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Abstract7

Sensor drift is commonly observed across engineering disciplines, particularly

in harsh media such as wastewater. In this study, a novel stabilizing con-

troller for nitri�cation of high strength ammonia solutions is designed based

on online signal derivatives. The controller uses the derivative of a drifting

nitrite signal to determine if nitrite-oxidizing bacteria (NOB) are substrate

limited or substrate inhibited. To ensure a meaningful interpretation of the

derivative signal, the process is excited in a cyclic manner by repeatedly

exposing the NOB to substrate-limited and substrate-inhibited conditions.

The resulting control system successfully prevented nitrite accumulations for

a period of 72 days in a laboratory-scale reactor. Slow disturbances in the

form of feed composition changes and temperature changes were success-

fully handled by the controller while short-term temperature disturbances

are shown to pose a challenge to the current version of this controller. Most

importantly, we demonstrate that drift-tolerant control for the purpose of

process stabilization can be achieved without sensor redundancy by combin-
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ing deliberate input excitation, qualitative trend analysis, and coarse process

knowledge.

Keywords: nitrite control, in�ection point, shape constrained splines,8

relative measurement, online experiment, nitri�cation9

1. Introduction10

Control loops relying on absolute sensor values often su�er from sensor11

faults. This study presents a novel control concept to stabilise a reactor for12

nitri�cation of high strength ammonia solutions in the presence of sensor13

drift. To this end, the controller is designed to exploit information from the14

signal derivatives in a deliberately excited process. In wastewater, biological,15

chemical, and physical factors lead to particularly intense wear and tear16

of sensors. Hence, even mature sensor hardware such as pH sensors still17

exhibit drift when exposed to this harsh medium. This drift occurs at time18

scales that are much longer than typical process dynamics, challenging a19

comparison with the sensor data history (temporal redundancy) (Ohmura20

et al., Submitted). Furthermore, drift tends to occur in all sensors exposed21

to the same medium challenging its detection based on redundant placement22

of sensors (spatial redundancy). Lack of spatial and temporal redundancy23

impedes the application of tools such as active fault tolerant control that24

correct drift automatically based on redundant information (Blanke et al.,25

2016).26

The root causes of sensor drift are generally assumed to be known well27
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- e.g., bio�lm formation, salt deposition, electrode oxidation etc. - but are28

typically hard to quantify. There are a few attempts to investigate drift of29

sensors quantitatively by controlled o�ine experiments (Ohmura et al., Sub-30

mitted) or by online experiments (Samuelsson et al., 2018). However, drift31

is typically identi�ed by means of on-site manual reference measurements in32

practice. This makes drift expensive to detect and correct, particularly when33

remote or decentralised systems are considered.34

The limited capacity to quantify sensor drift in wastewater processes on35

the one hand and the need to control these processes on the other hand,36

led to the development of methods that disregard absolute sensor values and37

extract information that is represented in the derivatives of the sensor sig-38

nal. The most discussed (soft-)sensor signals that reveal relevant information39

without relying on a classical notions of accuracy are pH, oxidation-reduction40

potential (ORP) (Al-Ghusain et al., 1995), and oxygen uptake rate (Baeza41

et al., 2002). Al-Ghusain et al. (1995) used the derivatives of pH and ORP42

to operate an aerobic/anoxic sludge digestion reactor. In these cases, the43

sequenced operation creates the dynamics in the recorded sensor signals that44

enable information extraction. In continuously operated processes, trend-45

based monitoring and control is possible thanks to naturally occurring peri-46

odicity of the (unmeasured) process input disturbances (e.g. hydraulic load,47

nitrogen load, Thürlimann et al., 2018).48

The application of trend-based control concepts is expected to be more49

challenging in systems without naturally occurring disturbances. The source-50
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separated collection and nitri�cation of anthropogenic urine for the purpose51

of fertilizer recovery is an example of such a system. Separated collection52

of undiluted urine at the building or household level enables to smoothen53

the hydraulic load with a small bu�er tank. Our experience (not shown)54

suggests that short-term storage of anthropogenic urine does not a�ect the55

total nitrogen concentration, meaning that the naturally occurring variations56

in the nitrogen load to a nitrifying reactor are expected to be small. Despite57

the apparent lack of input disturbances, the process is sensitive to inadvertent58

nitrite accumulation events, which cause a complete failure of the process in59

absence of corrective actions (Fumasoli et al., 2016; Sun et al., 2012).60

An economically viable method to measure nitrite online is UV-Vis ab-61

sorbance spectrophotometry. However, this measurement principle lacks62

speci�city and therefore needs a model to extract the nitrite concentrations63

from the absorbance measurement. Despite the availability of robust hard-64

ware, extrapolation of such models makes drift of the nitrite signal a very65

likely phenomenon (Gruber et al., 2006; Brito et al., 2014; Etheridge et al.,66

2014), as is also demonstrated below.67

The lack of natural or operational dynamics, the presence of signal drift,68

and the open-loop unstable process of urine nitri�cation motivates the devel-69

opment of a specialized control concept. This control concept, as explained70

in detail below, extracts the essential information needed to prevent dan-71

gerous nitrite accumulation events by means of (i) deliberate induction of72

process dynamics (excitation) and (ii) trend analysis of a drifting sensor sig-73
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nal. In turn, this information extraction process enables the construction of74

single-in-single-out (SISO) controller for stabilization of the urine nitri�ca-75

tion process.76

2. Material and methods77

2.1. Conceptual model of the control problem78

In this paragraph, a conceptual model of the urine nitri�cation process is79

presented. The concept illustrates the di�erent process states (Gujer, 2008),80

growth rate of the ammonia oxidizing bacteria (µAOB) and growth rate of81

the nitrite oxidizing bacteria (µNOB) and connections indicating the causal82

relationships between these variables and the sign of the magnitude of each83

in�uence (positive/negative in�uence). In the control literature, these signs84

are known as the signs of gains (Åström and Murray, 2008). It is important85

to note that this conceptual model only includes the e�ects considered rel-86

evant to tackle the identi�ed process stabilization challenge. Only dynamic87

e�ects with a lower time constant than the controller are considered (e.g.,88

biomass concentration stays approximately constant within this time scale).89

In addition, direct inhibition of the AOB and NOB activity by ammonia is90

considered marginal in the studied operational region (pH 5.9 to 7.0). The91

indicated signs of gains are only valid if all other states and rates remain92

constant and under constraints given in Fig. 1.93
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Figure 1: Conceptual model of urine nitri�cation. Left panel: Process states, growth

rates, and gains. Blue arrows: positive gains; orange arrows with dot: negative gains;

Green arrows: negative feedback loop; Red arrows: positive feedback loop. Right panel:

Nitrite oxidizing bacteria growth rate (µNOB) as a schematic function of total nitrite

nitrogen concentration. Low nitrite concentration (blue dashes): NOB substrate limited;

High nitrite concentration (orange dashes): NOB substrate inhibited. The top (bottom)

horizontal line indicates the required µNOB to oxidise all the nitrite produced by the AOB

given a high (low) free ammonia concentration.

