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Abstract

For complex systems such as wastewater treatment plants (WWTPs), effective data communication is an impor-
tant step to enable operators to assess their plant. However, examples in practice show that this step is
insufficiently considered. In this article, we describe a fast, relevant, and intuitive decision-support tool for opera-
tors. We have developed a key performance indicator (KPI) visualisation tool for energy and process data
embedded in a larger process optimisation software. The KPI set consists of indicator values relating to
energy and effluent quality. In order to ensure that the visualisation tool will be used and cover the needs of
the plant staff, we developed this part of the software in collaboration with two WWTPs. At the time of writing,
the tool is used in the daily operation of both plants. The operators see the tool’s most important advantages as
its ability to quickly assess current plant performance and to simplify the tracking and analysis of inter- and intra-
process relationships and dynamics.
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INTRODUCTION

Energy and resources are important cost factors for wastewater treatment (Hernandez-Sancho &
Sala-Garrido 2008). The implementation of new energy-intensive treatment technologies such as
post-ozonation (Hollender et al. 2009) makes it essential to optimise not only the design but also
the operation of wastewater treatment plants (WWTPs) towards energy and resource efficiency. On
a daily basis, operation optimisation requires a keener awareness of the process characteristics and
energy consumption of the plant. Moreover, various studies in other engineering areas claim that
energy savings can be achieved simply by providing more frequent or real-time energy data to the deci-
sion-makers (Siero et al. 1996; Fischer 2008). However, limited efforts have gone into the effective
communication of this data. For a broader and complex indicator set, such as ours, the actual visua-
lisation and arrangement of the individual graphical elements is a crucial step in attracting the
operator’s attention.

In the current literature, visualisation in wastewater treatment is often linked only to methods of
processing data and does not discuss its on-site deployment. Popular approaches are based on unsu-
pervised learning models such as principal component analysis (e.g. Aguado & Rosen 2008; Maere
et al. 2012) or self-organising maps (e.g. García & González 2004; Dürrenmatt & Gujer 2012) and
have been studied intensively in the academic community.

In the visualisation concept presented in this paper, visualisation also includes intuitive communi-
cation of relevant and processed (smoothed, filtered) data. Research about the communication of data
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from WWTPs to operators has been limited. Publications such as those of Andrienko & Andrienko
(2006) and Aigner et al. (2007), for example, discuss general rules for the visualisation of temporal
data which may be transferable to wastewater practice. In this paper, we present a novel approach
to the accurate and intuitive visualisation of key performance indicators (KPI) taking into account
energy and process data on WWTPs. This approach deals not only with computational and graphical
issues, but also considers the integration of heterogeneous data sources, varying data quality and
quantity, as well as computational requirements. With the aid of this novel KPI-focused approach,
we aim to support operators in assessing and optimising the performance of their plants.

SOFTWARE DESIGN PHILOSOPHY

Modularity

The visualisation tool fits into a larger project in which software is developed for optimising WWTP
operation. A key observation in this context is that numerous techniques for data analysis and visua-
lisation are available today. They include generic techniques as well as tools which are highly specific
to particular data sources (e.g. discrete/continuous, univariate/multivariate sources). It is expected
that the demand for these tools will vary over time and for different WWTPs because of their
scale, their location or additional plant-specific conditions and requirements. For this reason, a
core element of the design philosophy is that the resulting software, including data visualisation
tools, is modular. Such modularity aims to limit the extra efforts needed to implement the same soft-
ware in new plants. Unavoidable plant-specific software changes are limited to differences in data
acquisition, plant configuration, and data availability. It is important that any visualisation tool,
including the one proposed in this work, should be flexible enough to be used for a wide range of
WWTP designs and even for other systems (e.g. sewer networks and water production systems).

Data quality

An important aspect of data visualisation in wastewater treatment practice is that the displayed data
must be of guaranteed quality in order to prevent errors in the decision-making process. Therefore, the
software is built in such a way that the visualisation module discussed in this paper is fed only with
data already analysed by a data quality module. Although this module is not discussed in detail in this
paper, its specifications account for the following elements:

(1) Hardware redundancy, such as sensors measuring the same variable in the same location or a sensor
measuring the controlled variable of an actuator (e.g. flow rate set point and flow rate measurement),
is exploited for fault detection (to indicate a fault) and fault isolation (to indicate a faulty sensor) to
allow appropriate sensor maintenance. Furthermore, automatic fault identification (e.g. identifying
calibration errors, fouling, bias, and the associated parameter values) should lead to automated data
correction schemes (e.g. Ali & Narasimhan 1995; Rieger et al. 2010).

