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Abstract
Ammonium (NH4

+) load based aeration control on biological wastewater treatment plants saves

costs and enhances nitrogen removal. However, the need for maintenance intensive NH4
+ sen-

sors hamper the controls application in practice. Alternatives, in the form of soft-sensors are

broadly discussed in academia. A soft-sensor recently described in literature exploits the pH ef-

fects induced by biological NH4
+ oxidation. This concept is now further developed by means of

qualitative trend analysis (QTA). Previously, the qualitative path estimation (QPE) algorithms was

proposed as a fast and reliable QTA algorithm for batch process data analysis. It does not al-

low online application in continuous flow systems however. In this work, a modification of QPE,

call qualitative state estimation (QSE), is proposed as a suitable algorithm for continuous-flow

systems. Initial tests indicate that the QSE algorithms is a robust technique for extraction of rel-

evant information in a full-scale environment. At the WWTP Hard in Winterthur, this resulted in

cost-saving automation of the aeration system. This contribution summarizes these first results.

Keywords: ammonia control, biological wastewater treatment, hidden Markov model, kernel re-

gression, process monitoring

1. Introduction

Ammonium (NH4
+) controlled aeration is a well known and widely applied technique (Åmand

et al., 2013) for automation of biological wastewater treatment plants (WWTPs). By controlling

the ammonium concentration in the effluent, energy costs can be reduced while violation of ef-

fluent concentration limits can be avoided. Furthermore, optimization of the oxidation processes

ensures that denitrification capacity can be increased and enhanced biological phosphorus (bio-P)

removal can take place without the need to increase reactor volumes (Rieger et al., 2014). How-

ever, economical application of such ammonium control is only feasible on larger WWTPs, where

the energy and cost savings outweigh the NH4
+ sensors installation and maintenance costs (Win-

kler et al., 2004; Åmand et al., 2014). Haimi et al. (2013) present numerous studies dealing with

NH4
+ soft-sensors evading the need for a physical NH4

+ sensor. Importantly, these studies mainly

investigate black-box models, which give rise to a series of challenges for widespread full-scale ap-

plication such as the need to recalibrate the methods for each application, lack of transparency and

trust by operators, and potentially difficult implementation and fine-tuning. A soft-sensor based

on a mechanistic principle was presented by Ruano et al. (2009). This soft-sensor takes advantage

of the acidifying effect of biological NH4
+ oxidation, which is also known as nitrification. In-

stead of estimating the NH4
+ concentration, the soft-sensor monitors the net effect of nitrification

(acidifying) and CO2 stripping (proton-consuming). In locations of a WWTP where nitrification
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occurs, a net production of protons is typical and causes the pH to drop. Where nitrification is not

occurring, a net increase of the pH results due to CO2 stripping. Ruano et al. (2012) manipulated

the aeration intensity in an activated sludge system to keep the difference between two pH mea-

surements located at the in- and outlet of an aerated tank sequence at a given setpoint. Practically,

the pH difference is as a proxy for the balance between proton production due to nitrification and

the proton consumption from CO2 stripping. The combined effects of hydraulic transport, mixing

conditions, oxidation, and stripping contribute to a complex relationship between the ammonia

concentration and the pH. This relationship can however be understood qualitatively most of the

time so that this concept is relatively easy to use for a diverse set of WWTP configuration. Under

steady-state conditions, a certain pH difference corresponds to a certain NH4
+ effluent concentra-

tion. Unfortunately, using a fixed pH difference as a control setpoint assumes perfect pH sensors.

In practice, significant signal drift occurs, which can only be kept in check by a prohibitively high

maintenance effort. This eliminates the advantage of pH sensors over conventional NH4
+ sensors

for ammonium control. We however claim that the pH difference signal can also be used in a less

stringent fashion so that monitoring the pH difference remains useful in practice. Fig. 1 shows the

recorded pH difference (top) and the measured NH4
+ concentration measured (bottom) from the

setup at the Winterthur WWTP as described in section Hardware Setup. The qualitative similarity

between these two signals is obvious as the maxima in both signals are remarkably synchronous.

