow dashed
line) induces a change in the sign of the drift rate from 1.1 to -0.4 mg N/L/d.
In the first 15 days after the influent switch the ammonia and nitrate concen-
tration in the reactor decrease from 2000 to 1300 mg N/L (Fig. 6, 2" panel).
The controller reacted to the new lower concentrated influent and increased

the hydraulic loading, which is indicated by the decreased hydraulic residence
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time (HRT) from around 13 to 7 days (Fig. 6, 3" panel). Furthermore, also
the control cycle length decreased from around 1 to 0.5 d (Fig. 5). Thus, the
controller was able to reject this disturbance and keep nitrite levels low. At
the same time, the slave controller was still acting as intended and compen-

sated the decreased specific ammonia load with increased hydraulic loading.
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Figure 6: Drift rate, reactor nitrogen species concentrations, and hydraulic residence time.
Top panel: deviations between the nitrite concentration signal and reference measurements
as a function of time, piece-wise linear drift rate estimation, times of sensor cleaning, the
time of influent source change from male to female urine, and the high temperature period.

Bottom panel: Ammonia and nitrate concentrations in bulk and hydraulic retention time.

3.3.3. Temperature experiment
Fig. 7 shows the results of the temperature high experiment. The first

complete cycle shown in this figure starts on April 215 and illustrates the
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operation before the temperature change. On April 22" | the controller sets
the pH setpoint to 6.8 (Fig. 7, 2°¢ panel) before the temperature increase
is visible (Fig. 7, 3" panel). The nitrite concentration rises for some time
(Fig. 7, 1°* panel) while the temperature increases also. Shortly after, the
controller decreases the pH setpoint while the temperature continues to in-
crease. However, the nitrite signal remains at a high level (around -15 mg
N/L) relative to the cycle before the temperature change (-30 mg N/L). Ni-
trite reference measurements confirm that elevated nitrite concentrations are
the cause for this difference in the signal, which remain around 20 mg N/L
instead of around 5 mg N/L as in the previous cycle. This very small drop
in nitrite compared to the peak concentration, also leads to a delay in the
identification of the inflection point (Fig. 7, 4" panel) compared to the visual
impression obtained by looking at the figure. The controller identified an in-
flection point only in the afternoon of April, 24" . An increase in pH at this
time point would lead to an even higher accumulation of nitrite. To ensure
successful testing of the controller against other disturbances, the controller
is deactivated temporally (cf. grey area 2" panel) and the temperature set-
point is again decreased to 25°C. The cooling of the bulk media leads to a
decrease in the nitrite starting at midnight on the 25'" . At noon of the same
day, the nitrite signal and reference measurements drop to the levels reached
in the first cycle (Fig. 7, 2274 ) and the controller is restarted shortly after.
Thus, the temperature high experiment indicated that fast temperature in-

creases pose a threat to the proposed control system. The temperature low
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wms  experiment did not reveal any relevant finding with respect to the control

so performance. The only notable change compared to the 25°C operation is

w0 the reduction in the peak nitrite concentration by about 5 mg N/L.
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Figure 7: Temperature high experiment. 1% panel: Nitrite signal and nitrite reference
measurements. 2°¢ panel: pH measurement. The grey area marks the period during which
the controller was inactive. 3" panel: Temperature measurement. 4™ panel: RMSR of
the three models U, UD, UDA including the time points at which the inflection point was
identified.

4. Discussion

This study proposes a new concept for a stabilizing control in the pres-
ence of signal drift and demonstrates its utility by means of an intensive

measurement campaign in a laboratory-scale reactor for urine nitrification.
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The proposed control system avoids the effects of signal drift by using infor-
mation in the first and second derivative to distinguish between stabilizing
and destabilizing process conditions. The results reveal that the controller
successfully stabilised the nitrification process despite using a sensor signal
that is drifting permanently. Importantly, this could be achieved without
redundant actuators or sensors and without a precise kinetic model of the

process.