(2) Process redundancy based on mechanistic knowledge in the form of flow, mass, and energy bal-
ances (static redundancy) is used to reconcile online data, so that the reconciled data satisfy the
balance equations as described in, e.g. Ali & Narasimhan (1995) or Narasimhan & Jordache
(1999). Furthermore, gross error detection schemes are put in place for fault detection, isolation,
and identification based on balance equations (e.g. Villez et al. 2013).

(3) Empirical redundancy, discovered only by means of data mining or data-driven pattern recognition
methods, is used to detect anomalies in the measurements where the methods mentioned above
fail (e.g. Dunia et al. 1996; Villez et al. 2009).
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Data granularity

During the development of a data visualisation tool, several aspects of full-scale data have to be
addressed. One is that not all data are measured at the same frequency. As such, it is very obvious
that the updating interval for visualisation cannot be shorter than the collection interval for the
data. This is especially relevant for off-line measurements, as they are typically available at irregu-
larly spaced time intervals. This is less of a concern for on-line data. However, the visualisation of
energy-related and general process data at high frequency (e.g. scale of seconds) makes little sense if
the data visualisation is only requested on an hourly or daily basis. Indeed, the granularity of the
visualisation data itself needs to be adjusted to a lower scale (less detail) so that it captures the
important variations in the plant, which can be influenced by the operator, but no small timescale
variations, which have limited relation to the plant performance. This applies especially to systems
with a long delay between inputs (control signals) and outputs (measurements). Typical time con-
stants for wastewater treatment are daily cycles (e.g. flow and energy) or hydraulic or solid
residence times (e.g. digester). Excessively frequent computation may give the operator an erro-
neous picture, possibly leading to aggressive action or distrust of the software. This is to be set
off against a potentially slower response of the visualisation tool if the chosen granularity is so
low (not enough detail) that important events are detected more quickly by the operator instead
of the software or, even worse, missed entirely.

VISUALISATION CONCEPT

Visual design elements

Two graphical elements help to visualise the KPI, the ‘colour bar’ and the ‘calendar view’. The
colour bar (cf. Figure 1(b)) has a numerical scale for the indicator with an arbitrary number of
markers. Each colour of the colour gradient from red to yellow to green is fixed to specific
numerical values for each indicator and includes no additional information. However, the col-
ours are designed to allow a faster and more intuitive understanding of the numerical scale.
The colours of this colour bar are basically matched to the EU energy label for household appli-
ances (European Union 2013), which is also an official label in Switzerland and is therefore well-
known (cf. Figure 1(a)). Each colour bar contains a description of the calculation, the data
sources used, and the time of the last calculated value (not shown). The calendar view is
based on an idea of Wicklin & Allison (2009) and consists of a calendar where weekdays are
arranged in columns and each row represents a week (cf. Figure 1(c)). Each day is a small
box coloured according to the characteristic day value (e.g. daily average). The colour scale cor-
responds to that in the colour bar. If an indicator is not calculated, the respective day remains
blank. The form and arrangement of the calendar view elements supports the operator in finding
weekly and seasonal patterns within one or among several indicators. The calendar view offers
interactive options (e.g. mouse hover effects) to gain a better understanding of the indicated
value with respect to the nutrient and hydraulic loads and other KPIs on the selected day.
During hovering, the corresponding calendar view value is displayed on the corresponding
colour bar (H).

If the operator wants to study some indicators in more detail, a second graphical interface can be
opened (not shown). On this level, the user can visualise multiple indicator trends on any timescale
and with various options to show statistical key figures. The second level is still in the process of devel-
opment and has not yet been released.
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FULL-SCALE IMPLEMENTATION

To ensure relevant, intuitive, and user-friendly visualisation, the software module was developed in
close collaboration with two Swiss WWTPs, namely, WWTP Hard in Winterthur and WWTP Pfun-
gen. The former is a conventional activated sludge treatment plant and is equipped with a pre-
denitrification stage, iron-based phosphorus precipitation and effluent sand filters. The average load
is approximately 130,000 population equivalents (p.e.). The plant mainly receives municipal waste-
water and has strict discharge requirements due to its relatively small receiving water body. The
WWTP Pfungen is a conventional municipal activated sludge treatment plant and is equipped with
a pre-denitrification stage and iron-based phosphorus precipitation. It is designed for 12,000 p.e.
The software module is similarly configured for both plants.

