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Abstract— Most of the existing methods for qualitative trend
analysis are based on discriminative models. A disadvantage of
such models is that many heuristic rules or local search methods
are needed. Recently, an effort has been made to develop a
globally optimal method for qualitative trend analysis. This
method is based on a generative (rather than discriminative)
model and has shown to lead to excellent performance. However,
this method comes at an extreme computational demand which
renders the methods unlikely for on-line application. In this
work, an alternative method, while still generative in nature,
is proposed which is shown to deliver the same performance
while reducing the computational demand considerably.

I. INTRODUCTION

Qualitative trend analysis has been proposed most fre-

quently to solve problems in the context of fault detection

and identification (FDI) [5], [8], [10], [12]–[17]. The un-

derlying philosophy is that many processes and their fault

scenarios are ill-understood in the sense that the responses

of key variables under different fault scenarios can only be

described in a coarse-grained qualitative manner. If one has

established a set of fault scenarios and their corresponding

qualitative descriptions, the key challenge becomes to convert

on-line data to matching qualitative representations, i.e.,

qualitative trend analysis. Existing methods for qualitative

trend analysis are largely based on discriminative models,

meaning that time series data is processed in a step-wise or

iterative procedure to obtain a coarse-grained representation

of the same. Such methods can be based on piece-wise

polynomial function fitting [4], [10], wavelet analysis [1] or

neural network modelling [12]. With each of these methods,

the qualitative representation is conditional to the data in an

explicit manner through the applied algorithm.

In most cases, a tabular look-up strategy is used to find

a match between reported fault scenarios and the qualitative

data representations. Unfortunately, such a search strategy

can be unreliable because of noise in the data series, leading

to incorrect qualitative representations. Also, typical tabular

look-up strategies use an all-or-nothing approach in matching

qualitative descriptions of fault scenarios and qualitative

data representations. Some authors have attempted at acco-

modating this through fuzzy matching or quantification of

similarities in shape [2], [10] though one may argue that

these have stepped away from the original coarse-grained

representation concept through making use of a quantitative

representation.

In contrast to the majority of existing methods, a recently

developed method avoids the use of tabular look-up search

strategies [14]. In this method, a generative model in which

the likelihood of the time series data is conditional to a

proposed qualitative representation is proposed. The method

fits spline functions -a special class of piece-wise polynomial

functions- to the data series. The likelihood of a particular

qualitative representation can then be evaluated by means of

nonlinear constraints on the spline coefficients. Finding the

qualitative representation which maximizes this likelihood

cannot be solved analytically. Put otherwise, the desired,

optimal qualitative representation is only implicitly related

to a given time series through this non-linear optimization

problem. In [14], [15], this problem is solved by means of a

branch-and-bound search algorithm. Both lower and upper

bounds for this problem can be found through solving a

Second Order Cone Program (SOCP). Unfortunately, this

becomes a lengthy procedure in most practical cases.

In this work the original nonlinearly constrained model

is replaced with an alternative model based on a Hidden

Markov Model (HMM). While this alternative model is only

an approximation to the original model, it is still generative

in nature and avoids a tabular look-up strategy. Results

indicate that this approach is viable and delivers similar

results as the original method while substantially reducing

the computational load.

II. MATERIALS AND METHODS

A. General notes on qualitative trend analysis

To understand the remainder of the text, the following

concepts and definitions are necessary. In general, qualitative

trend analysis is concerned with the segmentation of time se-

ries into so called episodes. Such episodes are characterized

by means of a start time, an end time, and a unique set of

signs for the first and second derivative. This means that

between the considered start and end time, the signs of the

derivatives are considered to remain the same.

A combination of a specific sign for the first and sec-

ond derivative is referred to as a primitive and is usually

represented by a character. If one considers the available

signs to be (strictly) negative, zero, or (strictly) positive, then
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Characters Sign of 1stderivative
(signs) - 0 +

Sign of 2ndderivative

+ A (-,+) – B (+,+)
0 E (-,0) F (0,0) G (+,0)
- D (-,-) – C (+,-)

TABLE I

OVERVIEW OF PRIMITIVES AS FUNCTION OF THE FIRST AND SECOND

DERIVATIVE.

one can describe all primitives with 7 characters. Table I

lists these primitives along with the derivative signs. While

the characters can be assigned arbitrarily, they are assigned

here so that (1) A corresponds to acceleration (positive

second derivative), (2) D to a deceleration (negative second

derivative), and (3) ABCD is a feasible qualitative sequence

for a function with smooth first and second derivatives.
A complete segmentation into multiple contiguous

episodes is referred to as a qualitative representation (QR).

