
Qualitative Trend Analysis as a Tool for pH-based 
Ammonium Soft-Sensor in Full-Scale Continuous WWTP  
Christian M. Thürlimann*, David J. Dürrenmatt**, Kris Villez*

* Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
(E-mail: christian.thuerlimann@eawag.ch; kris.villez@eawag.ch) 
** Rittmeyer AG, 6341 Baar, Switzerland  
(E-mail: david.duerrenmatt@rittmeyer.com) 

Abstract 
Ammonium control on wastewater treatment plants (WWTP) reduces costs and increases nutrient 
removal performances. Despite these advantages its application is bound to maintenance and cost 
intensive ammonium sensors. Hence, smaller WWTPs do not manage to outweigh their 
expenditures for the control infrastructure with its cost savings. Soft-sensors could replace the 
physical sensors and are widely discussed in literature. A mechanistic soft-sensor recently described 
exploits the acidifying effect induced by nitrification in a continuous flow system. With two pH 
sensors a difference is measured along the aerated biological reactors, which corresponds 
qualitatively to the ammonium concentration. Consequently, we propose to use qualitative trend 
analysis (QTA) tools to establish a two-point controller adapting the oxygen setpoints according to 
the ammonium load. However, the known QTA algorithms (e.g. qualitative path estimation) are not 
suitable for online control. Thus, a new algorithm, called qualitative state estimation (QSE), is 
developed for this purpose. Given the pH difference signal the QSE based controller distinguishes 
among high and low load situations. At the WWTP Hard in Winterthur, this resulted in a cost-saving 
automation of the aeration system. This contribution summarises these first results.  
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INTRODUCTION 
Up to 60% of the total energy consumption of a wastewater treatment plant originates from aeration 
(Rieger et al. 2008). Significant reduction for aeration energy needs can be achieved with 
conventional ammonium control (Åmand et al. 2013). Ammonium control adapts the aeration 
intensity according to the ammonium concentration. A high ammonium concentration asks for a 
high nitrification performance thus for a high dissolved oxygen (DO) concentration. In low load 
situations the DO concentration can be reduced so to reduce the aeration intensity and associated 
costs without risking an effluent concentration limit violation. Apart from the achieved energy 
savings, ammonium control smoothes the ammonium effluent load, increases the denitrification 
capacity and enhances the biological phosphorus removal (bio-P) (Rieger et al. 2014). However, the 
ion selective electrodes (ISE) measuring the ammonium concentration are vulnerable in harsh 
environments like wastewater and require a high maintenance effort (Winkler et al. 2004). This 
hampers the economical application on smaller WWTPs, where the cost savings seldom exceed the 
installation and maintenance expenditures (Åmand et al. 2014). To evade the physical ISE sensor, a 
whole range of ammonium soft-sensors has been proposed in academia. Haimi et al. (2013) 
reviewed some of them in their study, but they often suffer from the fact that they rely on black-box 
models. As these models are neither transparent for operators nor globally valid, their application in 
practice is challenging. Ruano et al. (2009) presented a soft-sensor based on a mechanistic 
principle. The pH dynamics caused by nitrification and aeration are used to estimate the required 
aeration intensity. More concretely, the soft-sensor measures the net balance of the acidifying 
nitrification and the hydrogen ion neutralising aeration (CO2-stripping). Nitrification will take 
place, when ammonium is available and decreases the pH value of the wastewater as more protons 
are produced than removed from the system. If the nitrification becomes limited or is halted by low 
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ammonium concentrations, the proton balance becomes negative due to the higher CO2 stripping 
evoked by over aeration, which in turn causes a rise of the pH. Ruano et al. (2012) exploited this to 
adjust the aeration intensity so that a stable difference between the first and last aerated activated 
sludge tank results (cf. Fig. 2). An incoming ammonium load leads to a lower pH in the first tank; 
consequently the difference to the last aerated reactor rises. When the ammonium reaches the 
downstream pH sensor, the pH difference drops. Later, the decreasing load enables the plant to 
nitrify all ammonium in the first two reactors. This evokes net proton consumption in the last 
reactor, resulting in a pH increase at the downstream sensor. In parallel, the nitrification in the first 
reactor will last until the peak load has passed resulting in a stable pH value at the upstream sensor. 
Ruano et al. (2012) smoothed these variations in the pH difference out by continuously adjusting 
the aeration intensity. This, in turn causes higher or lower CO2 stripping, which removes protons 
from the system, keeping its concentration steady (pH = -log(H+)). For steady state conditions a 
certain pH difference is linked to a particular ammonium concentration. The mechanistic process 
behind the soft-sensor is transparent and well understood. This makes it relatively easy to apply this 
concept on diverse WWTP configurations. However, the control requires accurate pH sensor 
values, which make this control hard to maintain. This voids the maintenance advantage over 
conventional ammonium sensors. In this contribution we claim that this mechanistic concept can 
still be exploited in practice without stringent requirements regarding the pH sensors stability 
thanks to an automated and intelligent interpretation of the pH difference signal. 
 