Consequently, we present in this paper a qualitative trend analysis (QTA) method to use this qual-

itative similarities for an NH4
+ load dependent aeration control. This QTA based method is used

to detect peak NH4
+ loads entering the WWTP. This detection allows to adjust the setpoints for

the dissolved oxygen (DO) concentration accordingly and thereby optimise the aeration energy

costs of the plant. The QTA method used here is referred to as Qualitative State Estimation (QSE)

and is based on the earlier Qualitative Path Estimation (QPE) algorithm Villez (2015). The main

differences are (i) that the Hidden Markov Model (HMM) now represents an ergodic process, as

opposed to the linear Markov chain for the QPE algorithm and (ii) that the state estimation method

is different from the Viterbi algorithm used for QPE.
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Figure 1: Demonstration of the QSE algorithm: Top – pH difference raw/filtered; Middle – Qual-

itative trend probabilities; Bottom – Control state and NH4
+ measurements.

2532



Evaluation of Qualitative Trend Analysis as a Tool for Automation

2. Methods

2.1. Hardware Setup

WWTP

pH us pH ds
NH4

Figure 2: Location of pH sensors (pH us and pH

ds) and ammonium sensor (NH4).

The studied municipal WWTP Hard, Win-

terthur, Switzerland exhibits one stirred and

three aerated activated sludge tanks for oxida-

tion of organic compounds as well as NH4
+

(cfr. Fig. 2). These are located between

the primary clarifier and the secondary clari-

fier. The signal used in the proposed control

system, consists of the difference between a

pH measurement in the first aerated tank (up-

stream, us) and the last aerated tank (down-

stream, ds). An ion selective electrode (ISE)

measuring the NH4
+ concentration is placed in

the second aeration tank in order to validate

and fine-tune the pH difference based control loop.

2.2. Qualitative Trend Analysis

As mentioned above, QTA comprises a set of algorithms for segmentation of time series. Each

segment, referred to as an episode, is defined by a start and end time. Within these time points,

the sign of one or more of the signal’s derivatives is considered constant. In this application only

the sign of the first derivative is considered as this is sufficient to define the qualitative features

of interest, namely the minima and maxima. A specialised algorithm, called qualitative state

estimation (QSE), is developed to enable fast and reliable identification of these extrema. It is

based on the QPE algorithm, which was found to be fast and reliable for batch process diagnosis

(Villez, 2015). The QSE algorithm consists of two steps.

Step 1 – Qualitative trend probabilities via kernel regression: First, the algorithm estimates the

likelihood that the analysed signal is decreasing or increasing at given time points. This assessment

is based on local polynomial fit to the data, which consist of pairs of an independent variable,

t j ( j = 1...m), which is time in our case, and the dependent variable measurement, y j, which is a

pH difference signal in this study. The polynomial coefficients, βi, are computed for sample index

i by minimising the following weighted least squares (WLS) objective function:

min
βi

m

∑
j=1

Ki, j · (y j −xT
j ·βi)

2 (1)

with x j =

⎡
⎢⎢⎢⎣

(t− t j)
0

(t− t j)
1

...

(t− t j)
p

⎤
⎥⎥⎥⎦ , di, j =

|ti−t j|
λ , Ki, j =

{
(1−d3

i, j)
3, if d ≤ 1

0, otherwise
(2)

The polynomial degree p is 2 or higher. Furthermore, the tri-cube kernel function is used to

determine the weighting of the data points. The weights, Ki, j, are completely specified by a meta-

parameter λ . Only data points within the distance of λ to the sample of interest i have a weight

larger than zero and contribute to the local model. The data weights decrease as the distance from

the considered sample, i, increases. Eq. 1 can be solved analytically as follows:
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βi = Hi ·y
Hi = (XT

i ·Wi ·Xi)
−1 ·XT

i ·Wi

Xi =
[
(t− ti)0 (t− ti)1 · · · (t− ti)p

] Wi
m×m

=

⎡
⎢⎢⎢⎢⎢⎢⎣

Ki,1 · · · 0 · · · 0
...

. . .
...

...

0 Ki, j 0
...

...
. . .

...