A sequence of primitives, thus a qualitative representation

without time information, is referred to as a qualitative

sequence (QS).

B. Algorithm for qualitative trend analysis
The proposed method for qualitative trend analysis con-

sists of two steps. The two steps are explained in the

following paragraphs.
1) Step 1: Probabilities for primitives via kernel regres-

sion: In the first step, one evaluates how likely it is whether

the first and second derivative are positive, resp., negative.

To this end, one first obtains a local polynomial fit to the

data. This means that the vector of polynomial coefficients

are estimated to a univariate data series consisting of pairs

of independent variables, tj , which usually is time, and

measurements of the dependent variable, yj (j = 1 . . .m). To

obtain a local fit, the data are given decreasing weights with

increased distance from the considered sample of interest,

i. Concretely, one thus optimizes the coefficients, βi, for a

sample of interest, i, according to the following objective

function:

min
βi

m∑
j=1

K(ti, tj) · (yj − xT
j · βi)

2 (1)

with:

xj =
[
(tj − ti)

0 (tj − ti)
1 · · · (tj − ti)

p
]T

The degree of the polynomial is p. For the purpose of

qualitative trend analysis, choices for the polynomial are

restricted to quadratic or higher-degree polynomials (degree

2 or higher, order 3 or higher). p is set to 2 in this study

(quadratic polynomial). The weights are expressed by a

kernel function, K(xi, xj) in which case the local fitting is

also known as kernel regression [6]. A wide variety of kernels

exist. In our work, we use the so called tri-cube kernel:

Ki,j = K(ti, tj) =
(
1− d3i,j

)3 | d ≤ 1 (2)

di,j = ‖ti − tj‖/λ

This kernel is parameterized by a meta-parameter, λ,

which is known as the kernel width. Any data sample, j,

with a distance to the considered sample i larger than this

kernel width has zero weight and thus has no influence on

the parameter estimates. For sufficiently small values for the

kernel width on thereby obtains the local regression property

of the method. With the above local polynomial model, one

estimates a vector of polnomial coefficients for each data

sample (i = 1 . . .m). This can be solved analytically as

follows:

βi = Hi · y (3)

with:

Hi = (X ′
i ·Wi ·Xi)

−1 ·X ′
i ·Wi

Xi =
[
(t− ti)

0 (t− ti)
1 · · · (t− ti)

p
]

Wi =

⎡
⎢⎢⎢⎢⎢⎢⎣

Ki,1 · · · 0 · · · 0
...

...
...

0 Ki,j 0
...

...
...

0 · · · 0 · · · Ki,m

⎤
⎥⎥⎥⎥⎥⎥⎦

In the above equations, Xi is the m × (p + 1) polynomial

basis matrix and Wi is an m × m diagonal matrix with

the weights for each data sample j for local regression in

sample i. These equations demonstrate that the polynomial

fitting problem corresponds to a linear projection scheme.

As a result, one can also obtain point-wise covariances for

the regression coefficients, assuming independent and iden-

tically distributed measurement errors following a Gaussian

distribution, N(0, σy),:

Σβi
= Hi · Σy ·HT

i (4)

with: Σy = σy · In
The point-wise conditional distributions for the linear and

quadratic polynomial coefficient are then:

β1,i ∼ N(βi(2),Σβi
(2, 2)) = N(μ1,i, σ1,i) (5)

β2,i ∼ N(βi(3),Σβi
(3, 3)) = N(μ2,i, σ2,i)

Then, the probability that the first (second) derivative is

positive, P1 (P2), corresponds to the integration of the normal

distribution as follows:

P1,i =

∫ +∞

u=0

1

σ1,i

√
2π

e
− (u−μ1,i)

2

2·σ2
1,i du (6)

P2,i =

∫ +∞

u=0

1

σ2,i

√
2π

e
− (u−μ2,i)

