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Abstract—Engineered systems are increasingly equipped with
sensing and actuating equipment making the operation ans su-
pervisory task increasingly difficult to handle by means of human
interaction alone. In particular, the detection, identification and
accommodation of abnormal, potentially harmful, events has
been a long-standing challenge. Many scientists in different
scientific areas have attacked this problem which has resulted in a
plethora of techniques for both Fault Detection and Identification
(FDI) and advanced control, each with their strengths and
weaknesses. Because of the diverse nature of adopted theory
and paradigms and because of a historical separation of FDI
specialists and control theoreticians, it remains a challenge to
establish automated systems able to handle exceptional events
with minimal human intervention. As such, a project has been
set up to enable full integration of diverse FDI methods as well
as optimal coupling of FDI modules and control modules in the
closed-loop supervisory control system. In this contribution, we
introduce the basic paradigms of our approach, a strategic plan
to achieve this goal as well as some preliminary results.

I. INTRODUCTION

The safeguarding of the integrity of large and complex

systems is a long-standing problem in control engineering.

The problem is relevant in the context of large-scale systems

such as electricity, transportation and communication net-

works, hazardous processes like nuclear and certain chemical

production systems, where resiliency of the designed systems

is vital.

The problem has been attacked from many angles, using

very different techniques, and by many researchers, applying

different schools of thought, theories and assumptions. A

particular niche in this research area is the one of fault

detection and identification (FDI). An overview of techniques

in this area is given in a series of review papers [1], [2], [3].

Likewise, an important research and development opportunity

exists dealing with the establishment of control theory and al-

gorithms with increased ability of systems to handle abnormal,

potentially harmful, events. Robust control deals with so called

passive methods, where the control algorithm is set up in such

a way that it can handle a diverse set of anomalies, without

further modification. A drawback is that increased robustness

is necessarily bargained against performance. It is therefore

economically infeasible to handle all possible harmful events

by the robust control approach only. Active methods are

usually classified under supervisory control systems, where the

applied control algorithm is conditional to the awareness of a

particular abnormal state of the process. While this delivers

more flexibility and allows for higher performance in normal

process conditions, this approach depends strongly on the

correct assessment of the process conditions, following Fault

Detection and Isolation. Unfortunately, bridging the two tasks

(FDI and control) is not an easy task, especially as techniques

have been developed in different scientific communities. In

addition, the FDI community has traditionally developed tech-

niques for open-loop supervision, in which a human operator

takes control actions. As a result, many of these techniques are

not readily suitable for control. Likewise, control theory offers

little on how to translate FDI results into automated control

actions.

Despite the important progress in both the FDI and control

engineering area, fully integrated control systems which enable

the detection, identification and accommodation of abnormal

conditions in a process have not been accomplished yet. We

are investigating this opportunity in a project that has been

set up to make critical advancements in the integration of

available techniques for automated management of abnormal

events. Our study is particularly focused on a pilot-scale

plant, both established in real-life and in simulation, which

mimics the hydraulic behavior of a secondary cooling loop in a

nuclear plant. Abnormal conditions to be accounted for include

control equipment faults (sensors, actuators), process faults

(tube rupture, cavitation) and faults in control logic (erroneous

control actions). It is crucial that (i) several FDI methods can

be used simultaneously and (ii) that robust and supervisory

control algorithms are optimally coupled with the information

derived from the FDI methods. In addition, validation by

means of simulation and real-life testing will make sure that
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both theoretical and practical challenges for the project are

effectively tackled. By completion of the project, the designed

control system will allow to accommodate for abnormal con-

ditions in an automated fashion. This will reduce the impact of

fault and failures on the system and its performance, leading

to increased resilience [4] and so called graceful degradation.

In addition, because of the high level of automation, human

efforts are expected to be focused on situations that cannot be

recognized or accommodated automatically, thereby making

these efforts more effective and efficient.

II. BAYESIAN SUPERVISORY CONTROL

Two main problems were sketched in the above paragraphs.

One is that a whole range of FDI techniques is available with

varying characteristics. For instance, techniques have varying

degrees of specificity. Indeed, some methods are set up and

tuned for specific types of faults and others are more generic.