The blue arrows indicate a positive gain, the orange dot-arrows indicate a94

negative gain of the connected elements. For example, an increasing loading95

rate leads to an increased pH (i.e., positive gain) and an increasing AOB96

rate (µAOB) leads to a decreased pH (i.e., negative gain). The gains can97

create loops. Such loops are open loop stable if the product of the gains is98

negative (e.g., pH - NH3 - µAOB) (green/* circle arrows). This means these99

loops are self-stabilizing. For example, an incrase of the pH due to a process100

disturbance (e.g. higher hydraulic load, higher pH of in�uent) will increase101
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the free ammonia (NH3 or FA) concentration in the bulk, which in turn raises102

the µAOB. In turn, this decreases the pH, therefore stabilising this part of103

the process. A loop with a positive product of its gains is a positive feedback104

loop and can lead, when not controlled properly, to a complete disappearance105

of elements in the loop (i.e., open loop unstable).106

In the present case, nitrite has a negative gain to µNOB when the nitrite107

concentrations are high (i.e., orange arrow). A high nitrite concentration108

reduces the nitrite oxidation rate. This increases the net nitrite production109

rate in turn inducing to an even stronger inhibition of the NOB. Eventually,110

this leads to NOB wash-out and process failure. This part of the process is111

open loop stable if the nitrite concentration remains low (i.e. blue arrow).112

Under such circumstances, marginal increases of the nitrite concentration113

increase the NOB activity, which decreases the net nitrite production rate.114

Practically, the process can only be stabilised by reducing the AOB activ-115

ity whenever the nitrite concentration reaches NOB-inhibiting levels. This116

is possible by making the reactor anoxic, in which case nitrite is reduced117

by denitri�cation. This may induce growth of denitri�ers however, in turn118

leading to a loss of nitrogen to the environment. For the purpose of fertilizer119

production, a better approach consists of reducing the nitrite production rate120

by decreasing the pH setpoint. Low pH values induce lower FA concentra-121

tions, so that eventually the nitrite oxidation rate is higher than the nitrite122

production rate (Fig. 1 right).123

More details concerning the in�uence of the NO �
2 concentration on the124
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NOB activity (µNOB) are shown in the top right box of Fig. 1. It shows125

µNOB as a function of the total nitrite concentration (TNN) (full line). The126

growth rate is composed of both the substrate limiting e�ect and the inhibi-127

tion e�ect nitrite has on the NOB. Most studies, but not all, list nitrite as the128

substrate and free nitrous acid (FNA) as the inhibiting substance for NOB129

(Park and Bae, 2009). This means that the growth rate is pH dependent.130

For simplicity, we neglect any e�ect of the pH and assume that TNN is both131

the substrate and the inhibitory substance. In practice the exact value of132

the TNN concentration where the e�ect of substrate inhibition overpowers133

the e�ect of substrate a�nity is known only coarsely due to a variety of fac-134

tors. These include process-related factors such as (i) the incompleteness of135

available knowledge describing the in�uences of biomass composition, urine136

composition, and temperature on the observed nitrite a�nity and nitrite137

inhibition e�ects (van Hulle et al., 2007) and (ii) insu�cient accuracy and138

precision of laboratory concentration measurements to determine the critical139

nitrite concentration precisely, even under otherwise stable conditions.140

The black dashed arrows indicate the existing pH control loop as well as141

the newly proposed nitrite control loop for process stabilization. The pH con-142

trol loop is described below and is designed to protect the AOB from washout143

(cf. 2.2.3). The second dashed arrow indicates the proposed master control of144

the pH control loop in the reactor based on the nitrite concentration, which145

is aimed at preventing washout of the NOB.146
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2.2. Basic reactor set-up and operation147

The reactor used for this study is a cylindrical 12 L continuous �ow148

stirred tank reactor (CSTR) nitrifying source-separated urine. The hydraulic149

retention time (HRT) of the reactor system varied between 7 and 13 days,150

as is discussed below. The reactor was operated without biomass retention151

so that the sludge retention time (SRT) equals the HRT. The reactor was152

in operation since 19 months prior to the start of this study. The reactor153

includes two recirculation loops. One brings the reactor medium to the UV-154

Vis spectrophotometer with a HRT of 10 s. The other brings medium to a pH155

sensor pack used in another study (HRT: 20 s, Ohmura et al., Submitted).156

The feed composition is described in 2.5.3. The available alkalinity limits the157

fraction of the total ammonium converted via nitrite to nitrate to roughly158

50% (detailed results below).159

2.2.1. Analytics160

Samples are taken regularly from the reactor to evaluate if the proposed161

controller keeps the nitrite concentration low. To measure chemical species162

the following steps are executed. Per sample at least 2 ml of reactor media163

are �ltered with 0.45 µm GF/PET �lter (Art. Nr. 916 02, Macherey-Nagel,164

Oensingen, Switzerland) mounted on a sampling syringe. Ammonium, ni-165

trite, and nitrate concentrations are measured in every sample. The in�uent166

ammonium and chemical oxygen demand (COD) concentrations are mea-167

sured each time the in�uent tank was replaced. The exchange dates and con-168
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centrations are listed in the Electronic Supplementary Material (Table S1 and169

