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Abstract
While membrane bioreactors have become state-of-the-art technology, fouling is still responsible 
for high operational costs. Mechanistic modelling is hampered by the complexity of the fouling 
mechanisms. Therefore, principal component analysis and clustering are used in this contribution 
to extract information on the membrane state from both lab and pilot scale data sets. It was 
concluded from all analyses that the first principal component can be used for fouling monitoring, 
while the second principal component differentiates between reversible and irreversible fouling, if 
inter-membrane variance was included in the data set. On pilot scale, a low measuring frequency 
hampered clear results, but also here PCA-based techniques have potential for fouling monitoring. 
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INTRODUCTION
Membrane bioreactors (MBR), being the coupling of a bioreactor for nutrient removal and 
membrane units for sludge retention, are considered state-of-the-art technology for wastewater 
treatment (Drews, 2010). They have several advantages over conventional activated sludge (CAS) 
systems. MBRs can be built on smaller sites thanks to the elimination of large secondary settling 
tanks. Next to that, the effluent is of better quality, not least by the retention of persistent chemicals, 
viruses and pathogens. The major drawback of MBRs is fouling of the membranes by particulates, 
colloids and solutes, increasing the operational costs (membrane aeration, cleaning actions, 
membrane replacements). To mitigate fouling problems, a lot of mechanistic fouling models have 
been built. However, since the underlying fouling mechanisms interact in ways that are at the 
moment not fully understood, a lot of contradictory results are reported. For data-driven modelling, 
a lot of data are usually available and a complete understanding of the fouling mechanism is not of 
vital importance. 

In this contribution, principal component analysis (PCA), a data mining technique, is used in 
combination with a clustering algorithm to monitor fouling severity, discriminating between 
different fouling types, and thereby indicating the current membrane state. It allows automating the 
monitoring of different parameters at the same time, recognising data patterns and revealing the 
hidden relations within the data. This technique has already proved itself useful for fault detection 
in conventional wastewater treatment plants (Aguado and Rosén, 2008; Villez et al., 2008; Baggiani 
and Marsili-Libelli, 2009), but the application to MBR data has not yet been reported. 

MATERIALS AND METHODS

Principal component analysis
Principal component analysis (PCA) is a data mining technique, introduced by Pearson (1901) and 
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Hotelling (1933). It is a mathematical tool providing a data reduction and the efficient extraction of 
information from large data sets. The method consists of several steps, the first being a
transformation of the measured variables X.,i into a set of new variables T.,i called principal 
components (PC), thereby eliminating correlation between the variables. This is done by making 
linear combinations of the original variables, in which the weight vectors P.,i are called loading 
vectors.= (1)
The determination of the loading vectors is key to the data reduction. The calculation implies the 
maximization of the variability in the corresponding principal component, which has to be
orthogonal to all other principal components, while the loading vector itself is being restricted to 
unit norm.max ., ., =1,   ., , ., =0 .,            < (2)

As such, PCA can be seen as an axis transformation from a space formed by the original variables, 
to an orthonormal basis oriented according to the largest variance present in the data. It has been
proven that the loading vectors following those restrictions can be found as the eigenvectors of the 
covariance matrix S of X, while the eigenvalues are equal to the variance in the principal 
components. Therefore, the next step in PCA is a data reduction, performed by selecting only the 
principal components corresponding to the highest eigenvalues, thus retaining a maximal amount of 
information (i.e. maximum variance) in a minimal amount of variables.

Functional principal component analysis
In functional principal component analysis (FPCA), the data are assumed to be discrete 
measurements of a continuous function. The data are therefore translated to a functional form. The 
traditional way to do this uses a set of basis functions, from which linear combinations are made to 
approximate the underlying function in a least-square sense. The weights allocated to the basis
functions then form the functional data matrix for the PCA. Mostly, the interpretation of these data 
is not very straightforward. An alternative way, used in this contribution, is defining a number of 
parameters by which the function can be described accurately. If chosen well, a useful interpretation 
of the PCA results can be achieved. , –
estimated to describe a typical TMP cycle, as given in Figure 1. The reasoning behind this choice 
and the estimation procedures are described later in the manuscript.

Figure 1. Left: example of a TMP profile in time (2 months of data). Right: detail of a typical
filtration cycle and physical appearance and meaning of the estimated parameters.



Data sets
In this explorative study, transmembrane pressure (TMP) data from both a lab-scale and pilot scale 
MBR were used. The lab-scale installation (28.8L) is a sidestream configuration (X-Flow, Pentair)
and is located at the BIOMATH research group (Ghent University, Belgium). The system is
described in detail elsewhere (Jiang, 2008). The pilot scale installation is also a sidestream 
configuration and is located at the wastewater treatment plant of Ootmarsum (The Netherlands) and 
property of the water board Regge en Dinkel. Some operating parameters are given in Table 1, to 
provide an idea of how both systems were operated.