2

2·σ2
2,i du

Similarly, the likelihood for negative derivatives are com-

puted as 1 − P1 and 1 − P2. Finally, to compute the

likelihood of a particular qualitative state or primitive, Pi(s),
one multiplies the corresponding probablities. Note that only

primitives A, B, C, D are considered in this study, leading
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to the computation of four probabilities,Pi(prim), prim ∈
{A,B,C,D}, at each sample, i, as follows:

Pi(A) = (1− P1,i) · P2,i (7)

Pi(B) = P1,i · P2,i

Pi(C) = P1,i · (1− P2,i)

Pi(D) = (1− P1,i) · (1− P2,i)

Note that the above approach to compute the probability of

a particular primitive at a given sample time is approximate

because the correlation between the estimates of β1,i and

β2,i is not accounted for.
2) Step 2: Optimal state sequence estimation: In Step 1

of the algorithm, probabilities are assigned to all considered

primitves at each data sample. To obtain a most likely

sequence of such primitives, the Viterbi algorithm is used.

To this end, a qualitative state of the monitored process is

assumed to evolve from data sample to data sample according

to a stochastic first-order discrete Markov process. This

model is thus associated with a given QS and the number of

Markov states matches the length of the QS:

πQS,k(s) =
∑
a

TQS(s, q) · πQS,k−1(q) (8)

where πQS,k(s) and πQS,k−1(q) represent the probablities

of the state s, resp. q, at time k, resp. k − 1. TQS is a

matrix of transition probabilities. The subscript QS indicates

that one has a different Markov chain for different QSs. The

transition probabilities are set up so that all states are non-

ergodic (there is no path back to any given state once a

transition is made from this same state), that there is a single

source and a single sink state, and that a single, linear path

is formed from the source state to sink state. The states are

indexed incrementally from the source to sink state (1 to n).

Practically this means that the elements of the diagonal and

the subdiagonal of the transition matrix are non-zero while

all other elements are zero:

TQS =

⎡
⎢⎢⎢⎢⎢⎣

τ1,1 0 0 · · · 0
τ2,1 τ2,2 0 · · · 0
0 τ3,2 τ3,3 · · · 0
...

...
...

...

0 0 0 · · · τn,n

⎤
⎥⎥⎥⎥⎥⎦

(9)

Each qualitative state as defined for the above Markov

chain is associated with a single primitive. Note that the

opposite is not necessarily true. This makes it possible to

form a qualitative sequence with multiple states correspond-

ing to the same primitive (e.g., BCBC). Importantly, the

likelihood of a qualitative state conditional to the data, Pi(s),
is equivalent to the likelihood of the primitive associated

with this state, Pi(prim). Using this equivalance, one finds

the maximum likelihood sequence of qualitative states by

means of Viterbi algorithm. This recursive algorithm is well-

known for HMM based sequence estimation [11] and is

implemented as follows for qualitative analysis:

LQS,0(s) = πQS,0(s)

LQS,i(s) = Pi(s).max
q∈S

(TQS(s, q) · LQS,i−1(q))(10)

where Li,QS(s) represents the likelihood of the most proba-

ble state sequence with s as state at sample i. TQS(s, q) are

the transition probabilities as above and P (s)i are the state

probabilities as computed in Eq. 8 for the corresponding

primitives. The values for πQS,0(s) represent the initial

probabilities for each state. These are set so that the first

state in the linear chain has probability of one and all others

probability of zero. The maximization in Eq. 10 determines

the predecessor state, q, at each time instant. For i = m
and s = n, thus at the end of the data series and for the

last state in the Markov chain, one obtains the maxmimum

likelihood value, LQS,m(n) for the considered sequence.

Note that this likelihood is only an approximation of the true

likelihood because (1) correlation between β1,i and β2,i is not

accounted for and (2) cross-correlation of the same estimates

across the time index are not accounted for. While the

correlation between the the polynomial coefficients could be

accounted for by approximate integration of the multivariate

normal distribution, one cannot account for cross-correlation

easily since the Viterbi algorithm requires additivity (of the

log-likelihood terms) to work properly.