S2). Ammonium concentrations are determined either through a Metrohm170

930 Compact IC Flex (Metrohm, Herisau, Switzerland, method: Metrohm171

Metrosep C6, 250/4.0), with �ow injection analysis (FIA, Lachat QC8500,172

Hach Company, Loveland, USA) or with colorimetric test kits (LCK303,173

Hach-Lange, Berlin, as all LCK test kits). Nitrite reference concentrations174

are determined either colorimetrically with an LCK341 test kit or with strip175

tests (MQuant, Merck KGaA, Darmstadt, Germany) to con�rm low nitrite176

concentrations. Due to dilution, the detection limit with the LCK341 kit177

is approximately 2 mg N/L. Nitrate is measured in the laboratory through178

a Metrohm 881 Compact IC Pro (Metrohm, Herisau, Switzerland, chemical179

suppression Metrosep A Supp 7, 250/4.0) or with an LCK340 kit. For the180

measurement of the COD, LCK314 kits are used. A standard deviation of181

the measurement including the dilution procedure is estimated with a sin-182

gle triplicate of measurements prior to this study: FIA ammonium: 0.60%183

at 2340 mg N/L, LCK 341 nitrite: 0.60% at 45.7 mg N/L, and IC nitrate:184

0.55% at 2226 mg N/L.185

2.2.2. Sensors186

A 2 mm path length spectro::lyser V1 (s::can, Vienna, Austria) is used187

to measure the UV-Vis absorbance spectrum of the reactor content in-situ.188

The sensor measures the absorbance from 200 to 750 nm with a resolution189

of 2.5 nm. The Ex-situ wBM model from Thürlimann et al. (Submitted) is190
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used to estimate the nitrite concentrations. Each minute a new absorbance191

measurement and in turn a new estimation of the nitrite concentration is192

obtained. Furthermore, two pH and two dissolved oxygen (DO) sensors are193

installed, one of each is used for control (DO: COS61D and pH: CPS11D,194

Endress&Hauser, Reinach, Switzerland)195

2.2.3. Low-level control196

The DO concentration is controlled between 5 and 6 mg O2/L by on/o�197

control of the air�ow through a �ne-bubble di�usor (6 L/min). The feed198

pump is pH controlled (cf. 2.3). The reactor is equipped with a water199

based heating/cooling system (FN-25, Julabo, Seelbach GmbH, Germany).200

The temperature of the reactor was controlled at 25◦C with an accuracy of201

±0.5◦C due to diurnal variations unless stated otherwise.202

2.3. Stabilizing Nitrite Control203

The ultimate goal of our controller is to ensure that both AOB and NOB204

are retained and remain active in the studied reactor in the presence of205

typical disturbances. The envisioned control system has to ensure that the206

net nitrite production rate is zero, meaning that the ammonia oxidation is207

the rate-limiting step and that no ammonia is accumulating in the system.208

To this end, the master controller manages the nitrite oxidation (i.e., NOB)209

and the slave controller manages the ammonia oxidation (i.e., AOB). At the210

top of Fig. 2, the proposed cascaded control loops are illustrated. The slave211

control loop, using pH to control the in�ow was described by Udert et al.212
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(2003). It controls the AOB by manipulating the in�ow rate based on the213

pH setpoint given by the master control. The master control takes the nitrite214

concentration estimation as an indicator to decide if the ammonia oxidation215

rate is higher or lower than the theoretical maximum nitrite oxidation rate216

and sets the pH set point accordingly. The slave controller turns on the217

in�ow pump when the pH drops below the pH setpoint. Instead of a higher218

second pH setpoint the pump is turned o� again based on a timer (6 s). In219

each pump event 20 ± 5 mL of urine is fed to the reactor.220
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Figure 2: Control loops. Top: Cascade control of AOB and NOB. Bottom: rule based

decision process to change master controller states. The grey box marks the rules based

on the shape constrained splines method.

The master controller sets the pH setpoint to the high setpoint (6.8) when221

the nitrite concentration is such that the NOB are dominated by substrate222

limitation (i.e., open loop stable, Fig. 1 right, horizontally blue dashed area).223
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This is referred to as controller state 1. If nitrite is so high that the NOB224

are dominated by substrate inhibition (i.e., open loop unstable, Fig. 1 right,225

vertically orange dashed area) the controller sets the pH to the low setpoint226

(6.1). This is further referred to as controller state 0. The drift in the227

controller input signal forces to design the controller such that it relies on228

the information contained in the �rst and second derivative of the signal to229

distinguish between NOB inhibitory and NOB limiting nitrite concentration230

levels. The information that is actually used in the controller is the identi�ed231

presence of the in�ection point in the downward trend (i.e., negative �rst232

derivative, second derivative sign switches from negative to positive). It233

is assumed, that in the period during which the in�ection point appears234

µAOB is constant: First, at this time, the pH has already reached its low235

setpoint value and the in�uent composition is assumed constant, thus there236

are no changes in the FA concentration. Second, the temperature is assumed237

constant. Furthermore, it is assumed that AOB activity is almost insensitive238

to changes in the nitrite concentration at the nitrite concentration level where239

the µNOB starts to be dominated by substrate limitation (Fig. 1, TNNmax)240

(Wang et al., 2014). Consequently, when the in�ection point appears, the241

nitrite dynamics are only driven by the NOB.242

When NOB are dominated by substrate inhibition and a low pH results243

in low FA availability for AOB (Fig. 1, right, pink dotted line), the NOB ac-244

tivity increases as nitrite concentrations are decreasing (Fig. 1, moving from245

Point B to Point C). At the landmark value (Kuipers, 1986) TNNmax, the246
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µNOB and in turn the net nitrite degradation rate reach their maxima and247

then start to decrease (Fig. 1, moving from Point C to Point A). Thus under248

normal circumstances, the appearance of the infection point in the decreasing249

signal is linked with the NOB achieving their maximum growth rate (point250

C) and the start of substrate limitation dominating the NOB. Note that the251

precise value of TNNmax is considered unknown.252

Identifying an in�ection point in the downward trend requires �rst and fore-253

most that the nitrite concentration has been high enough to induce observable254

inhibition of the NOB. Thus, the controller has to be designed in such a way255

that NOB-inhibiting conditions are reached in a way that allows reducing the256

nitrite concentration as soon as inhibiting conditions are detected. Accord-257

ingly, the master controller increases the pH setpoint such that the increased258

FA concentration leads to an ammonia oxidation rate (i.e., nitrite production259

rate) higher than the maximal nitrite consumption rate (Fig. 1, right, purple260

dashed line). The nitrite increase is controlled by monitoring the absolute261

increase of the signal value. In our case, the last nitrite value prior to the pH262

increase is taken as a reference for a relative increase of 15 mg N/L. Once263

this threshold is reached the controller switches from state 1 to state 0.264

In control state 0, the controller re-stabilises the process by decreasing265

the pH (Fig. 1, right, pink dotted line). As long as the nitrite concentration266

in the previous increase never exceeds point B (Fig. 1, right), the reduction267

in the FA concentration to the lower line puts the steady state concentration268

back to point A and a net nitrite reduction starts. The controller gets the269
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con�rmation of reaching a stable nitratation by identifying the in�ection270

point in the downward trend. This ends one control cycle. Details concerning271

the practical implementation of this controller can be found in the Electronic272

