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Abstract 
In the past, applications of statistical modelling, typically put within statistical process control (SPC) have 
typically been limited to on-line monitoring of processes. Statistical model-based control design is hardly 
found in literature. A straightforward application method of PLS modelling to control is therefore presented in 
an attempt to close the gap between statistical monitoring and process control. Based on an extensive 
simulation study, covering several steady-state situations of the SHARON process, several PLS models were 
constructed. Based on captured cumulative variance and CUMPRESS (cumulative squared sum of prediction 
errors) statistics, the number of retained latent variables were determined. The resulting PLS models were 
tested in closed loop control by means of dynamic influent data of the full scale SHARON process in 
Rotterdam. The control performance was however unsatisfying, either due to bad prediction or due to 
insensitivity of the model output to the selected control handles. This observed insensitivity was caused by an 
improper selection of historical data. In order to fit a linear model, certain steady-states were removed from the 
modelling data set. By doing so, only steady state situation where the DO setpoint and HRT control handles 
showed little effect on the output variables were selected for modelling purposes. Faced with the observed 
pitfall in PLS modelling, some suggestions for future research are given. 
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INTRODUCTION 
The Single reactor High activity Ammonia Removal Over Nitrite (SHARON) process is designed and 
applied for the treatment of wastewater with high ammonia concentrations by means of nitritation. 
The successful combination of this process with the Anammox autotrophic nitrogen removal process, 
in which equimolar ammounts of ammonia and nitrite are converted to nitrogen gas, can result in a 
reduction of the stoichiometrically required oxygen down to 40% of the oxygen demand in 
conventional N-removal, while no carbon source needs to be added and sludge production is 
negligible (van Dongen et al., 2001). The success of this strategy is however highly dependent on the 
control of the nitrite:ammonia ratio in the effluent of the SHARON process (van Dongen et al., 2001, 
Volcke et al., 2005). A suitable control strategy, which aims at an optimal nitrite:ammonia ratio of 1:1 
and reduced aeration and acid and base addition at the same time, may be troubled by the nonlinear, 
time-varying and fast-responding nature of the process. 
 
A project has been set up in which a supervisory control system for wastewater treatment systems, 
including monitoring, diagnosis and control modules, is developed. The intention is that the control 
module that is aimed for will, based on the output of the monitoring and diagnosis modules, select 
between alternative control strategies. The subject of this paper discusses the control strategy in 
normal operational conditions. 
In the past decade, several applications of PLS (partial least-squares) modelling for monitoring of 
chemical processes have been described (MacGregor and Kourti, 1995, Kourti and MacGregor 1995, 
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Wise and Gallagher, 1996). Lee et al. (2005) discuss hybrid applications of PLS and mechanistic 
modelling to process monitoring in a full-scale wastewater treatment plant. In the aforementioned 
cases, PLS models provide a link between process data and qualities of the final product. As such, 
deviating quality or abnormal products can possibly be detected at an early stage of the process, 
hereby allowing corrective actions in time without excessive costs. However, these models do not 
necessarily allow to determine the appropriate action that should be taken. Indeed multivariate 
statistical monitoring is typically put under the moniker of multivariate statistical process control 
(MVSPC). Applications of PLS modelling as a basis for control design are however limited. Kaspar 
and Ray (1992) show how PLS models can be used as compensators for controllers to tackle the 
uncertainty in the mechanistic models that were used in control design. Piovoso and Kosanovich 
(1994) applied multivariate statistical methods to process monitoring and controller design, where a 
feedback controller design based on the principal component analysis (PCA) and principal 
component regression (PCR) was developed. 
 
In this work, a straightforward application of PLS models in control design is formulated. First, an 
explanation of the methodology is given. Second, the results of the applied methodology to the 
SHARON process are shown and finally, conclusions are drawn and future perspectives are 
indicated. 
 