4.1. System performance

The end of cycle nitrite concentrations at the end of the control cycles
were shown to decrease over time. This may indicate an adaption of the
NOB to the elevated nitrite levels or could also be caused by the influent
switch. Since steady state was not reached during the studied period, one
cannot determine with absolute certainty whether the reported decrease is
caused by a net decay of the AOB or a net growth of the NOB. Since the
average pH in the reactor is higher than in the conventional operation with
a constantly safe but low pH, this controller should theoretically also achieve
higher nitrification rates (Udert and Wéchter, 2012). However, pH is only
one among many factors influencing the nitrification rates. Biirgmann et al.
(2011) showed that long-term exposure to nitrite could jeopardise the pro-
cess, while van Hulle et al. (2007) hypothesised that bacteria become more
tolerant when exposed long enough to elevated nitrite concentrations. Conse-

quently, future research should be aimed at understanding long-term reactor
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performance indicators in the presence of stabilizing control loops.

4.2. Unmeasured Disturbances

Our study shows that fast introduction of unmeasured disturbances can
threaten the suitability of the proposed trend-based control concept. To
understand why this is the case, one must note that the controller is based on
the assumption that the appearance of an inflection point in the downward
nitrite signal can only be explained by a change of from NOB-inhibiting
to non-inhibiting nitrite concentration levels. To challenge this assumption
as well as the control concept, two confounding factors were disturbed on
purpose (temperature and influent composition).

The temperature increase experiment indicates that unmeasured distur-
bances can make the proposed control system fail. This is explained as an ef-
fect on the uAOB to uNOB ratio, which increases with temperature. Indeed,
the fast temperature increase of the bulk media introduced the appearance
of an inflection point. However, the assumption that the inflection point is
solely caused by NOB dynamics does not hold any longer and explains the
wrongful control action. While nitrite concentration does not yet reach the
NOB-inhibiting region after one cycle, the early increase of the pH setpoint,
induces an additional increase in the nitrite concentration. Such a higher
concentration will likely inhibit the NOB and activate a positive feedback
loop between the nitrite concentration, in turn inducing an increased risk

of NOB wash-out in the long term. The temperature high experiment did
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reveal another important condition for correct functioning of the controller.
The low amplitude of the signal (Fig. 7, 24" afternoon) delays the identifi-
cation of the inflection point. This shows the need for sufficient excitement
of the process and the signal to reach a large enough signal-to-noise ratio.
However, increased excitation also increases the risk of irreversible process
failure (i.e., Fig. 1, exceed point B).

The influent switch experiment did not influence the observed signal pro-
files in a meaningful way. As a result, the controller was able to execute the
right control actions in a timely manner throughout the course of this test.
There are two explanations for this: First, the model to derive the nitrite
concentrations from the UV-Vis absorbance measurement is apparently quite
robust against changes in the reactor media composition, particularly large
changes of the nitrate concentration (Fig. 6). Second, the dynamics caused
by the influent switch are driven by the HRT and decreased from 13 to 7 d.
Thus, this disturbance is much smoother than the temperature experiments

with a time window of 0.5 d.

4.3. Eztension of controller

The modifications applied to enable SCS analysis in an online environ-
ment worked without any complications. The main modification consisted of
embedding the SCS as a model selection tool in a moving horizon estimation

framework with a fixed start point. Despite concerns about the computa-

tional costs by Villez et al. (2013) the three SCS models could be fitted to
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the data within less than 3 seconds on an Intel® core i7 4970k 4 GHz pro-
cessor. Thus, conventionally available computational resources are expected
to be sufficient for most biochemical process monitoring applications. Faster
computations, e.g. for fast processes or when dealing with high-frequency
data collection systems, can be facilitated by increasing the knot distance of
the spline functions. If computational cost is no concern at all, then the knot
distance can be reduced to improve the fit of the applied SCS models.

So far, the controller makes the nitrite concentration oscillate around
the optimal concentration for maximal uNOB. The upper setpoint has to
ensure that nitrite is always accumulating to keep the signal informative.
The lower setpoint has to ensure net nitrite degradation to stabilise the
process. Choosing the setpoints can be challenging and some disturbances
may influence the system such that the chosen pH setpoints cannot push
the process into the intended operational region. Enabling the controller to
decide how the two pH setpoints itself should be set would also facilitate
process optimization.

One way to obtain a good ratio of the AOB activity to the NOB activity
at both pH setpoints was revealed in the high temperature experiment. The
increased temperature leads to a relatively high AOB rate at low pH. This in
turn resulted in slow net nitrite degradation and thus a flat decreasing trend
in the signal compared to the previous increase. Thus, the pH setpoints
and in turn, the overall process performance, was rather high for the given

NOB capacity. Potentially, computing the ratio of the increasing and the

31



544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

decreasing slope in one cycle allows optimizing the pH setpoints and in turn
the process performance for the next cycle. Furthermore, using this kind
of information would also help to reject additional disturbances without the

need for additional instrumentation (cf. high temperature experiment).

