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Abstract 

In this contribution we propose an active Fault Tolerant Control (FTC) strategy which 
enables the isolation and identification of valve stiction and valve blocking, in addition 
to the additive faults like sensor and actuator biases. The developed method is an 
extension of the original method proposed by Prakash et al. (2002). This method is 
based on the Kalman filter and is developed under the assumption that the monitored 
system is Linear Time Invariant (LTI). It has been shown to work well for additive 
faults such as sensor and actuator biases. Within this method the fault isolation and 
identification task is based on the Generalized Likelihood Ratio (GLR) test by which 
the most plausible fault type in a library of faults is selected following estimation of 
fault parameters. 
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1. Introduction

Valve stiction is a problem that has caught the attention of several research groups in 
the last decade. Valve stiction is considered one of the most common problems in 
control loops (Shoukat Choudhury et al., 2004). Its presence leads to rather severe non-
linear effects which makes its detection, diagnosis and accommodation a challenging 
problem. In this work, we evaluate an extended Kalman-based method for on-line 
diagnosis of several faults in control loops with valves. We show promising results for a 
range of faults and list several opportunities and threats to our approach.  

2. Materials and methods

2.1. Simulated system 
A buffer tank system model is used for evaluation of our method. The tank level is 
measured and is affected by an inflow as a disturbance input and gravitational outflow, 
which is in turn manipulated by a valve.  In the original (continuous, non-linear) system, 
the outflow relates to the tank level as follows: 
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For the simulation of the system with these faults, one uses equations (1) with equations 
(4-5) in the case of fault types 1-3 and one replaces y with yfaulty as measurements in the 
case of fault type 4. In the case of valve faults, only the desired valve position, u, is 
available for inference (v is hidden). For the sensor fault, only yfaulty is available (y is 
hidden). Note that fault types 1, 2 and 4 are characterized by their start time and a 
magnitude parameter (stiction band or bias). Valve blocking (fault type 3) is only 
characterized by the start time. 
2.3. Kalman-filter based Fault Detection and Diagnosis 
A Kalman-filter based technique for Fault Tolerant Control exists and has been shown 
successful for detection, diagnosis and accommodation of process faults (Prakash et al., 
2002). Although the framework is general, the method has been tested particularly for 
additive linear faults such as the valve and sensor bias in our simulations (fault type 3 
and 4). Central to the method is the use of a Kalman filter to generate prediction 
residuals, i.e., the deviations between actual and predicted measurements. In essence, 
the fault diagnosis part in this method follows from the (deterministic) simulation of 
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each hypothesized fault after which the fault scenario with the highest likelihood (based 
on the Kalman-filter) is selected. Several advantages result from the system's linearity 
and the additive and linear properties of the considered faults. First, the problem of 
identification of maximum likelihood bias parameters is reduced to a simple linear 
regression for a given start time of a fault. Also, the likelihood associated with the given 
fault parameter conditional to the considered time window of observations, follows in 
one direct step. Therefore, no advanced optimization techniques are necessary and for a 
given start time of a fault, a unique solution exists. 

In the original work, the start time of a fault follows from the fault detection part of the 
method. The method which is based on a sequential testing is a fast way to obtain a 
rough estimate of the fault start time. This is not necessary the best to do as the actual 
fault start time may differ and may affect fault isolation and identification. For this 
reason, we evaluate a different strategy where every possible (discrete) time within a 
certain time window before fault confirmation is evaluated as a start time for the fault. 
2.4. Extension for valve blocking and valve stiction 
The particular problem of detecting and diagnosing valve blocking and valve stiction 
has not been tackled from the model-based angle described above. Therefore, the 
'library' of faults is extended with valve stiction and valve blocking as follows.  

Valve stiction and valve blocking are both of a deterministic nature, just like the bias 
faults. No other parameter than the start time needs to be evaluated for valve blocking. 
In the case of valve stiction, one needs to estimate the band stiction parameter in 
addition to the start time. Conditional to a stiction band value and a fault start time, one 
can evaluate what the true valve position is in a considered time window by applying 
equations (3) to the series of valve position signals. The expected response of the 
system is otherwise linear so one can calculate of the likelihood of the observations 
conditional to the evaluated scenario (stiction time + band parameters) with the Kalman 
filter. 

For band stiction higher than a certain minimal value, the actual simulation will be the 
same as for a stuck valve. Indeed, if the band stiction is high enough, the valve will not 
move at all, thus making the two scenarios phenomenologically the same. On the 
positive side, one can recognize this situation by simply checking whether the valve 
position changes for the evaluated band stiction value and fault start time during a 
considered window. The situation that the two faults are not separable is thus detectable.  

3. Results  

In what follows, simulation results will be shown for faults introduced at sample 76. 
Figure 1 shows the simulated data for valve stiction. It can be seen that the true valve 
position fails to follow the demanded valve position. It can also be seen that the valve 
gets stuck at different positions for periods of time. As a result, control performance 
degrades as a oscillatory response of the level follows, as is typical for valve stiction 
problems. Similar oscillations occur in the state estimation errors and the prediction 
residuals.  
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Figure 1: Valve stiction scenario - data. Top: 
Tank level set-point ( ), and measurement y(k) 
( ). Middle: Valve control signal usignal(k) ( ) 
and position ureal(k) ( ). Bottom: Kalman 
estimation and prediction errors ( rx(k) (blue), 
ry(k)) (red)). 

Figure 2: Valve stiction scenario – Log-
Likelihood of valve stiction scenario as 
function of start time and stiction band. 

