
RNEDE: Resilient Network Design Environment

Venkat Venkatasubramaniana, Tanu Malikb, Arun Giridhara,
Kris Villeza, Raghvendra Prasadc, and Aviral Shuklaa

aSchool of Chemical Engineering, bCyber Center

and cComputer Science

Purdue University

West Lafayette, IN 47907

Contact Author: venkat@ecn.purdue.edu

Craig Rieger,
Keith Daum and Miles McQueen

Instrumentation, Control

and Intelligent Systems

Idaho National Labs

Idaho Falls, ID 83415

Email: craig.rieger@inl.gov

Abstract—Modern living is more and more dependent on the
intricate web of critical infrastructure systems. The failure or
damage of such systems can cause huge disruptions. Traditional
design of this web of critical infrastructure systems was based
on the principles of functionality and reliability. However, it is
increasingly being realized that such design objectives are not
sufficient. Threats, disruptions and faults often compromise the
network, taking away the benefits of an efficient and reliable
design. Thus, traditional network design parameters must be
combined with self-healing mechanisms to obtain a resilient
design of the network.

In this paper, we present RNEDEa resilient network design
environment that that not only optimizes the network for per-
formance but tolerates fluctuations in its structure that result
from external threats and disruptions. The environment evaluates
a set of remedial actions to bring a compromised network to
an optimal level of functionality. The environment includes a
visualizer that enables the network administrator to be aware
of the current state of the network and the suggested remedial
actions at all times.

I. INTRODUCTION

The nation’s critical infrastructure is increasingly character-

ized by large networks. These include the electrical power

grids, road systems, airline systems, chemical production

systems, and communication networks such as the Internet. A

critical property of such networks is their topological structure

[1]. The topology governs several crucial properties of the

network such as the efficiency of the network and aggregation

of the state of the individual components of the network.

To determine a topology, most applications seek a de-

sign that achieves some functional criteria often expressed

as a maximization and/or minimization of a given objective

function. Thus a road network system will aim to find a

topological structure that minimizes the average transit time

and a communication network will seek for a topology that

minimizes latency within a given infrastructure. However,

such an optimized network design has limited applicability

in the real-world where the network will be subject to a

variety of disruptions, faults and threats. In such a scenario,

the design of an optimal topology for a network must be

accompanied by remedial actions that make it resilient to a

variety of threats and disruptions. Such remedial actions must

be provided to system administrators monitoring the state of

the network, necessitating the need for a resilient network

design environment.
An environment for resilient design of a network may

either suggest remedial actions to bring the compromised

topology to an optimal level of functionality or may suggest

that the current topological structure remains compromised.

The environment helps the network administrator to answer

critical questions, such as:

• Which remedial action must be taken?
• Where in the current network remedial actions should be

taken?
• Whether remedial actions are even worth taking?
The design of such an environment can, however, be a

challenging task. Disruptions in the network, more often than

not are unpredictable in nature, i.e., it is difficult to ascertain

what kind of disruption may arise and thus which component

will fail next. Even if the disruption is known, the space of

remedial actions is often very large and the system needs to

choose the most cost efficient remedial action. Further, it is

important that the remedial action leads to a network structure

that is optimal in that it maximizes/minimizes the objective

function. It may be equally possible that no remedial action

is taken.
This paper presents RNEDE our on-going project at Purdue

University to create an environment for resilient network

design. The environment acts as a guide for the network

administrator to replay various threat scenarios and thus design

and maintain resources for remedial measures in a proactive

manner. The environment consists of an an optimizer and a

decision controller, which when subject to a series of disrup-

tions determines a topology that achieves the functionality of

the network and determine cost-efficient remedial measures.

The combined process of optimization and decision making is

iterative in that a different network emerges as the system

undergoes a sequence of threats. To facilitate ease of use,

the framework is coupled with a visualizer that allows the

network administrator to continuously visualize the topology

as it undergoes iteration.
The remainder of the paper is organized as follows: In

Section II, we present recent work on design of large complex

networks. We demonstrate the use of RNEDE in a real-life

application scenario in Section III. Section IV presents the

KV_C011
Venkatasubramanian, V., Malik, T., Giridhar, A., Villez, K., Prasad, R., Shukla, A., Rieger, C., Daum, K., McQueen, M. (2010). RNEDE: Resilient Network Design Environment. Proceedings of
the 4th International Symposium on Resilient Control Systems (ISRCS2010), Idaho Falls, ID, USA, August 10-12, 2010, 72-75.

overall RNEDE architecture and the objective that it achieves.

In Section V we describe in detail various components of

RNEDE. Finally, we conclude and describe future work in

Section VI.