 
Figure 1 shows the recorded pH difference (top) and the measured ammonium concentration 
(bottom). The signals share obvious qualitative similarities. For instance, the maxima are 
particularly synchronous. Hence, we present a qualitative trend analysis (QTA) tool to utilise this 
qualitative similarities for an ammonium load dependent aeration control. The incoming ammonium 
peaks are detected by means of automated interpretation of the pH difference. The difference results 
from the upstream minus the downstream pH value. The extracted information is then used to adjust 
the setpoints for the DO concentration accordingly and thereby optimise the aeration energy, 
operational costs and effluent quality of the WWTP. The QTA method used here is called 

 
Figure 1 Demonstration of the QSE algorithm: Top – pH difference raw/filtered; Middle – Qualitative trend 
probabilities; Bottom – Control state and ammonium measurements. (Thürlimann et al., Submitted) 



qualitative state estimation (QSE) and is based on the earlier qualitative path estimation (QPE) 
algorithm developed in Villez and Rengaswamy (2013) and Villez (Submitted). Two main features 
differentiate the methods (a) the hidden Markov model (HMM), representing an ergodic process, as 
contrasted with the non-ergodic linear Markov chain for the QPE algorithm and (b) the Viterbi 
algorithm used for QPE has fundamental differences to the now applied HMM state estimation 
method. 
 
 
METHODS 
 
Plant and Hardware Setup  
The studied WWTP Hard in Winterthur, 
Switzerland treats mainly municipal 
wastewater from approximately 130’000 
population equivalents. It is a conventional 
activated sludge treatment with a pre-
denitrification stage, iron-based phosphorus 
precipitation and effluent sand filters. Due 
to the small receiving water body, the plant 
has strict discharge requirements (e.g. < 1 
mg NH4-N/l). As shown in Figure 2, each 
biological treatment lane consists of one 
stirred and three aerated tanks. The pH sensors were placed in the first (pH us) and last (pH ds) 
aerated reactor. To validate and fine-tune the control loop an ISE was placed into the second aerated 
reactor to measure the ammonium online (cf. Fig. 1 (bottom) and Fig. 2).  
 
Qualitative Trend Analysis 
QTA encompasses various sets of algorithms for the segmentation of time series. Each segment is 
defined by a start and an end time. In between, the sign of signal derivatives are assumed to be 
constant (e.g. positive or negative). Based on the results shown in Figure 1, it was decided to focus 
on the first derivative of the pH difference signal as this feature is sufficient to define the qualitative 
points of interest, namely the maxima and minima. QSE aims for a rapid and reliable detection of 
these extrema. This algorithm is based on the QPE algorithm, developed for batch process diagnosis 
(Villez, Submitted).  
Step 1 – Qualitative Trend Probabilities via Kernel Regression. In the first step QSE estimates the 
probabilities that the given signal has a positive or negative first derivative. This is done with a local 
polynomial fit to the data. The data is composed of the pH difference measurement as the dependent 
variable (yj, j = 1…m), and time as the independent variable (tj). By minimising the following 
weighted least squares (WLS) objective function (cf. Eq. 1), local polynomial coefficients (βi) are 
computed as follows for each sample index (i). 

The used tri-cube kernel function (Ki,j) defines the weight for each data point. The weights are 
determined by the parameter λ. Only within a distance λ to the sample of interest (i), data points 

 
 
Figure 2 Hardware setup and treatment lane scheme 
WWTP Hard, Winterthur 



contribute to the local fit. The weights decay with increasing distance from the considered time 
point (ti). The polynomial degree (p) is always larger than one. Eq. 3 shows the analytical solution 
of Eq. 1 and 2:  

with the polynomial basis matrix (Xi) and the diagonal sample weight matrix (Wi) specified a priori. 
In this context, the polynomial local fit is a linear projection and also known as kernel regression. 
Thus, theoretical point-wise covariance matrices can only be computed under the assumptions that 
measurement errors are drawn independently and identically from a Gaussian distribution (N(0,σy)): 

The point-wise distribution for the coefficient of the linear term in the polynomial is: 