4.4. Links to existing control theory

The proposed controller is based largely on a conceptual model of sub-
strate affinity and inhibition in nitrifying bacteria. Assuming that the NOB
activity, and thus also the nitrite conversion rate, has a unimodal shape with
respect to the nitrite concentration, one can expect to observe an inflection
point whenever the process shifts from conditions dominated by nitrite in-
hibition to conditions dominated by nitrite limitation. This information is
key to avoid the need for any explicit correction of the signal drift since it is
contained in the derivatives. Importantly, the actions taken by the controller
can also be interpreted as the execution of an online experiment to deter-
mine the NOB kinetics. Microbial populations adapt over time and thus it
is highly likely that the inhibition and affinity constants of these population
change. Consequently, a sensor signal without relevant drift as input would
allow tracking the optimal concentration of nitrite for a maximal uNOB.

This is also important with view on the many nitrification controllers
equating nitrification with ammonia removal while nitrite oxidation is as-
sumed to be completed simultaneously. Consequently, single indicators such

as ammonia concentration, pH valley, or OUR drop have been assumed in-
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formative enough to control the process (Amand et al., 2013; Jaramillo et al.,
2018; Thiirlimann et al., 2018). This is justifiable in some situations (e.g.,
municipal WWTP). However, in certain situations, analysis of both ammonia
oxidation and nitrite oxidation is key for process stability and optimization.
Partial nitritation/anammox (Lotti et al., 2012) or on-site WWTP, which
can be limited by alkalinity are examples of this. We speculate that the
proposed control concept can be used whenever derivatives are informative
about the concentration trend of a relevant substance. The benefits of con-
trollers executing online experiments to determine process states in contin-
uously operated reactors are rarely studied in wastewater treatment. Steyer
et al. (1999) also deliberately induced process disturbances to gain infor-
mation about the performance of an anaerobic reactor. In contrast to the
presented controller, they compared the information against a simple model
to determine the performance.

The intentional excitement or perturbation of a system also has a theo-
retical basis in the form of extremum seeking control (ESC) (Liu and Krstic,
2012). Both ESC and the presented trend-based controller are model-free,
feedback controllers that purposely excite the system to gain information.
However, by default ESC requires an excitement frequency that is much
lower than the dominant process frequency. This is not the case here as
the biomass growth dynamics (HRT = 13 d) and the excitement frequency
(1 d'') appear in the same time scale. Trollberg et al. (2014) found that

the combination of a slow process and low excitement frequency as found in
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wastewater treatment make current forms of ESC impractical. They further
stated that knowledge about the system behaviour close to the optimum is
crucial to facilitate the use of ESC. Using ESC could however facilitate the
inclusion of the ideas presented in 4.3. Thus, ESC may be helpful urine ni-
trification process optimization, in addition to ensuring long-term stability

of the process.

5. Conclusion

In this study, a stabilizing controller for nitrification in high strength
wastewater was developed and critically evaluated. The controller success-
fully prevents the occurrence of destabilizing nitrite accumulation events in
an alkalinity limited urine nitrification reactor for the entire test period of

72 days. These are the main conclusions:

e Information contained in the derivatives of a drifting signal combined
with qualitative knowledge about kinetics allowed for the control of an
open-loop unstable system without the need for drift rate estimation

or correction.

e Systems without any dynamics due to input or operation can be ex-
cited deliberately in such a way that the signal derivatives contain
the information of interest about the process states. In this study,
the controller was designed to destabilise the nitrification such that

the signal derivatives contain the necessary information about the pro-
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cess state, in turn enabling stabilizing feedback control. Somewhat
counter-intuitively, deliberate short-term destabilization facilitates the

assurance of long-term process stability.

e The controller is based on a conceptual model of the process. This
model currently excludes the effect of unmeasured disturbances other
than the signal drift. This constitutes the most sensitive component of
our proposed controller. Whereas slow unmeasured disturbances were
successfully rejected, information in the controller input signal inform-
ing about fast, unmeasured disturbances were identified and considered

for inclusion into the control logic.
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