Many methods are developed for certain faults (e.g. sensor

biases, increased noise levels) and need to be combined for

a comprehensive approach to FDI. However, the formulation

results may vary which makes the integration of results from

different techniques a challenge. To solve this challenge a

Bayesian Belief Network (BBN) will be constructed. Such a

BBN structure is an intuitive way to handle the diverse set of

information flows. To apply BBNs to FDI, consider that a set

of FDI techniques is implemented in a modular fashion with

each of them operating in parallel. These techniques are set up

in such a fashion that their outcome is a vector of probabilities

or beliefs associated with all or a subset of the considered

faults in the system. The BBN takes these probabilities as in-

puts and integrates the overall probability of each of the faults

based on the separate module outcomes. To do this, Bayesian

statistical theory is applied straightforwardly. This theory is

based on two rules, namely the sum rule and Bayes’ rule. The

sum rule says that the overall likelihood of an outcome, L(y),
is the sum of the products of conditional likelihoods, L(y|x),
and corresponding prior likelihoods, L(x):

L(y) = ΣxL(y|x) · L(x) (1)

Bayes’ rule says that the conditional likelihood of a first

condition to a second condition, L(x|y), is the same as the

likelihood of the second condition conditional to the first

multiplied by the prior likelihood of the first condition and

the total likelihood of the first, or mathematically:

L(x|y) = L(y|x) · L(x)/L(y) (2)

Consider that L(x, y) represents the likelihood of a certain

fault, x, conditional to available information, y. Then L(y|x)
is the likelihood of having obtained that information in this

fault case. L(x) the prior likelihood of the considered fault and

L(y) the overall likelihood for the obtained information. The

latter is computed based on the sum rule above. By using the

above two equations for all possible faults one can compute

the likelihood for all faults based on the same information.

One can then select the fault with maximum value for this

likelihood, called the Maximum A Posteriori (MAP) likeli-

hood. When selecting faults this way, one ignores that other

faults may also explain the observations to a similar extent,

especially when obtained likelihoods are close to each other.

Subsequent control actions may therefore not accommodate

for the right problem or may make things worse. To avoid

such conditions, the likelihoods for each fault, rather than the

MAP selected fault will be communicated to the controller

module in the supervisory control system. In a similar fashion

to the Bayesian FDI strategy above, the controller will then

evaluate the best control actions by integrating the expected

performance function over the range of considered conditions.

The likelihoods for each fault then function as weights in the

decision process. By doing so, the risk associated with wrong

fault identification and subsequent actions is reduced in the

supervisory control loop, thereby increasing the resilience of

the whole system to accidental or willful faults and failures.

III. BENCHMARK MODEL AND PILOT-SCALE PLANT

A pilot-scale Machine Condition Monitoring (MCM) plant

has been constructed for real-life experimentation and testing

within the context of automated process state awareness and

resilient control. The setup mimics the hydraulics of a nuclear

plant service water system at 1/400 scale and consists of a

water reservoir, pump, a butterfly valve equipped with a torque

sensor, a gate valve and a series of ball valves that control

the flow direction, connected by means of PVC pipes with

diameter of 3 inch. The setup can be manipulated based on

sensor signals (temperature, pressure, flow) and by means of

several actuators (pump speed, valve positions). Automated

controls and faults in the sensors and actuators (bias, drift,

stiction) are added artificially in LabView. In addition, ball

valve positions can be adjusted so to emulate tube ruptures or

to introduce pump cavitation. An open-loop model of the same

system has been set up by means of the ASPEN 7.1 package.

All controls are programmed in Matlab, which reads sensor

signals and sends actuator signals to the open-loop model at a

simulated time interval of 2 seconds. Several fault models are

included in the model, including sensor bias and drift, valve

stiction and tube ruptures. Figure 1 shows the open-loop model

in ASPEN.

Default low-level control includes a simple PID control of

the butterfly valve based on a single flow measurement in

both simulation. However, the envisioned supervisory control

will have the authority to change the pump speed, gate valve

position and ball valve positions to achieve system resiliency

by means of control reconfiguration. A particular example of

such resiliency may consist of altering the operation of pump

and valves (changes in and level of set point) so that maximal

flow is achieved while maintaining expected pump longevity.

This will be set up and tested in simulation first, then in the

pilot-scale plant.

IV. STRATEGIC PLAN

Three major phases are identified in the project. The first

phase, modeling, aims at the matching of the model with
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Fig. 1. ASPEN Model of the MCM testbed

experimental data, including fault models. In the second phase,

Fault Detection and Identification (FDI), the above described

strategy to integrate FDI techniques will be developed, inte-

grated and tested. The third phase, resilient control, entails

the development of control algorithms that can accommodate

the considered faults and failures under uncertainty will be

developed and coupled with the FDI modules.

A. Phase 1: Modeling

An experimental campaign has been set up to enable the

verification and adjustment of the ASPEN open-loop model

as well as the fault models. In particular, the experimental

campaign includes the generation of:

• Open-loop response to changes in the butterfly valve

position and closed-loop responses to changes in flow

rate set point.

• Open-loop and closed-loop responses of the system to

faults in sensors and actuators, including faults of the

bias, drift and stiction type.

• Open-loop and closed-loop responses of the system to

process faults, including emulated tube ruptures and

pump cavitation.