Indicators

The data chosen for visualisation can be separated into two groups, energy indicators, and process
indicators. In our implementation, the energy indicators are based on existing guidelines from the
Swiss Water Association (BFE & VSA 2010). The German Association for Water, Wastewater and
Waste provides an equally valid alternative (DWA 2013). These indicator sets help operators to
benchmark their plants against ideal and guideline values. The guidelines suggest calculating con-
sumption per population equivalent (p.e.) assuming 120 g COD/p.e./day. Due to the variability of

Figure 1 | (a) European energy label for household appliances (European Union 2013). (b) Colour bar component. (c) Calendar
view with interactive mouse hover information. Colour bar markers: I, ideal value; G, guideline value; M, measured value; and H,
historical value.
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the COD influent concentrations, the WWTP operators favoured absolute values in our initial evalua-
tion experiments. This is discussed in more detail in the Evaluation section below.

The set of energy indicators was extended by an additional indicator of peak electricity load, as this
is subject to fees and thus relevant for the operators. Process and elimination performance as well as
resource efficiency are also visualised by appropriate indicators. Instead of guideline and ideal values,
however, they are benchmarked against effluent limits and internal quality objectives. An overview of
the implemented indicators is given in Table 1.

Implementation and deployment

Systematic integration of software modules designed for WWTP staff is crucial for successful deploy-
ment on-site. While systematic integration eases the use of the modules by providing uniform and
intuitive user interfaces, it is also a key factor for cost-effective deployment if embedded within a
broader software framework.

Consequently, the visualisation module presented in this paper is deployed as an optimisation soft-
ware module within the commercially available RITUNE platform (http://www.rittmeyer.com/
ritune) shown in Figure 2. The software has a client-server architecture, where client and server commu-
nicate by means of HTTP requests. This enables and simplifies deployment over the internet, thus also
facilitating remote applications. The RITUNE platform connects to supervisory, control, and data

Table 1 | Key performance indicators selected for deployment

Indicator Unit Colour bar value

Modified energy indicators (BFE & VSA 2010)

Total electricity consumption per day kWh/d Daily value

Electricity consumption of the biological
treatment step (aeration, recirculation, stirrers)
per day

kWh/d Daily value

Litre of biogas produced per kilogram of VSS
loaded into the digester

l/kg VSS Ratio of average daily gas production (l) to average daily
VSS measurements (kg) within a single solid retention
time of the digester

Degree of biogas usage for energy purposes % Daily value

Degree of biogas usage for electricity or direct
motive force purposes

% Daily value

Self-sufficiency in electrical energy % Daily value

Self-sufficiency in thermal energy % Daily value

Custom Energy Indicators

15 min of peak electricity load kW Daily maximum 15 min average value

Plant performance indicators

Elimination performance COD, N & P, whole
plant

% Value of last daily composite sample

Elimination performance COD, N & P,
biological step

% Value of last daily composite sample

Effluent concentrations TSS, COD, DOC,
nitrite, nitrate, ammonia & total nitrogen

mg/l Value of last daily composite sample

Fraction of COD, N & P plant capacity in use % Value of last daily composite sample

Absolute and relative denitrification
performance

kg/d & % Value of last daily composite sample

Precipitant usage per mole of P precipitated mol/mol P Value of last daily composite samples or daily average
(online P-sensor).
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acquisition (SCADA) systems, plant information systems, and other data sources via industry-standard
interfaces such as OPC, OBDC, SQL, and XML-RPC. The quality of the incoming data is first analysed
(data quality monitor; Figure 2) and the performance of the plant is assessed (plant performance moni-
tor). Data of ascertained quality are hierarchically aggregated for fast data access, taking advantage of
the map-reduction capabilities of the database. Both aggregated data and performance measures are
then fed into the plant advisor, where they are utilised by modules performing specific tasks, e.g. visua-
lising KPIs as in our case. Insights gained from data analysis and recommendations made by the
optimisation software are either (i) manually applied to the plant by the operator, (ii) directly sent to
the SCADA system, or (iii) verified by an external supervisor. Cloud services allow direct benchmarking
data among different plants as well as the use of computationally intensive optimisation modules; thus,
the local server and clients normally only require standard computers to run on. The initial installation
of the server and clients and the configuration of the visualisation module take less than a day.

The module visualising energy and process data on WWTPs is shown in Figure 3. Horizontally
arranged gauges indicating KPIs and guideline values facilitate obtaining an overview of the plant’s
state. For each gauge, a calendar view allows the analysis of temporal variations by emphasising
weekly and seasonal patterns. A typical interface on common screens can contain up to 15 gauges
and display historic data for the last 12 months. The user login concept of the RITUNE platform
allows to personalise the visualised KPIs according to the individual needs (e.g. operator vs. man-
ager). Configuration masks allow any user with appropriate permissions to create and configure
new and existing indicators, to arrange indicators within dashboards and also to define additional
dashboards. There are no limitations in terms of number of indicators per dashboard and dashboards
per installation.