II. RELATED WORK

Design and control theories of complex resilient networked

systems is a relatively new discipline of inquiry. Indeed, net-

work theory has so far largely been limited to the topological

analysis of existing or emergent complex networks, such as

discovering the power law degree distribution [2] and the

small-world phenomena [3]. The inverse operation, laws and

principles that govern the design and operation of complex

networks has only been explored recently.

In [4] the authors search for the fundamental principles that

govern self-organization in a complex network. They allow a

network of nodes to evolve, over several generations, to form

a “fit topology” that satisfies certain survival objectives. The

“fitness” of a network topology is defined as a function of

efficiency, robustness, cost and environmental constraints. By

varying these parameters, they get a set of topologies that are

immediately optimal in different scenarios. Recently, scientists

discovered a biologically-inspired model for self-organization

of complex networks by borrowing simple properties from

a slime molds behavior on a uniform mesh of oat flakes

[5]. However, such approaches are limited to static self-

organization. In communication networks, dynamic organiza-

tion of the network under changing communication patterns

has also received significant attention [6]. In this paper we

explore an orthogonal aspect of dynamic self-organization,

i.e., understand how a self-organization of the topological

structure in a network can aid in overcoming various threats

and disruptions.

To enable the generation and evaluation of design and

control algorithms for network design, benchmark tools are

required. In particular, for designing resilient complex net-

works, a dynamic simulator of networked systems is desired.

Such a simulator will encompass the diverse nature of complex

networks, allow for a choice of generic optimization methods,

and also provide a framework for resilient decision making.

Popular existing software packages such as GloMoSim [7], ns

[8] , NetSim [9], OMNeT++ [10], OPNET [11] and QualNet

[12] do not provide capabilities for resilient design of complex

networks. Further, we found that these simulators to be rather

inflexible to achieve all the above desired features.

III. MOTIVATING APPLICATION

Consider a large chemical company that maintains a sensor

network over its entire facility. The network allows the com-

pany to monitor the state of the various variables of its plant,

such as temperature and pressure of incoming and outgoing

streams. The company has invested in an efficient design

of the sensor network that allows it to collect the state of

the plant variables quickly and to the nearest approximation.

The organization achieves its objective of an efficient network

by minimizing the overall diameter of the sensor network.

Fig. 1. RNEDE Architecture

Fig. 2. RNEDE in action

However, achieving an efficient topology is constrained by

the battery limitation of the sensors in that no sensor can

communicate with more than k other sensors.

Unfortunately due to unpredictable environments, the sen-

sors fail at any given instant of time thus affecting efficient

information gathering on the network. The failure can be due

to a software bug in the sensor leading to failure of the entire

sensor or due to link loss as a result of network partitions.

Sensor failures deteriorate the ability of the administrators to

assess the health status of the plant. The company wants to

design a resilient network in which remedial actions can be

quickly identified and incorporated.

IV. RNEDE: RESILIENT NETWORK DESIGN

ENVIRONMENT

Given a topology for a complex network and a sequence of

incoming disruptions (resulting in a fault), the RNEDE deter-

mines which remedial actions to take such that the network

remains resilient to structural changes in the topology (due to

a given disruption). In RNEDE we assume that detection of

a fault, as a result of the disruption, is both automatic and

perfect. Thus whenever a node or an edge goes down we

are immediately informed of its state. We also assume that

diagnosis, i.e., determining the root cause of the structural

losses does not alter the choice of a remedial action.

In RNEDE a remedial action corresponds to determining

the location and number of new nodes and/or edges that

can be placed back on the network to make it resilient to

the disruption. The problem of determining the number and

location of the remedial action is solved in two parts described

as follows:

• In the first part, RNEDE determines the set of opti-

mal remedial action that can be taken, i.e., how many

nodes/edges to add and where to add them. This deter-

mination is based on several factors such as the level to

which the complex network has been compromised, and

the constraints associated in implementing the remedial

actions on the network.

• In the second part, RNEDE decides whether it should

choose to implement any of the suggested remedial

actions. This decision-making is crucial as a remedial

action taken currently may not be valid in the future. This

part of RNEDE is based on the sequence of incoming

disruptions and the cost associated with the remedial

actions.

We now describe the problem mathematically. Let the

complex network be represented by a topology T = (V,E),
with V being the set of verticies and E being the set of edges.

The topology specification T satisfies a set of constraints

C = c1, . . . , cn. The function S : T → R+ determines the

cost of maintaining a topology satisfying a set of constraints.

