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Abstract. With this paper we adapt the fundamental framework of data reconciliation for bilinear 
steady-state systems to solve the problem of fault detection and diagnosis in the context of full-scale 
wastewater treatment plants (WWTPs). The usefulness of this framework is illustrated using the 
BSM1_LT simulation platform to detect and identify faults in flow and TSS sensors. The results 
show that data reconciliation of bilinear systems is a powerful method to detect faults in the flow 
measurements but exhibits low performance for faults in the TSS sensors for the given sensor 
configuration.
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1.  Introduction 
Until the late nineties, sensors were seen as the main obstacle to introducing reliable process control 
in wastewater treatment. Nowadays, sensors have been developed to the extent that their nominal 
specifications permit automatic control of sludge age and carbon, nitrogen and phosphorus removal 
processes (Vanrolleghem and Lee, 2003; Olsson, 2012). However, the quality of the resulting 
measurements is not always assured at all times. Several problems can occur which influence the 
quality of the signal negatively. Furthermore, the symptomatic effects of sensor faults on the 
measurements that are included in control loops can be hidden because of dampening by feedback 
control. A systematic approach to fault detection and identification (FDI) is therefore welcome.  

Figure 1 illustrates that the effect of a failure in one of the sensors involved in the SRT calculation 
can be dramatic. In this case, TN in the effluent and the concentration of the nitrifying biomass of 
an activated sludge system using SRT control is shown for two types of situations, 1) no faults in 
the sensors and 2) a TSS sensor bias for the wastage flow (XWAS) on day 400. The total nitrogen 
concentration in the effluent increases up to 25 g·m3 because the nitrifying biomass is washed-out 
from the system due to the combined effect of winter time and XWAS measurement fault. The system 
recovers slowly in the summer period (day 520). Despite obvious effects on performance, visual 
inspection of the XWAS measurements (not shown) does not lead directly to the root cause. 
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Figure 1.  Influence of a fault in the TSS wastage sensor on the TN in the effluent and on the nitrifying biomass 
concentration in a plant using SRT control at 10 days 

The above motivating example suggests that sensor inspection based on normal ranges of values 
may not be sufficient for proper detection and identification of faults. For this reason, we adapt a 
framework based on linear and bilinear balance equations which enables to detect faults in both 
flow rate and TSS measurements. If the mass balance does not close with the available 
measurements a fault might be occurring in one of the sensors involved in the calculation of the 
mass balance. The framework is well established, general and popularly used in chemical 
engineering for data reconciliation, fault detection and identification (FDI) and optimization of 
sensor locations (Crowe et al., 1983; Crowe, 1986). In the wastewater community, several methods 
have been presented. In Puig et al. (2008), mass balancing based on phosphorus measurements is 
pursued. Importantly, the provided method assumes a steady-state and does not allow for balances 
to be considered over unit processes with temporary accumulation of soluble compounds or for 
reactions. In Spindler and Vanrolleghem (2012) a similar theoretical basis is used. In this case 
however, a CUSUM chart enables to attenuate temporary imbalances because of its integrating 
property. In contrast, a general method which accounts explicitly for temporary imbalances 
(because of reactive or accumulating unit processes) is applied in this work.  

To illustrate the usefulness of the method, three faulty scenarios are tailored introducing faults in 
sensors which are known to be redundant, after applying the structural observability and 
redundancy analysis presented by Villez et al. (2013).  

2 Method 
2.1 Simulated system and fault scenarios 

The simulation platform used is the Long-Term Benchmark Simulation Model (BSM1_LT) (Rosen 
et al., 2004), which was developed with the specific objective of objective evaluation of process 
monitoring, fault diagnosis and automation strategies. In Corominas et al. (2011) this platform was 
extended with a procedure for objective evaluation of monitoring performance. For this case study, 
the Sludge Retention Time (SRT) of the system was controlled at 10 days by means of a PI 
controller which manipulates the internal recycle flow rate of the plant. The implementation of the 
faults is largely based on the approach described in Rosen et al. (2004) and adapted in Corominas et
al. (2011). A bias of 25% has been applied to the different sensors when faults are activated. 