Application

The following application example shows a typical use case of the tool shown in Figure 3. The red
dashed line indicates a period where the second-largest biogas consumer in the plant, namely the

Figure 2 | Implementation of the optimisation software (brighter grey area) within the WWTP. The plant’s fence is indicated by
the dashed grey line.

Water Practice & Technology Vol 10 No 1
15 doi: 10.2166/wpt.2015.002



sludge incinerator, was shut down due to maintenance. This decline in gas consumption with constant
gas production led to various effects, which are easy to explore as the relevant data are already intui-
tively arranged. One observed effect is that some gas was diverted to the gas flare to relieve a lack of
storage capacity, thereby causing a decline in the percentage of gas used for energy production (N_1).
A second effect is that the high gas surplus allowed the cogeneration plant to be operated during a
larger fraction of each day. Indeed, the higher electricity production led in turn to a higher percentage
of gas used for electricity production (N_2) as well as a higher level of self-sufficiency in electricity
consumption (V_e). The peak kilowatt consumption from the public electricity grid was consequently
also below normal weekday levels (E_15 min). This example shows that the effects of planned
changes can be tracked effectively. In addition, the visualisation tool can be used as a monitoring
device to detect and identify unintentional process disruptions. It is intended to add a plugin to the
RITUNE platform which allows to write and read entries to already existing event databases such
as the SCADA system in order to keep track of event meta data.

EVALUATION

The visualisation tool presented in this paper offers the user a faster and more intuitive way of extract-
ing relevant information from process data compared to the conventional tools in use today
(cf. Figure 4). Figure 4 shows daily values from five out of seven indicators we show in Figure 3.
Both visualisations are based on the same data set.

On the basis of initial full-scale tests, the operators of the two WWTPs (Hard and Pfungen) claim
that the tool enables them to assess the current state of the plant quickly on a daily basis. In particular

Figure 3 | Screenshot of the dashboard prototype implemented on the WWTP Hard, Winterthur. It indicates the current state of
the plant by means of KPIs, embedded as a plugin module within the optimisation software platform. The red dashed line
indicates a phase where the sludge incineration, a large biogas consumer, was shut down (cf. Application section).
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the automated update of the KPIs and the more intuitive visualisation compared to the classical
spreadsheet tools (cf. Figure 4) were mentioned. Furthermore, the calendar view makes it easier for
them to study intra- and inter-process effects (see Application section above) without major effort.
According to the operators, information can be used not only for operational decisions but also for
preliminary strategic decisions as the operators gain more knowledge about the plant load dynamics.
Furthermore, the tool allows them to track the success of new operation strategies or to confirm that
they are already operating the plant or single processes optimally. Nevertheless, a number of problems
remain unsolved. Some challenges are of a technical nature. For example, temporal resolutions of dif-
ferent variables for computation and visualisation are currently set ad hoc and thus require further
refinement. Annual key indicators are often unsuitable for daily treatment for various reasons such
as data noise or data availability. On-going studies are aimed at the evaluation and quantification
of operational risks associated with missing and excluded data. A further challenge is to ensure the
general applicability of the software. Other challenges relate to the quantification of the benefits of
the developed software. While operators value the visualisation tool as a major improvement, it is
still unclear whether and how the human–machine interface should be enhanced further. Also the
long-term usage of the tool is not evaluated yet. It is for this reason that a broader set of tests on a
variety of WWTPs are currently being carried out.

CONCLUSION

A new tool to visualise energy and process data has been presented. Two graphical elements
facilitate the assessment of the current and historical state of the plant. In combination, they
enable the operator to interactively interpret relevant data, thus leading to better informed deci-
sion-making. The approach presented here is flexible enough to accept generic KPIs, even if
intuitive ones are available in the literature. On-going tests reveal that it is helpful for plant
operators. Reported benefits over traditional data visualisation include: (1) straightforward over-
view of the plant’s performance, (2) effective appreciation of otherwise unknown correlations
and patterns, and (3) diagnostic capabilities, leading to decision-making in a well-informed opera-
tional setting.

Figure 4 | The graph is based on the same data as the KPIs already visualised in Figure 3 (Autumn 2012–Summer 2013). Five
out of seven KPIs plotted. The red dashed line indicates a phase where the sludge incineration, a large biogas consumer, was
shut down (cf. Application section).
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