Supplementary Material.273

2.4. Identi�cation of in�ection point274

To identify the in�ection point in the downward nitrite signal, the signal275

is analyzed by means of a qualitative trend analysis (QTA) method. For this276

purpose, the shape-constrained spline function (SCS) method described in277

earlier works (Villez et al., 2013; Villez and Habermacher, 2016; Derlon et al.,278

2017; Ma²i¢ et al., 2017) is selected. The detailed modi�cations necessary279

for this work, particularly to enable online deployment, are described in the280

Electronic Supplementary Material. We illustrate the essence of this method281

next.282

Fig. 3 illustrates two di�erent time points in the analysis of the same283

event. The top panels show the data (black dotted) and the three shape-284

constrained spline models �tted to the data. These three models are increas-285

ingly �exible. One model (U) is constrained to be isotonic (monotonically286

increasing). The next model (UD) is constrained to exhibit a unimodal shape287

(single maximum, no minimum) with a concave pro�le after the identi�ed288

maximum. The last model (UDA) has a unimodal shape also but is allowed289

to have a single in�ection point after the identi�ed maximum. The bottom290

panels show the corresponding root mean squared residual (RMSR) of the291
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three models evaluated with all the data available until this time. In the left292

plot, the data already exhibited a maximum and the U model, constrained293

to be continuously increasing, starts to �t worse than the two other models.294

This can be seen in the almost �at shape the U model (red, wide-dashed)295

has from hour 6 on and thus results in an increasing RMSR of the U model296

(RMSRU). Both the UD and UDA models approximate the time series well297

as their shape constraints are �exible enough.298

The right panel shows the time point at which the full data set of the event299

is available. Visual inspection reveals that the data exhibits a maximum and300

an in�ection point in the downward trend - as expected. Shortly after hour301

9 it becomes clear that a maximum is present in the time series given that302

RMSRU increases dramatically. As desired, the RMSRUD increases once the303

curve exhibits a convex form (hour 14), thus leading to the detection of the304

downward in�ection point shortly after. A video illustrating the incremental305

data acquisition and concurrent data analysis can be found in the Electronic306

Supplementary Material.307
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Figure 3: Shape constrained spline model �tting. Top panels: Raw data with three

di�erent qualitative sequence models �tted to the available data iduring an event. Bottom

panels: Computed root mean squared residuals as a function of time. Left: Information

available after 9h. Right: Information available at the end of the event.

2.5. Unmeasured process disturbances308

Three unmeasured disturbances are tested or monitored to evaluate the309

robustness of the controller. First, the signal drift itself, which is expected to310

occur under any given practical operational condition. Thus, sensor drift is311

not actively induced but allowed to occur in a passive manner instead. Sec-312

ond, the robustness of the controller is tested against temperature dynamics313

and thirdly against in�uent composition dynamics.314
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2.5.1. Determination of drift rate315

The nitrite reference measurements are compared with the estimation316

of the UV-Vis nitrite signal to monitor if the sensor signal actually drifts.317

The rate at which the di�erence of these two values change is the drift rate.318

Periods of drift are selected visually and then described by a piece-wise linear319

trend line. Drift is monitored in the whole experimental period (19.03.2018320

- 30.05.2018, 72 days) including the periods in which the temperature and321

switch of in�uent source experiments (see below) take place.322

2.5.2. Temperature experiments323

In the ambient temperature range (10− 35◦C) the µAOB increases faster324

with temperature than the µNOB (Hellinga et al., 1998). To evaluate whether325

such disturbances pose a challenge to our control system the reactor is cooled326

or heated by means of the water based cooling and heating jacket. A temper-327

ature low experiment was executed twice. Each time the reactor was cooled328

down from 25◦C to 22◦C within 10-12 h and then heated back to 25◦C within329

10-12 h (16./17.04.2018 and 19./20.04.2018). A temperature high experiment330

was executed in two versions. In a long version (23.04.2018-25.04.2018), the331

temperature was increased within 8 h from 25 to 28◦C, kept there for 36 h332

and then cooled down back to 25◦C within 10 h. For the two short version333

experiments (26.04.2018 and 27.04.2018), the temperature was raised from334

25 to 28◦C within 10 h and then immediately cooled back to 25◦C within335

10 h. Note that these temperatures are typical for indoor applications and336
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subtropical regions of the world.337

2.5.3. Switch of in�uent source338

Changes in the feed composition are another source of unmeasured pro-339

cess disturbances. To evaluate whether the controller is robust to this type340

of disturbances, we devised an experiment in the reactor feed compisition is341

changed deliberately. On April 30th, 2018 at 09:13, the in�uent was changed342

from source-separated urine collected from male toilets and urinals to source-343

separated urine collected from female toilets. Both female and male urine344

collection system are located in the Forum Chriesbach Building at Eawag345

Dübendorf in Switzerland. The urine from female toilets has a lower concen-346

tration of ammonia (-31%) and COD (-37%) due to dilution with �ushing347

water in the NoMix toilets. A more comprehensive overview can be found in348

Fumasoli et al. (2016). More details can be found in the Electronic Supple-349

mentary Material (Table S2.1 and S2.2).350

3. Results351

3.1. Control behaviour352

The following paragraph describes one control cycle during which the353

complete control system was in autonomous use (Fig. 4). At around 12:00,354

the controller state is 1 and the pH controller setpoint is 6.8 (high pH set-355

point, 3rd panel). This induces an increase in nitrite, as expected (top panel).356