Let fi be a disruption that arises in the network which

“compromises” the topology of the network. Let T ′ be the

compromised topology. T ′ may or may not satisfy the set of

constraints C. Let F : T → R+ be a monotonic function that

given the original topology and the compromised topology,

quantitatively measures the amount of the compromise. Let the

system’s knowledge base consist of a set of remedial actions,

A = a1, . . . , aN and a cost function Q : A → R+. The two

objectives in RNEDE then are to:

1) Obtain that set of remedial actions such that when

applied to T ′ result in a remedied topology T ′′ such

that the compromise is minimized, i.e., F (T ′′, T) ≤ ε,

and

2) If σ = f1, . . . , fn is the sequence of disruptions

that arise in the network and the knowledge about

each disruption arrives sequentially at the system, then

minimize the cost of maintaining the compromised

topology and the cost of making the change, i.e.,
min

∑
σ(

∑
ai

Q(ai) + αS(T ′)). α is the weighing pa-

rameter that equates the two costs.

For our motivating application, the topology satisfies a

degree constraint, i.e.,|{e|e ∈ E, (V,E) ∈ T}| ≤ k ∀V ∈ T
for a given constant k. The function F is equal to the diameter

of the topology. The cost function is application dependent and

can be represented in any of the network quantities such as

bandwidth or latency.

In RNEDE the first part of the problem is solved by

modeling it as an optimization problem, and the second

part of the problem is solved by modeling it as a decision-

control problem. Figure 1 shows the architecture of RNEDE
with the two vital components: the Optimizer and the

Decision-controller. The Optimizer is aided with

a Simulator to assess the level to which the complex

network has been compromised. The framework is aided with

a Visualizer, which allows the system administrator man-

aging the network to diagrammatically see which changes in

topology are being suggested. RNEDE evaluates a disruption

one at a time and suggests a remedial action. This suggestion

is based on the already seen threats and assumes minimal

knowledge about the future sequence of disruptions that may

arise. Figure 2 shows a conceptual time sequence as may arise

through use of RNEDE. In the next section, we describe each

component of RNEDE.

V. RNEDE COMPONENTS

We now describe each individual component of RNEDE.

A. Optimizer and Simulator

The Optimizer minimizes the difference in the value of

the objective function, i.e., F on the original topology and

the compromised topology. It uses a set of remedial actions

to see which ones will minimize the difference. The objective

function is deterministic as it only measures structural proper-

ties of the topology, such as connectedness, centrality, graph

diameter. Thus the Optimizer tasks can be formulated as a

mathematical program. It then guarantees that the remedied

network obtained is indeed globally optimal, or within a

known margin of the global optimum for many different

performance measures. Note that if the objective function is

a statistical performance measure, such as expected value of

network lag, expected throughput of the network, 95-percentile

cost of operating the network, mathematical programming

cannot obtain an optimal or close to an optimal value. In this

case, stochastic methods such as genetic algorithms, simulated

annealing are better suited than mathematical programming.

The Optimizer is aided with a Simulator which when

given a network specification, i.e., its structure and parameters

describing the weights on the nodes and edges, calculates

the value of the objective function, such as diameter in

our example. Such performance measures may be computed

deterministically from the network parameters, or could be the

result of a simulation, such as the expected value of a variable

obtained from Monte Carlo simulation.

To demonstrate the working of the Optimizer we present

the mathematical program that describes the scenario:

min dia(G′) (1)

subject to

G′′
i,j ≥ G′

i,j (2)
∑

j

G′′
i,j ≤ k ∀i (3)

G′
i,j , G

′′
i,j ∈ {0, 1} (4)

When present with this program, the Optimizer finds

where should we add edges in the network to offset the loss

of a node, such that the new network is still minimum diameter

and satisfies all the original constraints, such as degree limits.

The new network G′ with added edges is subject to the

same constraints as the original network. A further constraint

specifies no deletion of edges that are already present.

B. Decision-Controller

Given the compromised topology T ′ and a remedied topol-

ogy T ′′ (in general there may be several alternative topolo-

gies), the Decision-controller dtermines if it is ben-

eficial to transition to T ′′ or remain in T ′. The decision

is based on the incoming sequence of disruptions, the cost

associated with remaining in the current topology and the cost

of transitioning between T and T ′′. The inherent model of the

Decision-Controller can be summarized as that of a

rent-vs-buy model: staying in the current topology, i.e., T ′

corresponds to renting and moving to another topology i.e.,
T ′′ corresponds to buying. In [6], we have presented several

algorithms that can be developed on this model. These include

both greedy heuristic and online-learning algorithms. The

Decision-Controller can choose any of the algorithms

based on the application and the knowledge about the failure

model.