MATERIALS AND METHODS  
Partial least-squares (PLS) regression is a linear multivariate method to relate input data (X-space) to 
output data (Y-space) (Geladi and Kowalski, 1986). Analysis of collinear, noisy and highly 
dimensional data sets is possible by application of PLS (Wold et al., 2001). By means of extraction of 
so called latent variables, which are highly correlated with the data in Y-space and capture a large part 
of the variance in X-space, PLS maximizes the covariance between the input and output data. In this 
way, the latent variables provide linear combinations of X-data and linear combinations of Y-data 
that are highly correlated. A PLS model is typically presented by the following set of equations: 
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k is the number of latent variables that are retained in the model. The PLS model is uniquely defined 
by means of the loading vectors in X-space, pi, the loading vectors in Y-space, qi, and the coefficients 
of the linear regression equations between the corresponding loading vectors, bi and hi. Vectors ti and 
ui represent the transformed data, also called scores, in the X- and Y-space respectively. E and F are 
the residual errors in X- and Y-space. In case prediction is the purpose of modelling, the number of 
latent variables is typically chosen on the basis of the prediction residual sum of squares (PRESS) in 
Y-space, generally obtained by cross-validation. 
 
In this work, the data set for PLS model identification is derived from an extensive simulation study 
using the detailed nonlinear SHARON-model of Volcke et al. (2002). Different combinations of 
influent conditions and feasible slave controller setpoints are simulated in order to cover different 
states of the process. The input data (X-space) consist of ammonia load (TNHiTNHi), inorganic 
carbon load (TICi), ratio of inorganic carbon load to ammonia load (TICi:TNHi), hydraulic residence 
time (HRT), influent flow rate (Q), dissolved oxygen setpoint (DOsp), dissolved oxygen (DO) and 
pH. The output data (Y-space) consist of ammonia-nitrogen (TNHo), nitrite-nitrogen (TNO2o) and 
nitrate-nitrogen (NO3o). It was intended to link the effects of two X-variables, namely DOsp and 
HRT, to the effluent quality variables TNHo, TNO2o and NO3o by means of PLS modelling. 
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Selection of the number of retained latent variables was based on cross-validation using contiguous 
blocks. Each block represented 20% of the total dataset, each corresponding to one simulated value of 
the ammonia load. Besides this criterion, the cumulative variance captured in X- and Y-space, was 
used for latent variable selection. The performances of several models, with different numbers of 
latent variables, were tested in closed loop in a simulation study through dynamic influent data of the 
full-scale SHARON reactor in Rotterdam. The daily values for influent pH and the concentrations of 
ammonia and inorganic carbon in this dataset were used. Flow rates to the SHARON reactor were not 
taken from this data set. Instead the control algorithm was allowed to control the influent flow rate 
independently, at this stage of the study not being limited by any feasibility or cost restrictions. The 
supervisory control was allowed to change the setpoints every 6 hours. 
 
RESULTS AND DISCUSSION 
Proposed methodology 
The methodology proposed here is summarized in Figure 1. Firstly, a PLS model is constructed based 
on historical process data. Successful PLS modelling enables the prediction of output variables (in 
this case effluent quality) by means of input variables (in this case influent measurements, operational 
conditions and control setpoints).  
 
The PLS model, once established, becomes an essential part of the master controller. With a certain 
time interval, newly derived process data enter the control algorithm as non-controllable input 
variables (imposed X-variables). Other variables, such as the setpoints of slave controllers can be 
changed (controllable X-variables). The output variables (Y-variables) are then predicted for each 
possible combination of imposed X-variables and controllable X-variables. For each of the 
predictions, a measure of control quality is calculated, expressed as a cost function. In turn, the 
setpoint combination that yields the lowest cost function are communicated to the slave controllers. 
The setpoints remain the same until the next evaluation by the master controller. Each time the 
designed time interval has elapsed, new process data are entered to the master controller and the 
procedure is repeated. 
 

MASTER CONTROLLER (PLS)

HISTORY PROCESS DATA

PROCESS

SLAVE CONTROLLER (PID)

MEASUREMENTS

SLAVE CONTROLLER SETPOINTS

STATISTICAL MODELLING

 
Figure 1. Conceptual Basic flow chart of the proposed methodology. The master control loop 

setpoints for slave controllers are set on the basis of statistical modelling. 
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As biological systems are subject to changing environmental conditions such as temperature changes, 
the history data will possibly be extended with process conditions that were not present before in the 
historical dataset. Therefore, repeated or adaptive statistical modelling can be used to adapt to 
changes in the process. This is however not the subject of this study. 
Possible benefits of the proposed approach are: 

- no mechanistic or precise knowledge of a process is necessary if sufficient historical process 
data are available  

- if necessary, easy adaptation to new situations is possible by repeated automated statistical 
modelling or model updating 

 
Application to the SHARON process: PLS modelling 
The behaviour of the SHARON process was simulated for a range of influent conditions and slave 
control setpoints. The used slave controllers were PID controllers that controlled DO and HRT at the 
given setpoint and maintained the pH between 6.75 and 8.00. The values for each of the changed 
variables, that is the experiment design, are given in Table 1. 
 