After reaching the threshold for a maximal di�erence to the previously de-357

�ned baseline (i.e., Rule 1 ) the controller state is set to 0. The pH setpoint358
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is reduced to 6.1 (low pH setpoint, 2nd panel). From this time on, the nitrite359

signal is recorded for analysis by the SCS models. After collecting the mini-360

mal number of nitrite measurements in this time series, the SCS models are361

�t for the �rst time. In the 4th panel one can see the incremental changes of362

the RMSR of the three di�erent models U, UD, and UDA as new nitrite mea-363

surements are added to the analyzed data series. One can see that RMSRU364

is always larger than RMSRUD and RMSRUDA. The interpretation is that365

the control algorithm recognises that the peak nitrite concentration has al-366

ready occurred before this �rst time of comparative analysis. At 02:30 the367

RMSRUD starts to deviate visually from the RMSRUDA. The vertical line in368

the bottom panel indicates when Rule 3 was evaluated as true shortly before369

07:00, meaning that the controller now considers the presence of an in�ection370

point in the nitrite signal as a sure thing. Shortly before 09:00 the 2 h timer371

Rule 4 is also evaluated true and the controller switches back to state 1 (high372

pH setpoint). Consequently, the controller memorises the last nitrite value373

to reference the next nitrite increase and increases the pH setpoint to 6.8.374

This completes one autonomous cycle of the proposed controller.375
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Figure 4: Operational data from one event as a function of time. 1st panel: Nitrite signal

(controller input). 2nd panel: Controller state. 3rd panel: pH sensor signal with two

setpoints. 4th panel: RMSR of the three �tted SCS models.

3.2. Controller performance376

Fig. 5 illustrates nitrite end of cycle concentrations (ECC) measured after377

the detection of the in�ection point but before the pH is increased again (T5,378

see Electronic Supplementary Material). The recorded ECC values represent379

substrate limiting conditions for the NOB during the complete experimental380

period. The ECC progressively decreased during the period of autonomous381

control. The solid retention time (i.e., equals the hydraulic retention time)382

never exceeds 13 days (Fig. 6 bottom panel) meaning that the experimental383

period covers more than 5.5 time the HRT (and SRT). Thus, the controller384

not only kept the nitrite concentration low in the short term, but also suc-385
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cessfully prevented washout of the NOB population within a signi�cant test386

period.387
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Figure 5: Nitrite end of cycle concentrations after identi�cation of in�ection point but

before the start of next event (T5, see Electronic Supplementary Material). Vertical lines

indicate the end of a cycle.

Despite the very noisy input signal, the visual inspection of the results388

reveals that the model selection by means of comparing the RMSRs of the389

three models has never resulted in a false negative or false positive identi�-390

cation of the maximum or the in�ection point. It has to be noted that most391

likely there is a certain delay in the identi�cation due to the chosen value392

for the knot distance. To quantify the delay, in every cycle the ground truth393

about TNNmax (Fig. 1) would need to be determined.394
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3.3. Unmeasured process disturbances395

3.3.1. Drift396

The controller input signal drift is illustrated in the top panel of Fig. 6.397

Drift occurred during the entire experimental period. The estimated drift398

rates, obtained with the �tted piece-wise linear trend line, range from - 0.8399

to 1.1 mg NO �
2 -N/L/d. Thus, one can conclude that the observed signal drift400

poses a meaningful challenge for process control, which has been mitigated401

successfully by the proposed control system. It is noted that the changes in402

the drift rates can only be explained partially. The vertical grey dashed lines403

indicate sensor cleaning. Sign changes of the drift rate are unexpected for404

this kind of intervention (i.e., a signal jump is expected when bio�lm and405

solids are removed from the sensor.) Note that the initial di�erence between406

the UV-Vis based nitrite value and the nitrite reference measurements has407

been caused by drift in the 9 months in between the calibration period and408

the start of this study.409

3.3.2. Switch of in�uent source410

The change in in�uent composition (Fig. 6, 30.04.2018, yellow dashed411

line) induces a change in the sign of the drift rate from 1.1 to -0.4 mg N/L/d.412

In the �rst 15 days after the in�uent switch the ammonia and nitrate concen-413

tration in the reactor decrease from 2000 to 1300 mg N/L (Fig. 6, 2nd panel).414

The controller reacted to the new lower concentrated in�uent and increased415

the hydraulic loading, which is indicated by the decreased hydraulic residence416
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time (HRT) from around 13 to 7 days (Fig. 6, 3rd panel). Furthermore, also417

the control cycle length decreased from around 1 to 0.5 d (Fig. 5). Thus, the418

controller was able to reject this disturbance and keep nitrite levels low. At419

the same time, the slave controller was still acting as intended and compen-420

sated the decreased speci�c ammonia load with increased hydraulic loading.421

Figure 6: Drift rate, reactor nitrogen species concentrations, and hydraulic residence time.

Top panel: deviations between the nitrite concentration signal and reference measurements

as a function of time, piece-wise linear drift rate estimation, times of sensor cleaning, the

time of in�uent source change from male to female urine, and the high temperature period.

Bottom panel: Ammonia and nitrate concentrations in bulk and hydraulic retention time.

3.3.3. Temperature experiment422

Fig. 7 shows the results of the temperature high experiment. The �rst423

complete cycle shown in this �gure starts on April 21st and illustrates the424
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operation before the temperature change. On April 22nd , the controller sets425

the pH setpoint to 6.8 (Fig. 7, 2nd panel) before the temperature increase426

is visible (Fig. 7, 3rd panel). The nitrite concentration rises for some time427

(Fig. 7, 1st panel) while the temperature increases also. Shortly after, the428

controller decreases the pH setpoint while the temperature continues to in-429

crease. However, the nitrite signal remains at a high level (around -15 mg430

N/L) relative to the cycle before the temperature change (-30 mg N/L). Ni-431

trite reference measurements con�rm that elevated nitrite concentrations are432

the cause for this di�erence in the signal, which remain around 20 mg N/L433

instead of around 5 mg N/L as in the previous cycle. This very small drop434

in nitrite compared to the peak concentration, also leads to a delay in the435

identi�cation of the in�ection point (Fig. 7, 4th panel) compared to the visual436

impression obtained by looking at the �gure. The controller identi�ed an in-437

�ection point only in the afternoon of April, 24th . An increase in pH at this438

time point would lead to an even higher accumulation of nitrite. To ensure439

successful testing of the controller against other disturbances, the controller440

is deactivated temporally (cf. grey area 2nd panel) and the temperature set-441

point is again decreased to 25◦C. The cooling of the bulk media leads to a442

decrease in the nitrite starting at midnight on the 25th . At noon of the same443

day, the nitrite signal and reference measurements drop to the levels reached444

in the �rst cycle (Fig. 7, 22nd ) and the controller is restarted shortly after.445

Thus, the temperature high experiment indicated that fast temperature in-446

creases pose a threat to the proposed control system. The temperature low447
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experiment did not reveal any relevant �nding with respect to the control448

performance. The only notable change compared to the 25◦C operation is449

the reduction in the peak nitrite concentration by about 5 mg N/L.450

Figure 7: Temperature high experiment. 1st panel: Nitrite signal and nitrite reference

measurements. 2nd panel: pH measurement. The grey area marks the period during which

the controller was inactive. 3rd panel: Temperature measurement. 4th panel: RMSR of

the three models U, UD, UDA including the time points at which the in�ection point was

identi�ed.