C. Fault diagnosis based on qualitative analysis

To use the above method for fault diagnosis, the same

strategy as in [15] is used. Namely, one associates a QS and

prior likelihood with each fault scenario (S). The considered

QSs and associated HMM models are defined by a process

experts who interpret plotted time series on a regular basis as

part of their process monitoring task set. In benchmark cases,

like this one, one can inspect and analyze the noise-free

data for the true qualitative sequence. Note that qualitative

simulation [7] or Signed Directed Graphs [9] can be used to

determine likely sequences starting from a detailed process

model. As discussed above, an HMM is set up for each QS,

and thus for each fault scenario. Based on the maximum

likelihood as obtained for each HMM with the same data,

one can then compute the a posteriori likelihood of each

scenario (S) conditional to the data as follows:

Lpost(S) = Lcond(S) · Lprior(S) (11)

= LQS,m(n) · Lprior(S)

Thus, the a posteriori likelihood of a scenario, Lpost(S), is

computed as the product of the prior likelihood of the sce-

nario (Lprior(S)) and the conditional likelihood (Lcond(S)).
The prior likelihood is given by the model user. The con-

ditional likelihood of the scenario is approximated as the

maximum likelihood of the associated QS and HMM as ob-

tained through the Viterbi algorithm. Therefore, one executes

the Viterbi algorithm once for each fault scenario, each time

with a different Markov chain corresponding to the respective

qualitative sequence. Fault diagnosis then ends with selecting

the scenario with a maximum posterior likelihood.

D. Benchmark model simulations

The data set used in this study has been used in previ-

ous studies to benchmark existing and new techniques for

qualitative trend analysis [14], [17]. The data set represents
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Fig. 1. Penicillin concentration measurement profiles for 30 batches. Taken
from [15]

three groups of ten batch fermentations according to the

benchmark model presented in [3]. Each group corresponds

to one of three scenarios. The scenarios are respectively (1)

Normal operation conditions (NOC), (2) Fault 1: Reduced

saturation constant, and (3) Fault 2: Reduced feed rate. The

analyzed time series are the noisy measurements of Penicillin

concentration and consists of 5000 samples spaced uniformly

over the span of 400 hours, which is the batch length for all

batches. Note that this fixed batch length is not a restriction

of the method as the scenario likelihoods can easily be

computed for different values of m.

III. RESULTS

A. Data description

In Figure 1 the noisy concentration measurements are

plotted as a function of sampling index. It can be seen that

the qualitative description of the profiles is quite distinct for

each group. This suggests that a qualitative trend analysis

may suffice to properly identify the different batch conditions

without relying on a complex mathematical model. In par-

ticular, the identified sequences are BC, BCBC, and BCDA

respectively.

B. Model setup

For the first step of the algorithm, one needs to select (1)

an order for the polynomial, (2) a kernel function (Tri-Cube

kernel) and (3) a kernel width, λ. The order and kernel were

already selected to be two (quadratic polynomial) and the

tri-cube kernel. The results shown below are obtained with a

kernel width, λ, of 256 which was set through trial and error.

In order to execute the second step of the proposed algorithm

for qualitative trend analysis, three different Markov chains

are set up. These correspond to the sequences BC, BCBC,

and BCDA respectively. The Markov transition matrices are
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Fig. 2. Top: Time series for a batch belonging to the second scenario
(Fault 1). Bottom: Normalized 1stand 2ndderivative with point-wise 3-σ
confidence intervals.

set up as follows:

TBC =

[
1− γ 0
γ 1

]
(12)

TBCBC = TBCDA (13)

=

⎡
⎢⎢⎣

1− γ 0 0 0
γ 1− γ 0 0
0 γ 1− γ 0
0 0 γ 1− γ

⎤
⎥⎥⎦

Note that even though the transition matrices for the

BCBC and BCDA sequences are the same, the states are not.

Indeed, for the BCBC sequence state 3 and 4 correspond to

B and C primitives while for the BCDA sequence the same

states correspond to D and A primitives. The value for γ is

0.01 in all reported results. It is noted that the values for λ
and γ were tuned by trial and error to obtain the best possible

results so far.

C. Demonstration

The proposed method for qualitative trend analysis is

demonstrated with one batch where fault scenario 2 is

present. The sampled data is shown in the top panel of

Figure 2. Visual inspection suggests that the corresponding

BCBC shape is indeed most plausible for this time series. In

the first step of the algorithm, one obtains a local quadratic

polynomial fit based on kernel regression. Based on this fit,

one can evaluate the first and second derivatives as well as

their point-wise standard deviation. For vizualization, these

derivatives are normalized with these standard deviations in

the bottom panel of Figure 2. The first derivative is positive

over the majority of the time series length. The second

derivative fluctuates with peaking positive, negative, positive,

and negative values (in this order).