Table 1. Simulated steady-state values for influent variables and control setpoints 
variable simulated values 
TNHi [mg/l] 500 – 750 - 1000 – 1250 -1500 
TICi:TNHi [-] 0.5 - 0.75 – 1.0 – 1.25 – 1.5 
pHin [-] 7.8 – 8.0 – 8.2 
DOsp [mg/l] 1 – 1.5 – 2.0 – 3.0 
HRT [d] 1 – 1.1 – 1.2 – 1.3 

 
A range of PLS models were identified from the resulting data. Steady state results where biomass 
washout was observed were omitted from the dataset.  The first models (PLS1) were identified with 
all the described data. However, in the X-space of these models, the ratio of the ammonia load to the 
inorganic carbon load (TICi:TNHi) and the flow rate (Q) appear to be redundant variables. They can 
be mathematically written as a function of other variables as follows: 

TNHi
TICiTNHiTICi =:  (4) 

HRT
VQ =  where V, the reactor volume, is constant (5) 

Such redundancies may induce a risk of overfitting. Therefore, it was investigated whether any of the 
redundancies could be removed by removing one or more variables. Based on the PRESS results, it 
was found that either TICi:TNHi or TICi can be removed from the dataset without significant losses 
of prediction capacity. Removing TNHi, Q or HRT resulted in a large loss of prediction capability. 
Based on loading plots and biplots of corresponding scores, ti (reduced X-space) and ui (reduced 
Y-space), it was seen that the removal of any of these variables upsets the covariance structure. In the 
further course of the research, only the model without TICi:TNHi (PLS2) and the model without TICi 
(PLS3) in the input space were therefore used. 
Figure 2 shows the cumulative variance and CUMPRESS inferences for both selected data structures 
(PLS2 and PLS3). CUMPRESS is the sum of PRESS for all observations. For both model types, 
retaining 3 LV’s seems the best option as the captured variance does not increase much and no 
significant improvement of the PRESS statistic is seen beyond 3 LV’s. Moreover, with 3 LV’s about 
90% of the variance in the Y-space can be captured.  
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Figure 2. Cumulative captured variance in X- and Y-space and CUMPRESS statistic for the output variables 
TNH, TNO2 and NO3 as a function of retained variables. Graphs at the left show results for the PLS2 models 

(TICi:TNHi left out of X-space). Graphs at the right show results for the PLS3 models (TICi left out of 
X-space). 

 
Application to the SHARON process: PLS-based control 
The two resulting models were tested in by simulated closed loop control as follows. Measurements 
of the reactor pH and the influent variables TNHi and TICi are made.In this case, the output space 
variables TNHo and TNO2o are then predicted for a range of combinations of HRT, Q, DOsp and 
DO. DO values were set equal to their setpoints. This is justified as long as the DO control dynamics 
are much faster than those of the biological process, as in this case.  Each set of control setpoints, 
combined with the measurements, defines a single virtual observation in the X-space. The cost 
function is then evaluated for all observations and the observation that leads to the smallest cost, is 
selected. The slave setpoints are communicated to the slave controllers. This procedure is repeated 
every 6 hours. 
The following simple cost function was implemented: 
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This cost function becomes zero when the ratio of nitrite nitrogen to the sum of ammonia and nitrite 
nitrogen is 1:2, as aimed for when it is intended to couple the SHARON process with an Anammox 
unit.  
The minimum value, maximum value and interval for the control setpoints that are evaluated are 
given in Table 2. The interval between evaluated control setpoints was set small in order to reduce 
possible effects of the discretization of the controller. In any case, computation times were negligible 
compared to the process dynamics. 
 

Table 2. Evaluated control setpoints  

setpoint variable minimum value interval maximum value 
DOsp [mg/l] 1.00 0.01 3.0 
HRT [d] 1.00 0.01 1.30 
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Figure 3. Results of the application of the PLS3 model (3 LV’s) in closed loop. 