The probability for an upward trend, (Pu,i, downward trend: Pd,i), results from the integration of the 
probability function from zero to positive (negative) infinity. Eq. 6 shows the formulas for the 
integration resulting in the qualitative trend probabilities (cf. Fig. 1 middle): 

 
Step 2 – Probability Integration trough Hidden Markov Model (HMM): To filter noise from the 
qualitative trend probabilities (cf. Eq. 6) one estimates discrete states with the hidden Markov 
model. These discrete states are assumed to follow a Markov process. A Markov process is 
described by calculating the likelihood for each of the process states at time (ti) restricted by the 
likelihoods of the same states at time (ti-1): 

 
In Eq. 7, the probability that the process is in state t at sample i conditional to being in state p at 
sample i-1 is expressed as Ti(t,p). This is the point, where the QSE method starts to differ from the 
known QPE approach: QPE makes use of an upper triangular matrix as the transition matrix (T). 
This means that a non-ergodic linear Markov chain is assumed. In contrast the QSE method uses a 
transition matrix with no such restrictions. In practical terms, the diagonal values of T are all set to 
one; the off-diagonal elements have the identical and time invariant value γ. 

ŝi, the maximum likelihood (ML) state estimate at time (i), is calculated as follows: 

The qualitative trend probabilities (cf. Eq. 6) contain all information about the prior states. By 
taking the qualitative trend probabilities into account, one can tracks the state estimate online. The 
resulting ML state estimates are fed into the controller logic.  



 
RESULTS 
 
Soft-Sensor Feedback Control 
The QTA is set up to distinguish ammonium load states, high and low. In case of a low load 
situation the feedback control lowers the oxygen input by passing a low oxygen setpoint to the 
corresponding slave proportional-integral control loop adjusting the airflow. A lower dissolved 
oxygen (DO) concentration slows down the nitrification process, which in turn reduces the oxygen 
requirements and eventually the aeration costs. Nevertheless, the nitrification performance is still 
sufficient to comply with effluent concentration limits. In contrast, an incoming ammonium peak 
could violate these limits and triggers the control to boost the nitrification process by increasing the 
DO setpoint. For a proper control behaviour that ensures compliance with effluent limit 
concentrations but also considerable energy and cost savings, the QTA analysis needs to be 
complemented with a number of heuristic rules. Currently, the support window (λ in Eq. 1) is kept 
rather short which allows a fast response time at the expense of a noisy state estimate signal. As a 
result, the QSE algorithm identifies some irrelevant minima and maxima, which can lead to 
unwanted disturbances. In the next paragraph all applied rules to prevent this are discussed (cf. 
Fout! Verwijzingsbron niet gevonden.).  
Three rules are set for the control state change from Eco- to Normal-mode. Rule ‘Eco to Normal 1’ 
(EN1) implies that the QTA has to detect at least one minimum, which means a HMM state change 
from the downward to an upward trend needs to be recorded. To comply with EN2, the difference 
between the lowest minimum recorded during the current Eco-mode and the current pH difference 
signal value is larger than a critical minimum threshold value Minimal Difference. EN3 expects a 
detection of a maximum, i.e. switch from HMM state upward to downward trend, after EN1 and 
EN2 are evaluated as true. These rules guarantee that the lowest ammonium concentration is 
registered (EN1), the control only considers relevant ammonium peak loads (EN2) and that the 
control only switches when the nitrification at the downstream pH sensor speeds up (EN3). The 
switch back from Normal to Eco-mode (NE) includes three rules as well. The pH difference signal 
has to fall below the threshold defined by the lowest minimum registered in the last Eco-mode and 
an additional tolerance Maximal Difference (NE1). To comply with NE2 the control needs to detect 
at least one minimum. The third rule, NE3 checks if the Normal-mode is active for a minimal time 

length. These rules 
ensure that the 
ammonium effluent 
concentration is close to 
the global minimum of 
the last Eco-mode, while 
permitting drift of the 
pH signals (NE1-NE2). 
To prevent oscillatory 
control behaviour, the 
controller can not switch 
back immediately to 
Eco-mode (NE3). 
 