Table 1. Operating parameter values of the pilot scale MBR in Ootmarsum and the lab-scale MBR 
at BIOMATH.
Parameter (units) Pilot scale Lab-scale

Flux (L/m²h) 45-60 31.8

Circulation flow (m³/h) 20 0.46

Airlift flow (Nm³/h) 10 0.46

Backpulse flow (L/m²h) 350 106

Interval (filtr./backw./relax.) 7 min / 7s / - 7.5 min / 18s / 7s

MLSS (g/L) 10-14 8-10

Data processing
All data processing steps are visualized in Figure 2. Before conducting a PCA or FPCA, the data 
were unfolded per cycle in an automated way, using the first and second derivative of the TMP to 
locate the start of the backwash phase (Figure 1). As such, all measurements of the same cycle are 
treated as one multivariate sample, so later on an evaluation can be made for each cycle. For the 
PCA pathway, these unfolded data are used as input. Since every variable has the same unit (kPa), a
data standardization process was not considered necessary and therefore not performed. For FPCA, 
five parameters were deduced from a typical TMP cycle, as shown in Figure 1. The pressure at the 
end of filtration, gives an indication of fouling in general, while the negative 
pressure – (mean value) and thus by definition only irreversible 
fouling. As for the filtration itself, the curve consists of an exponential part at the beginning of 
filtration and a subsequent linear part. Hence, the parameters “a” and “b” of an exponential model 
and the slope “S” of a linear model were estimated, using a least squared error curve fitting 
approach. Parameter “a” will be influenced by both reversible and irreversible fouling, while “b” is 
generally not used in literature, and S is related to reversible fouling only. All parameters were 
smoothened using the MATLAB cubic smoothing spline function. In contrast with common PCA, 
an autoscaling process was used to remove artificial differences in importance imposed by the 
strongly different units of the parameters.

After calculating the loading vectors and principal components, retaining only the PCs with the 
largest eigenvalues, thereby retaining a minimum of 95% (arbitrary) of the present variance, leads 
to a data reduction. Principal component values, called principal scores, were then clustered using 
the Gustafson-Kessel algorithm (Gustafson and Kessel, 1979; Babuska et al., 1998). Three cluster 
centers were chosen to obtain a separate cluster for clean, transitional and fouled behaviour. A 
reconstruction of the original variables was performed, thereby also treating the cluster centers as 
data points to obtain their position in the original coordinates. Based mainly on the clustering and 
the reconstruction plot, an assessment was made on the membrane state. All calculations were 
performed using MATLAB (Math Works, USA).



Figure 2. Flowchart of all data processing steps. In the future, real-time data can skip the model 
building step, and use a model structure built on historical data.

RESULTS AND DISCUSSION

Short term models for lab-scale reactor
As for the lab-scale installation, when fouling became problematic according to the expertise of the 
operator, the membrane module was replaced instead of using chemical cleanings. To gain insight 
in the structure of the data set, three different models were built, each for a time span of exactly the 
life time of one membrane module. As such, only intra-membrane variance was investigated and a 
comparison between the different models is possible. The used TMP data are given in Figure 3.

Figure 3. TMP time series for membrane 1 (M1), membrane 2 (M2) and membrane 3 (M3).

The following results are originating from the FPCA on these data sets. For the first membrane 
(M1) two PCs were needed to capture the arbitrary 95% of the originally present variance (not 
shown). A biplot of these first two components (Figure 4) reveals the structure of the model. For 
PC1, all parameters are almost equally important, but there is a contrast between –
parameters. –
typically result in a TMP cycle which is characteristic for a highly fouled membrane, PC1 can be 
seen as a good indicator for fouling severity. For PC2, b is of major importance, which could not be 
linked to a certain fouling condition, since the response of this parameter on different fouling 
conditions is not yet reported. For the second investigated membrane (M2), operated subsequently 
to the first (hence, exposed to the same sludge), the results were very similar: again two PCs were 
withheld based on retaining 95% variation and their compositions were very similar. However, for a 
third membrane (M3), operated more than one year earlier, the results differ considerably, 
especially in the composition of PC2: now S is of major importance.



Figure 4. Biplot for membrane 1 (M1), membrane 2 (M2) and membrane 3 (M3). The loadings of 
the first two loading vectors, corresponding to the first two PCs, are drawn as coordinates. The 
construction of a PC out of the original variables is found by projecting all lines orthogonally onto 
the correct axis. Correlations between the original variables correspond to the angles between them 
(a small, opposite or perpendicular angle equals positive, negative and no correlation respectively.).

Since the MBR was operated in steady state, with a synthetic influent of constant composition, the
change in model structure can be explained by a different equilibrium state of the system, being 
responsible for a different fouling mechanism. This change in mechanism alters the TMP profile 
subtly and thus the variations in the deduced parameters, eventually leading to a different model 
construction.

Long term model for lab-scale reactor
In an attempt to also capture inter-membrane differences within the principal components, rather 
than ending up with different model structures for each membrane, also a long term data set was 
analysed, with data of three consecutively used membranes. Note that the data of the second
membrane of this data set are the same data as for the third analysed membrane in the short term 
analyis (M3). The complete data set is visualized in Figure 5.

Figure 5. Left: TMP data set of three consecutively used membranes to form a longer term data set.
Right: biplot for the first two PCs of the long term data set.