 
Results of the closed-loop tests are shown in Figure 3 for the PLS3 (3 LV’s) model for days 100 to 
170. In this period the influent variables remained well between the previously simulated ranges of 
influent variables, so that extrapolation is avoided.  The predicted value for TNO2/(TNH+TNO2), the 
actual value for TNO2/(TNH+TNO2), the deviation from the setpoint (ectrl) and the prediction error 
(epred) are shown. The graphs show that the model is not able to predict the conversion of ammonia to 
nitrite in a satisfying manner. In turn, it is obvious that it is not possible to control the conversion of 
ammonia to nitrite by means of the PLS-based controller. Similar results were obtained by means of 
the PLS2 (3 LV’s) model. 
 
As the first models (with 3 LV’s) led to poor control of the process, the same tests were repeated with 
the same model structures. Only two LV’s were retained now, as it was thought that the seemingly 
interesting third LV may be largely influenced by the extrapolation of the model to a dynamic 
situation, which in turn leads to erroneous predictions. Results of these new tests are shown in Figure 
4 for the PLS3 (2 LV’s) model. Visual inspection (Figure 4) shows that the selection of 2 LV’s is 
indeed better as the prediction value and actual value of the controlled variable TNO2/(TNH+TNO2) 
are much closer to each other and the same trends in the predicted and the actual values of the 
controlled variable are seen. Even though satisfactory prediction is now obtained, the control is still 
far from optimal, as the setpoint is never reached. To evaluate this in more detail, the control actions 
that were taken were investigated. Over the whole period no changes of HRT or the DOsp were 
communicated to the slave controllers. Moreover, the HRT setpoints remained at the minimum (1 
day) and the DO setpoint remained at its maximum (3 mg/l). It is remarkable that, faced with a 
conversion which is too high, the controller never lowers the setpoint of oxygen. Indeed, process 
knowledge says that the growth rate of the ammonia oxidizers can be limited by lowering the oxygen 
concentration.  
 
Faced with this incompatibility between observed control actions and process knowledge, the steady 
state response of the controlled variable TNO2/(TNH+TNO2) to HRT and DOsp was investigated. 
Figure 5 shows this response for the case where TNHi is 1000 mg/l and TICi:TNHi is 1:1. Clearly, in 
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a large part of the shown area a flat response to HRT and DOsp is observed. The output variable, 
TNO2/(TNH+TNO2), shows a different response only when DO is below 1.5 mg/l and HRT is lower 
than 1.1 days. However, this area is exactly the area where biomass washout is observed, causing 
these data to be omitted from the modelling dataset. It is fairly logic that PLS regression by means of 
the resulting dataset will hardly relate the values of TNO2/(TNH+TNO2) to the variables DOsp and 
HRT, resulting in control actions that are not sound with existing process knowledge. Thus, the 
simulated control setpoint changes do not excite the system sufficiently to identify a model for control 
of the selected output variable. 
 

 
Figure 4. Results of the application of the PLS3 model (2 LV’s) in closed loop. Predictions, and in turn the 

controller performance, are far from satisfying. 
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Figure 5. Steady state values of TNO2/(TNH+TNO2) as a function of DOsp and HRT, where TNHi = 1000 

mg/l and TICi:TNHi = 1:1. 
 
It can thus be stated that in order to identify a PLS model that is useful for control of the SHARON 
process, data should be obtained that shows a responsiveness of the output variable to the control 
setpoints that are intended to be used. From Figure 5, it can be expected that these data will show 
non-linear behaviour. In order to tackle this problem, the data space can possibly be divided into 
several subspaces so that a linear PLS model can be fitted in each discrete subspace. 
 
CONCLUSIONS AND FUTURE PERSPECTIVES  
In this paper, the possibility of direct use of PLS modelling as a strategy in process control is 
introduced. In the past, PLS applications, traditionally put under the moniker of statistical process 
control (SPC), have been limited to statistical monitoring of processes and little applications in actual 
control design has been found. With the proposed methodology, a step towards filling the gap 
between statistical monitoring and automatic process control in wastewater treatment plants has been 
attempted.  
While applying the proposed methodology, a pitfall in data-driven modelling was encountered. By 
insecure selection of the data for fitting statistical models, models with poor sensitivity of their 
outputs to the selected control handles were obtained. In order to obtain efficient and robust statistical 
model-based controllers in the future, proper data selection method to increase its extrapolation 
capability should be performed prior to PLS regression. It is observed that the SHARON process 
shows highly non-linear behaviour in the desired conditions. This behaviour may request a multiple 
modelling approach, where the data space is divided into several subspaces, in which local linear PLS 
models can be fitted. 
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