The simulation protocol for BSM1_LT is as follows: First, the model is run to steady state for 200 
days using a constant influent, without any faults. Afterwards, a dynamic simulation is conducted 
using dynamic influent data (flows, concentrations and temperature) for a period of 609 days at 15 
minute interval. At day 400 the faults are applied and remain active until the end of the simulation, 



i.e. no corrective action is taken. For each scenario, the method is applied to the data obtained from 
day 401 to 600. Simulations are conducted with Matlab and output data is stored every 15 minutes. 

Table 1. Simulated fault scenarios 

Identifier Sensor symbol Sensor affected by fault Type and magnitude of 
fault

Scenario 0 - none None

Scenario 1 QWAS Flow in the waste flow Bias 25% 

Scenario 2 XWAS TSS in the waste flow Bias 25% 

Scenario 3 XAER TSS in the aerobic reactor Bias 25% 

Figure 2: BSM_LT plant scheme with flow and TSS sensors as icons.  

Flow sensors are placed in five locations (see Figure 2): (1) influent flow (QIN), (2) carbon dosage 
flow (QCARBON), (3) sludge recycle flow (QRAS), (4) sludge waste flow (QWAS) and, (5) effluent flow 
(QEFF). TSS measurements are placed in three locations: the aerobic reactor exit flow (XAER), the 
sludge waste flow (XWAS) and, the effluent flow (XEFF). For this configuration, one can establish 
that all flow sensors except the sludge recycle flow (QRAS) are structurally redundant (Villez et al., 
2013). The chosen fault scenarios summarized in Table 1 exclude faults in sensors which are not 
structurally redundant and could therefore never be detected.

2.2 FDI framework for bilinear systems 

The applied general framework for Fault Detection and Identification is based on the formulation of 
data reconciliation tasks as a Non-Linear Program (NLP). In contrast to linearization approaches as 
in Crowe et al. (1983), the problem is solved directly by means of deterministic global optimization 
techniques. Of particular importance is the appearance of bilinear terms in the mass balances based 
on flow rates and concentrations. For this reason, the chosen optimization scheme is based on a 
branch-and-bound algorithm for which the lower bounds are based on so called McCormick 
relaxations (McCormick, 1976). The objective function of the mathematical problem is defined as 
the Weighted Sum of Squared Residuals (WSSR), which measures the distance between the vector 
of reconciled measurements and the original, noisy measurements. Detailed procedures will be 
detailed in a forthcoming publication.  

3. Results and conclusions 
Figure 2 shows the WSSR for days 401 until 600 for each scenario. The 90% confidence limit is 
defined as the 90% quantile for the WSSR values in the days 401 to 500 in the normal scenario 
(Figure 2, scenario 0). The subsequent 100 days are used for testing. To this end, any WSSR value 
which is higher than the set 90% confidence limit is said to produce an alarm. Since no true fault is 
present, any alarm is a false alarm. As such, 15 false alarms are produced. In other words, a 15% 
false alarm rate (also: false positive rate) is observed which is higher than expected. Fault detection 
results are good for scenario 1 where on 80% of the days an alarm is given (80% true positive rate). 
Results are not as good for scenarios 2 and 3 with 14.5% and 30% as true positive rates. At this 
stage it is unclear whether this is (1) due to noise, (2) the particular plant and sensor configuration 



or (3) inherent difficulties of the method to detect faults in concentration variables such as TSS. In 
this contribution, we present fault detection and identification (FDI) results obtained with a 
framework for data reconciliation for bilinear systems which is based on global deterministic 
optimization. We show by means of the BSM_LT platform that the framework works fine for 
detection of bias faults in flow rates (scenario 1) but shows low performance for bias faults in TSS 
measurements (scenarios 2 and 3). In the future, the framework will include fault diagnosis as well 
and provide data reconciliation automatically.  

Figure 2.  WSSR statistic for 4 scenarios. The horizontal line indicates the 90% confidence limit.
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