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Abstract. The design of sensor networks in terms of sensor number, sensor locations and sensor 
types is a challenging task in the context of both waste water collection and treatment systems. 
Because in practice the reliability of sensors can be low it is useful to have some level of 
redundancy in the sensor network to detect and diagnose sensor faults on-line. However, such 
redundancy comes at a cost and means that under budget constraints certain variables cannot be 
measured or estimated. In this work, we provide the initial step towards optimization of sensor 
networks. In particular, we report on the application of a graph-theoretical method for the 
classification of variables as observable or unobservable and sensors as redundant or non-redundant 
for a given sensor configuration. Importantly, this analysis is based on the structural properties of 
the monitored system which imply always-valid flow and mass balances and does not rely on data 
obtained from the sensors themselves or on detailed understanding of the process dynamics. 
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1.  Introduction 
So far, fault detection and diagnosis in environmental engineering has focused on the 
characterization of systematic faults in sensing equipment. This includes detection (presence of a 
fault), isolation (which sensor is faulty) and characterization of sensor faults (identification, e.g. 
type and magnitude) (Aguado & Rosén, 2008; Puig et al., 2008;  Corominas et al., 2011; Spindler & 
Vanrolleghem,  2012; amongst others). Limited attention has been given to the placement of sensors 
in such a way that fault detection and diagnosis tasks become easier. Known methods for sensor 
placement are based on direct hardware redundancy. Indeed, by placing two sensors of the same 
type in one location one can detect faults in either sensor as long as the start of a fault does not 
coincide with the start of a fault in another sensor. Isolation and identification are also possible as 
soon as one places three sensors of the same type in one location, again assuming that the 
simultaneous onset of sensor faults in multiple sensors is impossible. Unfortunately, such placement 
aimed at redundancy by means of replication does not take advantage of spatial relationships 
between measured variables such as those defined by mass balances. Furthermore, budget 
constraints may mean that the redundancy obtained for sensors in one location, signifies the loss of 
observability of other variables or in different locations. In contrast, fault detection and 
identification methods are often based on spatial relationships. Most commonly known are those 
based on flow, mass and energy balances in which measurements of mass flow, concentrations and 
temperatures can all be considered in one framework (Schraa & Crowe, 1998). However, this 
remains a new paradigm in the context of wastewater engineering. 

Figure 1 shows the strategy we intend to develop for optimal sensor placement prior to data 
collection. An automated, computer-based sensor and variable classification method is used to 
assess which sensors are redundant and which variables are observable. To this end, a variable is 
considered observable if it is measured directly or if it can be computed by means of system 
equations (e.g. mass balances) from other available measurements. A sensor is considered redundant 
if the variable which it measures remains observable if that particular sensor is removed.  
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Figure 1: Schematic overview of integrated methods. A classification algorithm determines which variables are 
observable and which sensors are redundant given a graph-theoretical representation of the monitored system 
and a given configuration of sensors. Based on such classification algorithm, the sensor configuration can be 

optimized so to have desirable properties in terms of observability and redundancy. The current work deals with 
the classification algorithm only. 

Such redundancy is equivalent to fault detectability as long as a sensor fault appears in a single 
sensor at a single time. Indeed, if a fault appears in the considered sensor then the difference 
between the measurement and the estimate of the same variable obtained using all sensors except 
the faulty one is a good indicator for the presence of a fault. The above classification of variables 
and sensors is fixed for a given sensor configuration, i.e. the location and type of sensors in a given 
process or system. If such classification method exists, then it can be used in an iterative 
optimization scheme by which the sensor configuration is improved. Optimality can be defined as 
maximum observability or maximum redundancy or a mixture of both. 

In this work, we focus on the classification method, and not the optimization, based on existing 
methods in the literature (Kretsovalis and Mah, 1987, 1988a, 1988b). They are based on a graph-
theoretical representation of process systems and enable labelling of sensors as either redundant or 
non-redundant as well as the labelling of variables as either observable or unobservable for a given 
sensor configuration (number, type, and location of sensors). While the algorithms to do this are not 
trivial, they can be implemented to allow fully automated classification for any plant and sensor 
configuration and do not rely on any actual measurements so that sensor network design prior to 
any data collection campaign is feasible. In this study, we apply the classification rules to the long 
term Benchmark Simulation Model (BSM_LT) for a given configuration of the sensing equipment 
in a WWTP (known number of sensors, measured variables and measurement locations). 

2 Method 
2.1 Studied  system 

The simulation platform used is the Long-Term Benchmark Simulation Model (BSM1_LT) (Rosen 
et al., 2004), which was developed to provide a framework to objectively evaluate process 
monitoring, diagnostic and automation strategies of WWTP. This platform includes model, process 
configuration (pre-denitrification plant with five activated sludge units in series, two anoxic –ASU1 
and ASU2- and 3 aerobic -ASU3 to ASU5), inputs (influent, temperature, inhibition), control 
period, control systems, benchmarking procedures and evaluation criteria for process and controller 
performance. In Corominas et al. (2011) this platform was extended with a procedure for evaluation 
of monitoring performance. It comprises a one year evaluation period with a dynamic influent, 
includes temperature-dependent and inhibition kinetics.