4. Discussion451

This study proposes a new concept for a stabilizing control in the pres-452

ence of signal drift and demonstrates its utility by means of an intensive453

measurement campaign in a laboratory-scale reactor for urine nitri�cation.454
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The proposed control system avoids the e�ects of signal drift by using infor-455

mation in the �rst and second derivative to distinguish between stabilizing456

and destabilizing process conditions. The results reveal that the controller457

successfully stabilised the nitri�cation process despite using a sensor signal458

that is drifting permanently. Importantly, this could be achieved without459

redundant actuators or sensors and without a precise kinetic model of the460

process.461

4.1. System performance462

The end of cycle nitrite concentrations at the end of the control cycles463

were shown to decrease over time. This may indicate an adaption of the464

NOB to the elevated nitrite levels or could also be caused by the in�uent465

switch. Since steady state was not reached during the studied period, one466

cannot determine with absolute certainty whether the reported decrease is467

caused by a net decay of the AOB or a net growth of the NOB. Since the468

average pH in the reactor is higher than in the conventional operation with469

a constantly safe but low pH, this controller should theoretically also achieve470

higher nitri�cation rates (Udert and Wächter, 2012). However, pH is only471

one among many factors in�uencing the nitri�cation rates. Bürgmann et al.472

(2011) showed that long-term exposure to nitrite could jeopardise the pro-473

cess, while van Hulle et al. (2007) hypothesised that bacteria become more474

tolerant when exposed long enough to elevated nitrite concentrations. Conse-475

quently, future research should be aimed at understanding long-term reactor476
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performance indicators in the presence of stabilizing control loops.477

4.2. Unmeasured Disturbances478

Our study shows that fast introduction of unmeasured disturbances can479

threaten the suitability of the proposed trend-based control concept. To480

understand why this is the case, one must note that the controller is based on481

the assumption that the appearance of an in�ection point in the downward482

nitrite signal can only be explained by a change of from NOB-inhibiting483

to non-inhibiting nitrite concentration levels. To challenge this assumption484

as well as the control concept, two confounding factors were disturbed on485

purpose (temperature and in�uent composition).486

The temperature increase experiment indicates that unmeasured distur-487

bances can make the proposed control system fail. This is explained as an ef-488

fect on the µAOB to µNOB ratio, which increases with temperature. Indeed,489

the fast temperature increase of the bulk media introduced the appearance490

of an in�ection point. However, the assumption that the in�ection point is491

solely caused by NOB dynamics does not hold any longer and explains the492

wrongful control action. While nitrite concentration does not yet reach the493

NOB-inhibiting region after one cycle, the early increase of the pH setpoint,494

induces an additional increase in the nitrite concentration. Such a higher495

concentration will likely inhibit the NOB and activate a positive feedback496

loop between the nitrite concentration, in turn inducing an increased risk497

of NOB wash-out in the long term. The temperature high experiment did498
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reveal another important condition for correct functioning of the controller.499

The low amplitude of the signal (Fig. 7, 24th afternoon) delays the identi�-500

cation of the in�ection point. This shows the need for su�cient excitement501

of the process and the signal to reach a large enough signal-to-noise ratio.502

However, increased excitation also increases the risk of irreversible process503

failure (i.e., Fig. 1, exceed point B).504

The in�uent switch experiment did not in�uence the observed signal pro-505

�les in a meaningful way. As a result, the controller was able to execute the506

right control actions in a timely manner throughout the course of this test.507

There are two explanations for this: First, the model to derive the nitrite508

concentrations from the UV-Vis absorbance measurement is apparently quite509

robust against changes in the reactor media composition, particularly large510

changes of the nitrate concentration (Fig. 6). Second, the dynamics caused511

by the in�uent switch are driven by the HRT and decreased from 13 to 7 d.512

Thus, this disturbance is much smoother than the temperature experiments513

with a time window of 0.5 d.514

4.3. Extension of controller515

The modi�cations applied to enable SCS analysis in an online environ-516

ment worked without any complications. The main modi�cation consisted of517

embedding the SCS as a model selection tool in a moving horizon estimation518

framework with a �xed start point. Despite concerns about the computa-519

tional costs by Villez et al. (2013) the three SCS models could be �tted to520
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the data within less than 3 seconds on an Intel R© core i7 4970k 4 GHz pro-521

cessor. Thus, conventionally available computational resources are expected522

to be su�cient for most biochemical process monitoring applications. Faster523

computations, e.g. for fast processes or when dealing with high-frequency524

data collection systems, can be facilitated by increasing the knot distance of525

the spline functions. If computational cost is no concern at all, then the knot526

distance can be reduced to improve the �t of the applied SCS models.527

So far, the controller makes the nitrite concentration oscillate around528

the optimal concentration for maximal µNOB. The upper setpoint has to529

ensure that nitrite is always accumulating to keep the signal informative.530

The lower setpoint has to ensure net nitrite degradation to stabilise the531

process. Choosing the setpoints can be challenging and some disturbances532

may in�uence the system such that the chosen pH setpoints cannot push533

the process into the intended operational region. Enabling the controller to534

decide how the two pH setpoints itself should be set would also facilitate535

process optimization.536

One way to obtain a good ratio of the AOB activity to the NOB activity537

at both pH setpoints was revealed in the high temperature experiment. The538

increased temperature leads to a relatively high AOB rate at low pH. This in539

turn resulted in slow net nitrite degradation and thus a �at decreasing trend540

in the signal compared to the previous increase. Thus, the pH setpoints541

and in turn, the overall process performance, was rather high for the given542

NOB capacity. Potentially, computing the ratio of the increasing and the543
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decreasing slope in one cycle allows optimizing the pH setpoints and in turn544