C. Visualizer

Graph visualization represents an important computational

tool in analysis of network topologies. Topologies representing

critical infrastructure applications belong the class of com-

plex networks that are sparsely connected, large, strongly

inhomogeneous, and their structure has constraints of small-

worldness [3] and scale-free organization [2]. For such topolo-

gies, random graph placement is not efficient. Graph visu-

alization algorithms based on physical models have shown

to perform efficiently on such topologies [13]. RNEDE’s

Visualizer incorporates one such physics-based algorithm

popularly known as the spring algorithm [14]. In this algorithm

each node of the topology is considered a similarly charged

particle and each edge as a spring. As same charges repel, the

system tries to place the nodes as far away as possible from

each other. Since some of the nodes are connected to each

other they cannot be moved beyond a distance as the edges

connecting them have an elastic limit, which is proportional

to the edge weights.

Fig. 3. Random and Spring Visualization

Figure V-C shows how the spring algorithm tries to move

away overlapping edges in comparison to a random placement

(left picture). Overall the algorithm tries to show the inherent

dependencies among the nodes based on the edges and the

corresponding edge weights. The computational complexity

of the algorithm is O(V (V + E))

D. Implementation
RNEDE is currently being implemented in Python. It is

integrated with a mathematical programming solver, such as

GAMS [15]. The system measures a host of structural prop-

erties of the complex network, such as diameter, robustness,

centrality measures, clustering coefficient. Any property or a

combination of them can be chosen as the objective function

of the Optimizer. In addition, constraints on the network

can be specified in the program. It incorporates an event-based

model in which the system listens for any incoming disruption.

The tool is extensible in that new structural properties can be

added. RNEDE is being developed in a modular fashion such

that it can be integrated with any other mathematical program

solver.

VI. CONCLUSION AND FUTURE WORK

The RNEDE software allows to evaluate a variety of

network designs and remedial actions in view of achieving

resilience in networked systems. So far the environment in-

cludes a centralized and deterministic solutions to network

monitoring and control. However, often for several critical

infrastructures such as rail networks and road networks, cen-

tralized and deterministic approaches are inviable in practice.

We plan to extend RNEDE such that it can incorporate fast

approximation methods for network awareness and include

distributed algorithms for network awareness and control. We

also plan to extend it to a wide range of applications such as

plant-wide control systems for chemical processing, product

supply networks, and the electric power grid.

REFERENCES

[1] V. Venkatasubramanian, “A theory of design of complex teleological
systems: Unifying the darwinian and boltzmannian perspectives,” Com-
plexity, vol. 12(3), pp. 14–21, 2007.

[2] A.-L. Barabsi and R. Rka Albert, “Emergence of scaling in random
networks,” Science, vol. 286, pp. 509 – 512, 1999.

[3] J. Travers and S. Milgram, “An experimental study of the small world
problem,” Sociometry, vol. 32, no. 4, pp. 425–443, 1969.

[4] V. Venkatasubramanian, S. Katare, P. Patkar, and F.-P. Mu, “Spontaneous
emergence of complex optimal networks through evolutionary adapta-
tion,” Computers and Chemical Engineering, vol. 28, pp. 1789–1798,
2004.

[5] A. Tero, S. Takagi, T. Saigusa, K. Ito, D. P. Bebber, M. D. Fricker,
K. Yumiki, R. Kobayashi, and T. Nakagaki, “Rules for biologically
inspired adaptive network design,” Science, vol. 327, pp. 439 – 442,
2010.

[6] T. Malik, R. Prasad, S. Patil, A. Chaudhary, and V. V., “Providing
scalable data services in ubiquitous networks,” 2010.

[7] “The GlomoSim,” http://pcl.cs.ucla.edu/projects/glomosim/.
[8] “The Network Simulator (NS),” http://nsnam.isi.edu/nsnam.
[9] “The NetSim,” ttp://www.tetcos.com/software.html.

[10] “The Omnet,” http://www.omnetpp.org/.
[11] “The Opnet,” http://www.opnet.com/.
[12] “The QualNet,” http://www.scalable-networks.com/products/qualnet/.
[13] M. Šuvakov, “Physics Based Algorithms for Sparse Graph Visualiza-

tion,” Computational Science–ICCS 2008, pp. 593–600, 2008.
[14] P. Eades, “A heuristic for graph drawing,” Congressus numerantium,

vol. 42, no. 149160, pp. 194–202, 1984.
[15] A. Brook, D. Kendrick, and A. Meeraus, “GAMS, a user’s guide,” ACM

SIGNUM Newsletter, vol. 23, no. 3-4, p. 11, 1988.