The obtained estimates and standard deviations are used

to compute the probabilities of the qualitative states, P (s)i.
Figure 3 shows these probabilities as a function of sampling
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time. As one might expect, one observes alternating periods

in which the highest probabilities correspond to B, C, B, and

C primitives.

In Step 2 of the algorithm, the individual point-wise

probabilities are combined to obtain the maximum likelihood

for a given qualitative sequence as well as the corresponding

transition times. The resulting qualitative representations for

each of the considered sequences (BC, BCBC, BCDA) are

vizualized in Figure 4. In each of the considered sequences,

one identifies a BC transition at the same time, which is

at sample 3237. This corresponds to the inflection point in

the data series which is the easiest to identify based on

visual inspection. In the case of the BCBC sequence, two

additional inflection points are found at samples 695 and

992. This is also likely based on visual inspection. In the

case of the BCDA sequence, a maximum and inflection point

are identified at sample 4998 and 4999 respectively. This

suggests that the BCDA sequence is rather unlikely given

that these are the very last sample times where one could

possibly locate these transitions.

The corresponding log-likelihoods, Lm(n), are shown in

Figure 5. The BCBC sequence results in the largest likeli-

hood. Since the prior probabilities for the sequences were all

set equal, the fault diagnosis task ends with the assignment

of this batch to scenario 2, which is correct.

D. Fault diagnosis performance

The same exercise was repeated for all 30 batches. Fig-

ure 6 shows the likelihoods for each sequence as a function of

batch index. One can see that for batch 1 to 10 (scenario 1),

the BC sequence is found most likely. Similarly, for batch 11

to 20 (scenario 2) one finds the BCBC sequence most likely

and for batch 21 to 30 one finds the BCDA sequence most

likely. As a consequence, this means that a fault diagnosis

strategy based on maximum likelihood leads to excellent

performance.
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Fig. 4. Qualitative representations (QRs) resulting from applying the qual-
itative trend analysis algorithm using three different HMMs corresponding
to BC, BCBC, and BCDA sequences.

The above fault diagnosis performance is the same as

obtained with the deterministic global optimization approach

as taken in [15]. Importantly, this can be attributed in part

to the fact that two parameters were tuned to obtain these

results. Indeed, one does not necessarily obtain the same

performance with different values for λ and γ. In contrast, the

original method in [14], [15] does not require such tuning.

The most obvious advantage of the newly proposed

method lies in the computational speed. Figure 7 shows the

time need for each qualitative sequence as a function of batch

index on a Pentium IV (3 GHz, 1 GB RAM) computer. One

can see that this time is lower than 10 seconds for every

sequence and batch and remains relatively constant across the

set of batches. This stands in clear contrast with the method

in [14] where computational demand for the same task was
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Fig. 5. Maximum a posteriori (MAP) likelihoods for each of the sequences
(BC, BCBC, BCDA)
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reported to be as high as 20 hours and highly dependent on

the actual batch scenario.

IV. CONCLUSIONS

In this contribution, a novel method for qualitative trend

analysis is proposed. The method is based on a two-step

algorithm in which one first assigns probabilities for different

qualitative states and then obtains a maximum likelihood

sequence of qualitative states based on a Markov chain

representation and by using the Viterbi algorithm. Following

this, the likelihood value for different sequences can be

used to determine the most likely sequence and associated

batch process condition. Results indicate that, pending proper

tuning, one can obtain excellent fault diagnosis performance

as was obtained in previous studies based on a global

optimization approach. However, with the proposed method
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Fig. 7. Computational time needed on a Pentium IV (3 GHz, 1 GB RAM)
computer for each sequence as function of batch index.

computational time is reduced to the point where fast, on-line

implementation is a realistic perspective. Further research

will be oriented at determining (1) the sensitivity of the

method to the choice of kernel function, parameters of the

kernel function and the Markov model and measurement

noise levels as well as (2) obtaining an on-line version of the

proposed algorithm. Importantly, the HMMs are considered

a given and the considered primitives exclude those with

zero derivatives. This may not alway be realistic and for this

reason future research will also focus on (1) the identification

of the structure and parameters of such HMM models and

(2) use of a more expressive set of primitives.
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