the process performance for the next cycle. Furthermore, using this kind545

of information would also help to reject additional disturbances without the546

need for additional instrumentation (cf. high temperature experiment).547

4.4. Links to existing control theory548

The proposed controller is based largely on a conceptual model of sub-549

strate a�nity and inhibition in nitrifying bacteria. Assuming that the NOB550

activity, and thus also the nitrite conversion rate, has a unimodal shape with551

respect to the nitrite concentration, one can expect to observe an in�ection552

point whenever the process shifts from conditions dominated by nitrite in-553

hibition to conditions dominated by nitrite limitation. This information is554

key to avoid the need for any explicit correction of the signal drift since it is555

contained in the derivatives. Importantly, the actions taken by the controller556

can also be interpreted as the execution of an online experiment to deter-557

mine the NOB kinetics. Microbial populations adapt over time and thus it558

is highly likely that the inhibition and a�nity constants of these population559

change. Consequently, a sensor signal without relevant drift as input would560

allow tracking the optimal concentration of nitrite for a maximal µNOB.561

This is also important with view on the many nitri�cation controllers562

equating nitri�cation with ammonia removal while nitrite oxidation is as-563

sumed to be completed simultaneously. Consequently, single indicators such564

as ammonia concentration, pH valley, or OUR drop have been assumed in-565
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formative enough to control the process (Åmand et al., 2013; Jaramillo et al.,566

2018; Thürlimann et al., 2018). This is justi�able in some situations (e.g.,567

municipal WWTP). However, in certain situations, analysis of both ammonia568

oxidation and nitrite oxidation is key for process stability and optimization.569

Partial nitritation/anammox (Lotti et al., 2012) or on-site WWTP, which570

can be limited by alkalinity are examples of this. We speculate that the571

proposed control concept can be used whenever derivatives are informative572

about the concentration trend of a relevant substance. The bene�ts of con-573

trollers executing online experiments to determine process states in contin-574

uously operated reactors are rarely studied in wastewater treatment. Steyer575

et al. (1999) also deliberately induced process disturbances to gain infor-576

mation about the performance of an anaerobic reactor. In contrast to the577

presented controller, they compared the information against a simple model578

to determine the performance.579

The intentional excitement or perturbation of a system also has a theo-580

retical basis in the form of extremum seeking control (ESC) (Liu and Krstic,581

2012). Both ESC and the presented trend-based controller are model-free,582

feedback controllers that purposely excite the system to gain information.583

However, by default ESC requires an excitement frequency that is much584

lower than the dominant process frequency. This is not the case here as585

the biomass growth dynamics (HRT = 13 d) and the excitement frequency586

(1 d-1) appear in the same time scale. Trollberg et al. (2014) found that587

the combination of a slow process and low excitement frequency as found in588
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wastewater treatment make current forms of ESC impractical. They further589

stated that knowledge about the system behaviour close to the optimum is590

crucial to facilitate the use of ESC. Using ESC could however facilitate the591

inclusion of the ideas presented in 4.3. Thus, ESC may be helpful urine ni-592

tri�cation process optimization, in addition to ensuring long-term stability593

of the process.594

5. Conclusion595

In this study, a stabilizing controller for nitri�cation in high strength596

wastewater was developed and critically evaluated. The controller success-597

fully prevents the occurrence of destabilizing nitrite accumulation events in598

an alkalinity limited urine nitri�cation reactor for the entire test period of599

72 days. These are the main conclusions:600

• Information contained in the derivatives of a drifting signal combined601

with qualitative knowledge about kinetics allowed for the control of an602

open-loop unstable system without the need for drift rate estimation603

or correction.604

• Systems without any dynamics due to input or operation can be ex-605

cited deliberately in such a way that the signal derivatives contain606

the information of interest about the process states. In this study,607

the controller was designed to destabilise the nitri�cation such that608

the signal derivatives contain the necessary information about the pro-609
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cess state, in turn enabling stabilizing feedback control. Somewhat610