2.2 Graph theoretical method 

The rules as provided by Kretsovalis and Mah (1987, 1988a, 1988b) for classification of variables 
and sensors were applied to the BSM1_LT platform. This allows classifying flow and concentration 



variables as observable which means that the considered variable is either measured directly or can 
be computed from the available data. Similarly, a fault in a particular measurement is classified as 
(structurally) detectable if the corresponding variable remains observable when the considered 
measurement is removed from the data set, i.e. there is redundant information about this variable. 

For purpose of variable and sensor classification, the BSM1_LT model is represented as a graph. 
This graph consists of nodes (also: vertices) representing all flow junctions and unit processes 
(reactor, settler) in the plant and edges (also: links) representing the flows between the nodes. 
Importantly, the graphical representation of the plant implies a steady-state assumption on all mass 
balances. For this reason, it is typical in fault detection and identification applications to average 
hydraulic and mass flows over a pre-determined time interval so to attenuate temporary imbalances  
over the nodes. In the particular case of conventional WWTPs, this is due to accumulation of mass 
in the reactor or settler. Alternatively, it is possible to account for reactions by expanding the 
existing graphical model with imaginary flows to the out-of-system environment. This allows mass 
balancing at the frequency of measurement and not at a time scale that is sufficiently long to 
attenuate any temporary imbalance in the system. Both approaches are studied and compared here. 

3. Results 
Figure 2 (top) shows  the BSM1_LT plant as presented in a typical simulator. The system consists of 
5 tank units which together represent the reactor system as well as a settler. Influent flow, sludge 
recycle flow, mixed liquor recycle flow and carbon dosage flow are all joined at a single point in 
front of the reactor system. The reactor system is followed by the settler. The underflow from the 
settler is separated into the recycle flow (RAS) and the wastage flow (WAS). The system is 
equipped with flow and TSS sensors as indicated in the graph. No other sensors are considered. 
Below this scheme is the graph-theoretical representation of the same system. In such 
representation, each unit process is represented as a node (also: vertex) and each flow between unit 
processes as an edge (also: arc). Importantly, splitters and junctions are also considered unit 
processes in this representation. For instance, node 4 represents the reactor system while node 6 
represents the settler. For the BSM1_LT plant, temporary accumulation of TSS is considered to 
happen in the reactor and in the settler. For this reason, imaginary flows from the environment to 
the reactor and settler and vice versa are added (edges 13 to 16).  One considers a fixed flow rate for 
each and assumes the TSS concentrations unknown (but possibly observable). Moreover, the flow 
rate for each edge of a pair of imaginary flows between the same two nodes must be equal to ensure 
hydraulic balance satisfaction (flow rates for edges 13 and 14, resp. 15 and 16, are the same).The 
complete graph consists of 8 nodes (indexed 1 to 8), 12 real edges (indexed 1 to 12) and 4 
imaginary edges (indexed 13 to 16). Note that one of the nodes (node 8) represents the environment 
(outside of the system boundaries) and thereby represents the mass balances over the whole plant. If 
one ignores the imaginary edges, one can write 8 independent instances of for flow balances (flow 
only) and mass balances (flow x concentration) involving 24 variables (flow rates and TSS 
concentrations). The splitter represents two more independent equations which equal the TSS 
concentrations in (i) the settler underflow, (ii) the WAS flow and (iii) the recycle flow.  

Figure 2: BSM_LT plant representations. Left: Scheme as typically shown in simulator software with flow and 
TSS sensors as icons. Right: Graph-theoretical representation with flow and TSS sensors as letters Q and X. 



Table 2 displays the variable and sensor classification results. The classification of the flow rates is 
insensitive to the chosen approach (with/without imaginary flows), in contrast to the classification 
for TSS. All flow rate measurements (indexes 1, 6, 8, 11 and 12) are redundant and all flow rates are 
observable. All TSS measurements are observable without use of imaginary flows (column TSS(1)), 
thus assuming steady-state operation. The measurements for the installed sensors (flow indexes 4, 6 
and 12) are redundant and faults in these sensors can thus be detected. With imaginary flows 
(column TSS(2)), thus allowing accumulation of TSS in the reactors and settler, TSS remains 
observable only in flows 5, 7, 8, 9 and 11 and none of the installed sensors are redundant.
Table 2. Classification of sensors and variables. For non-measured variables the classification is either observable 

(O) or non-observable (empty cell). All measured variables are automatically observable. For measured 
variables, R indicates the sensor to be redundant and N indicates that it is non-redundant. For flow rates, the 

classifications are the same irrespective of whether one adds imaginary flows to the graph or not. For TSS, 
results are presented for the case without imaginary flows (1) and with imaginary flows (2).  

Flow index 1 2 3 4 5 6 7 8 9 10 11 12 

Flows (Q) O, R O O O O O, R O O O O O, R O, R 

TSS (1) O O O O, R O O, R O O O O O O, R 

TSS (2)    O, N O O, N O O O  O O, N 

4. Conclusions and perspectives 
This work presents the early results obtained with a graph-theoretical approach to structural 
observability and redundancy classification. The BSM1_LT functions as benchmark and test 
platform for the proposed algorithms, which allow fully automated classification of sensors and 
process variables for any plant and sensor configuration. Future work includes further testing of 
other sensor configurations for the BSM1_LT plant and global optimization of its sensor 
configuration. Beyond this, we foresee the application of these methods to larger networks, 
including waste water collection systems and water distribution networks. 
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