According to the biplot (Figure 5), the contrast in the first principal component is similar to the 
short term models. This implies that PC1 is again a measure for fouling severity. However, the 
second principal component appears to be very different. A contrast can be seen between 
on one hand and – but especially – d b are of importance. It was 
hypothesized that high scores for PC2 thus correspond mainly to reversible fouling, characterized by 
less negative values for – lower scores for PC2 can be related to 
irreversible fouling using the opposite reasoning.



Figure 6 shows a cluster plot of the principal scores for the first two principal components, and a 
clear distinction can be made between the third membrane and the first two. According to the theory 
above, membrane 3 suffered mainly from reversible fouling, while irreversible fouling was the 
dominant fouling type of membrane 1 and 2. This is confirmed by the observation that the scores of 
PC1 for membrane 3 are also higher, since S has a higher absolute contribution in the loadings of 
PC1 compared to – indicating that reversible fouling leads to higher scores for PC1. From the 
reconstruction of the parameters (Figure 6), it can be seen that for the third membrane the fouled 
cluster for –
Also these findings confirm the hypothesis that reversible fouling was only dominant for the third 
membrane.

Figure 6. Left: cluster plot of the scores for the first two PCs of the long term data set. The 
fuzziness of the clustering can be evaluated by using the fuzzy partition entropy (0 for hard and 
ln(3) for fuzzy clustering), the quality by the intersecting cluster value g (g >1 indicates overlapping 
clusters). Right: Reconstruction plot of the parameters of the long term data set. Next to the original 
and reconstructed data, the cluster centers are shown as horizontal dashed lines, each time in 
hierarchical order (clean-transitional-fouled) according to the trend of the data.

Concerning the second membrane of this data set (=M3), it was already clear from its reconstruction 
in the short term analysis (not shown), that S was not consistently increasing toward the fouled 
cluster, indicating this membrane indeed did not face high reversible fouling. Also, this membrane 
exhibited an aberrant behaviour if compared to the other membranes in the short term analysis (M1 
and M2), while here, it acts very similar to the previously used membrane. This illustrates the 
dynamical character of the (dominant) fouling mechanism on longer time scales.

Pilot scale model
To check the method’s applicability towards larger scaled systems, data from a pilot scale 
installation were analysed in a similar way. Due to the low measuring frequency (every 10 seconds 
compared to every second in the lab-scale case), a few problems arose. Cycle ends were not always 
detected successfully since the backwash length (7s) is lower than the measuring frequency. As a 
consequence, a lot of data were omitted by the algorithm. Next to that, the exponential part could 
not be approximated accurately, since at most only two data points were available. Parameters a and 
b were therefore excluded from further analysis. Again, two PCs were sufficient based on the 95% 
criterion. From the biplot (Figure 7), it can be concluded that PC1 again gives an indication of 
fouling severeness, while PC2 should still be able to discriminate reversible from irreversible 
fouling.



The cluster plot (Figure 7) illustrates the problem of measuring frequency by its non-qualitative 
clustering (both from visual inspection and the high value of g). However, certain trends can be 
distinguished from the patterns: PC1 increases in time, as fouling increases. Also, a long term 
downward trend for PC2 can be seen, indicating slowly increasing irreversible fouling, next to 
discrete upward peaks, to be seen as reversible fouling events. Nevertheless it must be stressed that 
clustering quality should be improved if these charts are to be used for monitoring purposes.

Figure 7. Left: biplot of the pilot scale installation. Right: cluster plot of the principal scores for
PC1 and PC2 of the pilot scale installation.

FPCA versus PCA
So far, only results of the FPCA pathway have been discussed. Corresponding results of the less 
sophisticated PCA pathway are given here. The short term analysis yielded similar results: PC1 is a 
good measure of fouling severity, while a different dominant fouling mechanism gave rise to a 
different model structure. Again, the hypothesis was built that for M3 irreversible fouling was 
dominant. Also for the long term analysis similar results were obtained, except for the location of 
the cluster centers, which was not as correct as for the FPCA from a visual inspection (Figure 8).
For the pilot scale analysis, the low measuring frequency was responsible for a lot of scatter, the 
exclusion of one variable and yielded even worse clustering results (a value of 7.87 for g).

Figure 8. Left: biplot of the long term data set. Each measurement of the cycle is considered a 
variable, which seem to be grouped according to the cycle stage. Right: cluster plot of the principal 
scores of PC1 and PC2 of the long term PCA.



CONCLUSIONS
Principal component analysis was successfully applied to TMP data of a lab-scale installation to 
monitor fouling severeness, thereby relying on the first principal component. To obtain a 
differentiation between fouling mechanisms, the inter-membrane variance had to be included in the 
data set. If done so, the second principal component was able to separate reversible from 
irreversible fouling. With only intra-membrane variance included, the model structure adapted each 
time to the dominant fouling condition. The methodology was also tested on a pilot scale data set, 
but revealed a critical issue: the measuring frequency should be high enough to guarantee efficient 
data analysis. Although the first and second principal component indicated similar results to the lab-
scale case, quality of the data should be increased to use this technique for real-time fouling 
monitoring purposes.
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