By means of the generated data, the parameters of the ASPEN

model as well as detailed fault models will be set up and

validated. Figure 2 shows the open-loop flow rate measurement

response to a closing and opening of the butterfly valve.

B. Phase 2: Fault Detection and Identification (FDI)

In the second phase, existing FDI methods are adopted for

the particular system and integrated by means of the above

described Bayesian Belief Network strategy. Selected FDI

techniques include:

• Process history methods such as Principal Component

Analysis, e.g. [5]

• Qualitative Trends Analysis (QTA), e.g. [6], [7]

• Model-based fault identification, e.g. [8]

• Signed Directed Graphs (SDGs), e.g. [9]
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Fig. 2. Open-loop response of the flow rate measurement to full closure and
opening of the butterfly valve

The first two methods require historical data to be trained

against. The data generated for fault modeling in Phase 1

will be used to this end. In contrast, model-based fault

identification and SDGs require process knowledge which

will be derived from the detailed model implemented in the

combined ASPEN/Matlab platforms. In addition, each of the

methods needs to provide a likelihood function for each of

the possible faults, rather than a crisp classification result.

To this end, minor adjustments are required for the QTA and

SDGs methods. For the other two methods, statistical theory

provides these likelihood functions directly. On top of the

resulting modules will be the Bayesian Belief Network, as

described above which will deliver the overall likelihood of

each considered fault. An experimental campaign will be set

up to complete the FDI phase. In this experimental campaign

the on-line performance of the FDI developments will be

tested. The generated data will function as additional training

data or to adjust the methods for those faults for which the

performance is not acceptable.

Figure 3 displays the Bayesian strategy graphically. At the

left one finds the system which delivers various sensor signals
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Fig. 3. Feedback and propagation of information through the Bayesian
Supervisory Control system

to the control system. This information is passed on to the FDI

modules first. Several methods will individually inspect these

data for anomalies and associate likelihoods with potential

faults. The Bayesian Belief Network then integrates the results

of the different methods to obtain overall likelihoods of all

considered faults and passes them on to the control module.

C. Phase 3: Supervisory control

Supervisory control aimed at overall system’s resilience will

consist of the following strategies:

• Tuning: these strategies adjust existing control loops in a

parametric way. They may exist of adjusting the set point

or speed (e.g. time constant) of a controller. This is done

when lowering system performance is a valid option to

regain normal operation.

• Reconfiguration: these strategies are applied when by

re-routing of the information flows through the control

system, system performance can be guaranteed at a

certain level, possibly lower than the normal operation

level. These strategies are more flexible than the tuning

strategies above. This flexibility becomes limited as the

degree of redundancy in sensing and actuating equipment

are reduced (e.g. by series of equipment failures). Se-

lected implementations will be based on a rule-base and

on-line evaluation of RGAs (Relative Gain Arrays, [10]).

• Fall back procedures: this is a planned out strategy in

which parts of the system (e.g. a certain control loop) are

switched off so to guarantee safety. Switching off parts of

the process and/or the control system may help to isolate

a problem, preventing further propagation of disastrous

effects or may help to guarantee a certain minimum level

of performance.

Each of the above approaches will operate separately based on

the input from the FDI module in the system (see Figure 3). As

discussed in the above section, the FDI results will be provided

as likelihoods for each fault class. These likelihoods will be

propagated through the control decision logic to account for

uncertainty in the FDI results. Each of the separate control

modules will account for the uncertainty associated with the

FDI likelihoods and deliver likelihoods associated with several

potential control actions. These may be interpreted as the

likelihood that the proposed control action is optimal. This

likelihood will be based on knowledge-based representations

of the system. Similar to the BBN for the FDI task, a control

integration module will select one set of actions for execution.

This necessarily corresponds to selecting the maximum like-

lihood action as the system under study can only accept one

single control signal value per manipulated variable.

V. EXPECTED IMPACT AND PERSPECTIVES

Several expected results will have important impacts on con-

trol engineering of complex and safety-critical systems. First,

the real-life validation of existing FDI techniques coupled

with automated control logic will enable to validate accepted

scientific results that have only been established in silico.

Second, the Bayesian developments for integration of FDI

methods and to account for uncertainty in the control decision

logic will provide the necessary tools to enable supervisory

control under uncertainty. In addition, the modular FDI struc-

ture achieved by means of the BBN allows to add and activate

new modules for FDI in a straightforward fashion. This allows

to incorporate several methods with different theoretical bases

into the same framework. Third, we expect the integrated

system for condition awareness and resilient control to be

one of the first real-life implementations of a closed-loop

control system in which fault detection and identification as

well as fully automated accommodation is achieved on this

scale. By means of empirical testing, existing barriers between

simulation-based research and real-life control engineering are

expected to be alleviated along the way.
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