counter-intuitively, deliberate short-term destabilization facilitates the611

assurance of long-term process stability.612

• The controller is based on a conceptual model of the process. This613

model currently excludes the e�ect of unmeasured disturbances other614

than the signal drift. This constitutes the most sensitive component of615

our proposed controller. Whereas slow unmeasured disturbances were616

successfully rejected, information in the controller input signal inform-617

ing about fast, unmeasured disturbances were identi�ed and considered618

for inclusion into the control logic.619

Acknowledgement620

The authors want to thank Benjamin Stucki and Kito Ohmura for their621

assistance with the experiments, Karin Rottermann and Sylvia Richter for622

their assistance with the laboratory analysis. Dominique Bonvin and Juan623

Pablo Carbajal for their inputs regarding the control theory. This research624

was made possible by the Swiss National Foundation (Project: 157097).625

References626

Åström, K.J., Murray, R.M., 2008. Feedback Systems: An Introduction for627

Scientists and Engineers. Princeton University Press, Princeton. OCLC:628

ocn183179623.629

35



Al-Ghusain, I., Huang, J., Hao, O., Lim, B., 1995. Using pH as real-time630

control parameter for wastewater treatment and sludge digestion processes.631

Wat. Sci. Technol. 30(4), 159�168.632

Åmand, L., Olsson, G., Carlsson, B., 2013. Aeration control � a review.633

Water Science and Technology 67, 2374�2398. doi:10.2166/wst.2013.139.634

Baeza, J., Gabriel, D., Lafuente, J., 2002. In-line fast OUR oxygen uptake635

rate measurements for monitoring and control of WWTP. Water Science636

and Technology 45, 19�28.637

Blanke, M., Kinnaert, M., Lunze, J., Staroswiecki, M., 2016. Diagnosis and638

Fault-Tolerant Control. 3rd ed. 2016 ed., Springer Berlin Heidelberg, Berlin639

Heidelberg.640

Brito, R.S., Pinheiro, H.M., Ferreira, F., Matos, J.S., Lourenço, N.D., 2014.641

In situ UV-Vis spectroscopy to estimate COD and TSS in wastewater642

drainage systems. Urban Water Journal 11, 261�273.643

Bürgmann, H., Jenni, S., Vazquez, F., Udert, K.M., 2011. Regime shift644

and microbial dynamics in a sequencing batch reactor for nitri�cation and645

anammox treatment of urine. Applied and Environmental Microbiology646

77, 5897�5907. doi:10.1128/AEM.02986-10.647

Derlon, N., Thürlimann, C.M., Dürrenmatt, D.J., Villez, K., 2017. Batch648

settling curve registration via image data modeling. Water Research 114,649

327�337.650

36



Etheridge, J.R., Birgand, F., Osborne, J.A., Osburn, C.L., Burchell, M.R.,651

Irving, J., 2014. Using in situ ultraviolet-visual spectroscopy to measure652

nitrogen, carbon, phosphorus, and suspended solids concentrations at a653

high frequency in a brackish tidal marsh. Limnology and Oceanography:654

Methods 12, 10�22. doi:10.4319/lom.2014.12.10.655

Fumasoli, A., Etter, B., Sterkele, B., Morgenroth, E., Udert, K.M., 2016.656

Operating a pilot-scale nitri�cation/distillation plant for complete nutrient657

recovery from urine. Water Science and Technology 73, 215�222.658

Gruber, G., Bertrand-Krajewski, J.L., Beneditis, J.D., Hochedlinger, M.,659

Lettl, W., 2006. Practical aspects, experiences and strategies by using660

UV/VIS sensors for long-term sewer monitoring. Water Practice and Tech-661

nology 1.662

Gujer, W., 2008. Systems Analysis for Water Technology. Springer-Verlag,663

Berlin Heidelberg.664

Hellinga, C., Schellen, S.A.A.J.C., Mulder, J.W., van Loosdrecht, M.V., Hei-665

jnen, J.J., 1998. The SHARON process: an innovative method for nitrogen666

removal from ammonium-rich waste water. Water Science and Technology667

37, 135�142.668

Jaramillo, F., Orchard, M., Muñoz, C., Zamorano, M., Antileo, C., 2018.669

Advanced strategies to improve nitri�cation process in sequencing batch670

37



reactors - A review. Journal of Environmental Management 218, 154�164.671

doi:10.1016/j.jenvman.2018.04.019.672

Kuipers, B., 1986. Qualitative simulation. Artif. Intell. 29, 289�338.673

Liu, S.J., Krstic, M., 2012. Stochastic Averaging and Stochastic Extremum674

Seeking. Communications and Control Engineering, Springer-Verlag, Lon-675

don.676

Lotti, T., van der Star, W.R.L., Kleerebezem, R., Lubello, C., van Loos-677

drecht, M.C.M., 2012. The e�ect of nitrite inhibition on the anammox678

process. Water Research 46, 2559�2569. doi:10.1016/j.watres.2012.02.011.679

Ma²i¢, A., Srinivasan, S., Billeter, J., Bonvin, D., Villez, K., 2017. Shape con-680

strained splines as transparent black-box models for bioprocess modeling.681

Computers & Chemical Engineering 99, 96�105.682

Ohmura, K., Thürlimann, C.M., Kipf, M., Carbajal, J.P., Villez, K., Sub-683

mitted. Characterizing long-term wear of ion-selective ph sensors. DOI:684

10.31224/osf.io/mv6tz [Preprint WWW Document].685

Park, S., Bae, W., 2009. Modeling kinetics of ammonium oxida-686

tion and nitrite oxidation under simultaneous inhibition by free am-687

monia and free nitrous acid. Process Biochemistry 44, 631�640.688

doi:10.1016/j.procbio.2009.02.002.689

Samuelsson, O., Björk, A., Zambrano, J., Carlsson, B., 2018. Fault signa-690

38



tures and bias progression in dissolved oxygen sensors. Water Science and691

Technology 78, 1034�1044. doi:10.2166/wst.2018.350.692

Steyer, J.P., Bu�ère, P., Rolland, D., Moletta, R., 1999. Advanced control693

of anaerobic digestion processes through disturbances monitoring. Water694

Research 33, 2059�2068. doi:10.1016/S0043-1354(98)00430-8.695

Sun, F.Y., Dong, W.Y., Shao, M.F., Li, J., Peng, L.Y., 2012. Stabilization696

of source-separated urine by biological nitri�cation process: Treatment697

performance and nitrite accumulation. Water Science and Technology: A698

Journal of the International Association on Water Pollution Research 66,699

1491�1497. doi:10.2166/wst.2012.337.700

Thürlimann, C.M., Dürrenmatt, D.J., Villez, K., 2018. Soft-sensing with701

qualitative trend analysis for wastewater treatment plant control. Control702

Engineering Practice 70, 121�133. doi:10.1016/j.conengprac.2017.09.015.703

Thürlimann, C.M., Udert, K.M., Morgenroth, E., Villez, K., Submitted.704

Comparison of four methods to obtain calibration data for online nitrite705

estimation by means of in-line UV-Vis spectrophotometry. Water Research706

Submitted.707

Trollberg, O., Carlsson, B., Jacobsen, E.W., 2014. Extremum seeking control708

of the CANON process � Existence of multiple stationary solutions. Jour-709

nal of Process Control 24, 348�356. doi:10.1016/j.jprocont.2013.11.007.710

39



Udert, K.M., Fux, C., Münster, M., Larsen, T.A., Siegrist, H., Gujer, W.,711

2003. Nitri�cation and autotrophic denitri�cation of source-separated712

urine. Water Science and Technology 48, 119�130.713

Udert, K.M., Wächter, M., 2012. Complete nutrient recovery from source-714

separated urine by nitri�cation and distillation. Water Research 46, 453�715

464.716

van Hulle, S.W.H., Volcke, E.I.P., Teruel, J.L., Donckels, B., van Loosdrecht,717

M.C.M., Vanrolleghem, P.A., 2007. In�uence of temperature and pH on the718

kinetics of the Sharon nitritation process. Journal of Chemical Technology719

& Biotechnology 82, 471�480. doi:10.1002/jctb.1692.720

Villez, K., Habermacher, J., 2016. Shape anomaly detection for process mon-721

itoring of a sequencing batch reactor. Computers & Chemical Engineering722

91, 365�379.723

Villez, K., Venkatasubramanian, V., Rengaswamy, R., 2013. Generalized724

shape constrained spline �tting for qualitative analysis of trends. Comput-725

ers & Chemical Engineering 58, 116�134.726

Wang, Q., Ye, L., Jiang, G., Hu, S., Yuan, Z., 2014. Side-stream sludge727

treatment using free nitrous acid selectively eliminates nitrite oxidizing728

bacteria and achieves the nitrite pathway. Water Research 55, 245�255.729

doi:10.1016/j.watres.2014.02.029.730

40


