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Abstract 
Biological nitrification is considered a vital step to enabledecentralized treatment of source-separated 
urine. However, rapid changes in the load to this process are known to result in rapid build-up of 
nitrite,which can destabilize the process. A further complication is that no direct, online measurements 
of nitrite are available. It is for this reason that model-based observers are tested as soft-sensors for 
online nitrite estimation.  
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INTRODUCTION 
Nitrification is an aerobic process by which ammonium is biologically oxidized to nitrate in two steps: 
from ammonium to nitrite by the ammonia oxidizing bacteria (AOB) and from nitrite to nitrate by the 
nitrite oxidizing bacteria (NOB). Biological nitrification is often part of conventionalwastewater 
treatment plants.More recently, biological nitrification has been proposed to stabilize decentralized 
treatment of source-separated urine (Udert and Lienert 2013). The resulting nitrified urine can further 
be distilled to produce a nitrogen fertilizer and the complete process is geared to urbanenvironments in 
emerging and developing countries (Udert and Wächter 2012). Under normal circumstances, the AOB 
are substrate limited as soon as about 50% of the ammonia has been nitrified and the alkalinity in the 
wastewater is consumed. While this is achievable under stable influent conditions, increases in the 
ammonia load to the urine nitrification process can result in a rapid accumulation of nitrite. Such 
accumulation leads to inhibition of NOB, further slowing down the second nitrification step until 
stopped entirely, with possible complete loss of NOB biomass. Therefore, knowing the nitrite 
concentration is key to long-term operation under load-changing conditions. However, among today’s 
many online sensors, there is yet none that can measure nitrite continuously and reliably in municipal 
wastewaters. Moreover, current expectations are that nitrite-nitrogen concentrations can rise up to 200 
mgNO3-N/l in the reactor, which is higher than the range for typical ISE sensors for ammonia and nitrate.  
The offline method that is currently employed by practitioners, i.e. nitrite strips or sampling, 
necessitates manpower.A reaction time in the order of hours, possibly days, is required to implement an 
appropriate action and prevent the reactor from failing, thereby excluding such offline analysis for this 
purpose. 

On the other hand, some key variables such as nitrate nitrogen concentration and pH can be measured 
reliably today, and others are likely to exist within the near future (ammonium nitrogen concentration). 
These signals are considered to contain indirect information about the nitrite concentration. For this 
reason, soft sensing is a promising approach to obtain a reliable, online estimation of the nitrite 
concentration. Soft sensors denote a subset of observers, which are used to estimate unmeasured 
quantities by utilizing information from additional process parametersand existing measurements. 
Typical applications for soft sensors include process monitoring and control(Vargas et al. 2000)as well as 
fault detection and identification(Prakashet al.2005, Villez et al.2013). In this contribution, we 
demonstrate the potential of observers for nitrite estimation in the absence of a direct measurement. 
Our ultimate goal is to test the developed soft-sensorsin a real case scenario with an operational reactor 
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and with a set of online sensors (Udert and Wächter 2012, Hug et al. 2013). 
 
MATERIALS AND METHODS 
In this paper, we use a very simplified version of a model describing a nitrification reactor (Hug et al. 
2013) in order to test and demonstrate the selected observers.Here, we assume that the system is 
defined by the three state variables: SNH3ammonia concentration, SHNO2nitrite concentration, and 
SNO3nitrate concentration, and the two processes: growth of AOB, and growth of NOB. Furthermore, it is 
assumed that the oxygen concentration, the volume of the reactor and the biomass activity are kept 
perfectly constant. The nitrifying reactor is modeled as a system of three ordinary differential equations 
expressing the rate of change in the concentrations of ammonia, nitrite and nitrate: 

      (1) 

  (2) 

       (3) 

where KNH3 and KHNO2 denote the affinity constants for NH3 and HNO2, respectively, IHNO2,AOBand 
IHNO2,NOBdenote the non-competitive inhibition constants for HNO2 for AOB and NOB and AAOB and ANOB 
denote the biomass activities. The constants are given in Table 1. Note that AAOB and ANOB have been 
taken as averages of the values used in Hug et al. (2013). 
 