Figure 2 shows the Generalized Likelihood Ratio (GLR) as found for valve stiction, 
evaluated for a range of band stiction values (resolution 0.01%) and all considered 
(discrete) fault start times (26 to 150). It can be seen that a large portion of the surface 
plot is flat, meaning that the likelihood is rather insensitive to the fault parameter 
values. More importantly, local optima are present, which is typical. 

 
(a) (b) 

Figure 3: (a) Valve stiction scenario (b) Valve blocking scenario – fault diagnosis. Maximal 
Generalized Likelihood Ratio values for all considered fault types and corresponding 
optimal fault start times. 

Figure 3a shows the fault diagnostic results. It is seen that the maximal GLR values are 
large for any fault. In addition, fault type 1 (valve stiction) delivers the highest GLR 
value found thus leading to a correct identification of valve stiction as the root cause. It 
is noted that the optimal fault start time for valve blocking (fault type 2) is relatively 
close to the one for valve stiction (fault type 1). This suggests that the optimal start time 
for valve blocking may be a good initial guess to start the optimization for valve 
stiction. 

Next, the valve blocking scenario is evaluated. Here, at sample 76, the valve gets stuck 
and remains at its position for the remainder of the simulation. This leads to an offset in 
the tank level and increasing discrepancy between desired valve position and increasing 
state estimation and prediction residual magnitudes (not shown). 
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Figure 3b shows the results for the fault diagnosis task in the valve blocking scenario. 
Also here, the largest GLR is found for the correct fault, namely fault type 2 (valve 
blocking). In addition, the correct fault start time is found and the optimal start time for 
valve stiction and blocking are the same. It is noted that the maximal GLR for valve 
stiction is slightly lower than the one for valve blocking. It is in fact possible to make 
them equal if one considers scenarios with valve stiction bands so high that the valve 
doesn't move anymore. Such solutions were automatically discarded. However, valve 
stiction and blocking remain inseparable without further information. In the discussion 
section some ideas on how to tackle this issue are provided. 

Also valve bias and sensor bias scenarios were investigated. In both cases, state 
estimation and prediction show performance degradation, the correct fault is found as 
well as the start time (no results shown). For the sensor bias scenario, the log-likelihood 
for each fault type is shown as function of time in Figure 4. Plotted values are maximal 
with respect to other parameters.  The most important observation drawn from this 
graph is that the fault start time is important for correct fault diagnosis. Indeed, at any 
other time than the correct start time of the fault, fault type 3 (valve bias) would be 
erroneously preferred over the correct fault type (4, sensor bias). The profiles for fault 
type 3 and 4 are relatively smooth which may facilitate automated optimization 
although local optima are present. For presence or evaluation of fault types 1 and 2, the 
nonlinear estimation problem is more severe. 

Figure 4: Sensor bias scenario – maximal Log Likelihood as function of time for each 
fault type (1 to 4). 

4. Discussion 

In the presented work, a Kalman-based method for fault diagnosis has been evaluated 
by means of 4 different scenarios with one fault occurrence. Shown results indicate that 
it is possible to identify the correct faults under certain circumstances. As such, the  
method is promising for on-line diagnosis of valve-based control loops. 
Nevertheless, several remarks are in place with respect to the shown results. First, we 
have only shown results for fault diagnosis although the original work by the authors 
provides monitoring as well. In particular, we have assumed that any of the simulated 
faults is always detected and confirmed at the same, given time instant. This eliminates 
any effect of fault detection performance on the fault diagnosis performance. However, 
it may be so that certain fault types are detected faster than others and this may in turn 
affect the speed of the diagnosis task as well as its accuracy given that the amount of 
available data may then differ.  
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For all fault scenarios and all considered faults, the log-likelihood profiles exhibit local 
optima with respect to time. This is most severe when valve stiction or valve blocking 
faults are present or evaluated. In our current approach, all possible time instants within 
a certain window were considered. However, improved optimization strategies for the 
time parameter may be possible. For one, consider that the optimal start times for valve 
stiction and blocking were close in both the valve stiction and the valve blocking 
scenario. Finding the optimal time for either fault may constitute as a fair guess for the 
other and may therefore reduce computational costs. For valve stiction, the additional 
band stiction parameter has severe non-linear effects on the likelihood as well. In 
contrast, for bias faults (valve bias, sensor bias), a unique and global optimum is always 
found by generalized regression, though conditional to the start time of the fault. 
As a last point, consider the problem of separating valve stiction and valve blocking. 
This is not always possible as a valve stiction scenario with band stiction so high that 
the valve doesn't move is phenomenologically the same as valve blocking. Additional 
information is necessary to do so. For this purpose, one may consider to wait for a 
longer period and collect more data up to a point that valve stiction or valve blocking is 
ruled out. Such a passive approach to fault diagnosis may be enhanced by modifying the 
control signal sent to the valve. Srinivasan and Rengaswamy (2008) suggest a two-
move strategy by which pulses in the control signal are generated to make the valve 
move in case of valve stiction. A similar strategy may be taken for diagnostic purposes. 
Indeed, if valve stiction is present the valve will move if the applied pulse is large 
enough. If the valve is blocked, it will never move. Such is clearly an active strategy.  

5. Conclusion 

In this contribution, first results from a study on on-line diagnosis for valve faults  are 
shown and discussed. It is made clear that several faults within a valve-based control 
loop can be separated under certain conditions. Such faults include valve stiction, valve 
blocking, valve bias and sensor bias.  
Despite the preliminary character of this study, several important remarks were made in 
view of future research. For example, severe non-linearity of the band stiction 
estimation problem and of the fault start time was discussed.  Further research will 
therefore be aimed at the search for a better estimation method. In addition, it is 
worthwhile to further investigate how the separation of valve stiction and valve 
blocking by means of passive or active collection of informative data can be achieved. 
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