 
 

Tuning of the Controller 
The control scheme exhibits three possibilities for tuning. It is important to note that tuning is partly 
challenged because of the interaction between the tuning rules, the nitrification process and the 

 
Figure 3 Demonstration of controller behaviour based on qualitative and 
quantitative rules. 
 



qualitative features (shape) of the pH difference signal. For this reason, initial tests with the control 
scheme should be tested under close supervision.  
The first parameter to tune is the support window length of the Kernel filter (λ in Eq. 1). A larger 
window includes more data points for the local polynomial fit. This means the signal is filtered 
more effectively at the cost of a delayed detection of the extrema. In our case λ corresponds to a 60 
minutes period. The parameter γ (cf. Eq.8) determines the probability of a sign change in the 
qualitative trend probabilities. The closer to zero the chosen γ is, the less the algorithm trusts the 
data-based evidence for changes in the process’ state. This will smooth the qualitative trend 
probabilities and potentially delay the detection of a change in sign. In the tested controller γ is set 
to 0.5. This choice puts equal weights on the model and the data. On a second tuning level, the 
presented rules NE1-NE3 and EN1-EN3 can be used for tuning. The quantitative nature of rules 
NE1 and EN2 make them very attractive for fine-tuning. With EN2 significant peak events can be 
distinguished from irrelevant ones. The higher the Minimal Difference value the fewer events will 
be considered as relevant by the control. In contrast, the higher the Maximal Difference (NE1) the 
sooner the controller assumes a low load situation. However, the sensitivity of both rules depends 
on the effectiveness of rules EN3 (maxima) and NE2 (minima) (cf. Fig. 3).  
The third tuning level comprises the setting of the DO setpoints for the slave controllers (see below) 
in Eco- and Normal-mode. Importantly, higher Eco-mode DO setpoints cause a lesser number of 
peak loads to be relevant for switching to Normal-mode and less energy can be saved. Furthermore, 
the difference between Eco and Normal DO setpoints should be limited. A too large difference 
between Eco- and Normal-mode setpoints will increase the response time of the aeration system. 
 
Integration into the Pre-Existing Control Scheme 
The controller has been tested successfully to detect high load and low load situations. As 
mentioned above, the controller output is either Eco- or Normal control mode (cf. Figure 1 bottom) 
with the corresponding DO setpoint. From this point, the already installed plant supervisory control 
and data acquisition (SCADA) system takes over. The DO setpoint is passed to a slave PI controller 
adjusting the airflow according to the derivation of the DO measurement and the DO setpoint value. 
Additionally, safety rules were implemented to guarantee a safe plant operation in the first 
experimental phase. In the case one of the safety rules is violated the control will pass a high DO 
setpoint to the slave controllers independent of the HMM state estimate to ensure a sufficient 
nitrification capacity at all times. An additional pH sensor at the plant inlet is used as a proxy for 
toxic, industrial wastewater, which could disturb the pH difference and hamper the sensitive 
bacterial community. Another set of rules is put in place to register conditions which correlate with 
high ammonium loads such as high hydraulic loads or sludge digestion water adding periods. In 
these cases, high load situations are detected faster by means of flow rate measurements rather than 
on the basis of the QSE algorithm. The faster high loads can be detected, the longer the acceptable 
response time can be. This allows (a) to tune the control towards longer Eco-mode periods and (b) 
to accept larger differences between Eco and Normal DO setpoints.  
 
 
EXPERIENCES AND OUTLOOK 
During the test on the full-scale WWTP Hard in Winterthur, Switzerland, the effluent concentration 
of ammonium and nitrite did not increase significantly compared to exclusive Normal-mode 
operations. Within the 200-days test period the strict concentration effluent limits were never 
exceeded. At the time of writing, the aeration energy savings are estimated to be approximately 
15%. The control scheme and software was developed and tested jointly with the WWTP 
Winterthur and Rittmeyer AG. The latter integrated the controller as a module for its WWTP 
supervision and optimisation software RITUNE®, which is commercially available (cf. 
http://www.rittmeyer.com/ritune). Further research and development activities will be directed 
towards testing and evaluation of the controller on other WWTPs. A key focus is (a) to reduce the 



implementation and fine-tuning effort, (b) visualise the algorithm and control behaviour transparent 
for the technical operator and (c) to enhance efficiency gains with algorithm and controller 
adaptations. Moreover, QTA methods are being developed to cover (a) inflection points (Villez, 
Submitted), (b) discontinuities (Villez & Habermacher, Submitted) and (c) multivariate data series.  
 
 
CONCLUSION 
A new soft-sensor for ammonium control has been developed and tested. By means of the QTA 
method, namely the qualitative state estimation (QSE) high and low ammonium loads can be 
detected by measuring pH with two sensors. The QSE method and the more reliable and 
inexpensive pH sensors make this soft-sensor robust for drift and thus maintenance friendly. Initial 
full-scale tests recorded a reduction of over 15% in aeration energy needs. In essence, this enables 
smaller WWTPs to cost-effectively minimise their energy consumption with a load dependent 
aeration control.  
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