Table 1. Kinetic constants for the microbial processes (Hug et al. 2013). 
Constant Value  Unit Constant Value  Unit 
KNH3 0.50 mg NH3-N/l IHNO2,NOB 0.06 mg HNO2-N/l 
KHNO2 0.0004 mg HNO2-N/l AAOB 57 mg COD/(l·day) 
IHNO2,AOB 1.61 mg HNO2-N/l ANOB 6.5 mg COD/(l·day) 
 
The Kalman filter algorithm is used to find statistically optimal estimates of both measured and 
unmeasured variables that are described as internal states in a linear dynamic system (Welch and 
Bishop 2006). The Extended Kalman Filter (EKF) is the equivalent algorithm for nonlinear dynamic 
systems. The main disadvantages of using the EKF are the requirement of an explicit Jacobian for the 
linearizationand the possibility of algorithm divergence when the system is highly nonlinear (Julier et al. 
2000). The Unscented Kalman Filter (UKF) was introduced as a different approach to nonlinear 
estimation, tackling the issues of the EKF and avoiding the need for linearization, resulting in a more 
accurate and easier implemented algorithm (Julier and Uhlmann2004). Among the several existing 
versions of the UKF, we chose the algorithm presented by Wan and van der Merwe (2001), 
howeverusing a continuous formulation of the state equation and a discrete measurement equation. 
 
All equationswere implemented in Matlab. First, the system (1)-(3) was simulated from time 0 to 50 
days, using the initial values 
   .   (4)The 
simulated concentrations of ammonia and nitrate were considered to be measurements and given as 
input to the EKF and UKF, respectively, therein assuming that nitrite was not measured. For both EKF 
and UKF, the following values were used: 

   (5) 

       (6) 
where Q is the system noise covariance matrix, R the measurement noise covariance matrix,P0 the initial 
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error covariance and ,  and  are the initial guesses for the state variables. For this 
specific test case, we opted for a medium-large covariance in P0 and a relatively small covariance in Q. 
The different values in R indicate that nitrate measurements can be trusted more than ammonia 
measurements, and is based on currently available real-life experience with such sensors. For the UKF, 
the following scaling parameters were used: 
     ,    (7) 
where  is set to a small positive value,  is optimal for Gaussian distributions, and -L,Ldenoting 
the length of the augmented state vector (Wan and van der Merwe 2001).The above simple tests are 
currently extended to test for (1) more complex models, including pH and oxygen dynamics and (2) 
conditions in which the simulated system model and the model observer are not necessarily the same. 
 
PRELIMINARY RESULTS 

Figure 1. a) Ammonia concentration (solid, blue), measured ammonia (solid w. marker, dark red), EKF 
estimate of ammonia (dash-dot, dark gray), and UKF estimate of ammonia (dashed, magenta) as 
functions of time; b) nitrite concentration (solid, blue), EKF estimate of nitrite (dash-dot, dark gray), and 
UKF estimate of nitrite (dashed, magenta) as functions of time. 
 
Both the EKF and UKF were tested on the same, simulated data. These data were obtained as discussed 
above. Most importantly, there is no direct measurement of nitrite concentration and the observers are 
set up to estimate its value. Figure 1a shows the internal state ammonia, the simulated measurement of 
ammonia and the estimates obtained with EKF and UKF, respectively. The estimates are also plotted 
with three standard deviations. In Figure 1b we see the internal state nitrite with the two estimates 
from EKF and UKF. The divergence of the EKF is most visible for ammonia, where the EKF-estimate never 
really estimates the state to a satisfying degree. The UKF on the other hand is able to track the states 
reliably, therefore showing a robustness against ill-defined prior means at time zero. Nitrite, as an 
unmeasured state, is estimated better with the UKF than with the EKF, i.e. the estimate obtained with 
the UKF converges faster and is closer to the true values. 
 
CONCLUSIONS AND PERSPECTIVES 
The EKF and UKF algorithms were both successfully implemented and applied to a simulated test case, 
which describes a simplified nitrification reactor. Under the assumption that nitrite, one of the three 
state variables, was unmeasured, and using the same initial data for both algorithms, the UKF 
performed better than the EKF. The UKF results in a reasonable estimate of the nitrite concentration, 
despite ill-defined initial guesses. Furthermore, the EKF lacks robustness to ill-guessing of initial states. 
The UKF, on the other hand, requires tuning of the scaling parameters, which is not yet completed.  
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As future work, we will test the same simplified observer model, as described in this paper, with a more 
complex simulated system as well as with full-scale data obtained from an operating reactor. 
Additionally, we will include pH and oxygen in the observer model if that is necessary to obtain reliable 
estimates. Moreover, we envision e.g. an evaluation of the effect of the model simplification, 
comparison of different sensor sets and evaluation of the importance of an online ammonia sensor. 
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