0 · · · 0 · · · Ki,m

⎤
⎥⎥⎥⎥⎥⎥⎦

(3)

The matrix Xi is a polynomial basis matrix whereas Wi is a diagonal sample weight matrix. The

polynomial fitting problem is also known as kernel regression and is equivalent to a linear pro-

jection. Theoretical point-wise covariance matrices can thus be computed when the measure-

ment errors are assumed to be drawn independently and identically from a Gaussian distribution

(N(0;σy)):

Σβi = Hi ·σy · In ·HT
i (4)

The point-wise distribution for the coefficient of the linear term in the polynomial is then:

β1,i ∼ N(β1,i(2),Σβi(2,2)) = N(μ1,i,σ1,i) (5)

By integration of the probability mass under this density curve over the positive (negative) section

of the real axis, one obtains the probability for a upward trend, Pu,i (downward trend, Pd,i). More

specifically, one computes these qualitative trend probabilities as (Fig. 1 middle):

Py,i(1) = Pu,i =
∫ +∞

u=0

1

σ1,i
√

2π
· exp

(
− (u−μ1,i)

2

2 ·σ2
1,i

du

)
Py,i(2) = Pd,i = (1−Pu,i) (6)

Step 2 – Probability integration by means of a Hidden Markov Model (HMM): Discrete state

estimation by means of a Hidden Markov Model is used as a filtering step to remove noisy features

in the qualitative trend probabilities for the derivative signs as computed in the first step of the

QSE algorithm. To this end, the monitored discrete state process is assumed to be represented by a

Markov process. Mathematically, a Markov process is described by expressing the likelihood for

each of the process states at time i conditionally to the likelihoods of the same states at time i−1:

Λ(s(i) = t | i−1) =
q

∑
p=1

Ti(t, p) ·Λ(s(i−1) = p | i−1) (7)

The likelihoods, Ti(t, p), express the chance that the process state will be the target state t at time

i conditional to the process being in the state p at time i− 1. Whereas the QPE method makes

use of an upper triangular matrix, T, implying a non-ergodic Markov process, the QSE method

proposed here poses no such restrictions. In addition, all transition likelihoods on the diagonal are

set to one (1) and the off-diagonal elements are set to an identical and time-invariant value (γ):

Ti(p, t) =

{
1, p = t
γi(t, p) = γ, otherwise

(8)

The maximum likelihood (ML) state estimate at time i, ŝi, is now given as:

ŝ = argmax
t

Ps=t(i|i) with Ps=t(i|i) = Py,i(t) ·∑
p

Ti(t, p) ·Ps=t(i−1|i−1) (9)

By means of the above recursive equations, one tracks the most likely state at a given time condi-

tional to the evidence gathered until that time and represented by the qualitative trend probabilities

computed by Eq. 6. It is this series of ML state estimates that are fed into the controller logic.
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3. Results

3.1. Feedback Control Based on QTA

Table 1: Control states and qualitative process properties.

Control Ammonium Oxygen pH
Mode Load Setpoint Difference
Eco Low Low Low

Normal High High High

The proposed feedback control based

on the QTA is a bang-bang con-

troller. In low load situations

(a.k.a. Eco-mode) the dissolved

oxygen (DO) concentration is low-

ered in all tanks by reducing the

DO setpoint for the corresponding

slave proportional-integral (PI) con-

trol loops. This slows the nitrification process down, which in turn reduces the oxygen demand

and thus the aeration energy and costs. When facing a NH4
+ peak load (a.k.a. Normal-mode),

one increases the DO setpoint to speed up the nitrification process so that a violation of the ef-

fluent concentration limits is prevented. Proper recognition of peak and normal loads is critical

to maintain environmentally safe operation limits while minimising operational costs associated

with aeration. QTA is deployed to detect the two modes (Eco and Normal) online (see Table 1). A

small width for the support window (λ (cfr. Eq. 1) allows a short response time. However, small

oscillations lead to the identification of irrelevant minima and maxima. The HMM-based method

was therefore complemented with a number of heuristic quantitative rules, which enable the sepa-

ration between these small oscillations, which are unrelated to changes in the NH4
+ concentration,

and large trends, which correlated to significant dynamics of the NH4
+ concentration. Firstly, the

recognition of the switch from Eco- to Normal-mode incorporates three rules, which are: EN1 –

At least one minimum, i.e. switch of the HMM state estimate from the downward to upward state,

needs to be registered in Eco-mode; EN2 – The difference between the current pH difference signal

value and the lowest minimum registered in the Eco-mode is larger than a critical minimum level,

called the Minimal Difference; and EN3 – A maximum, i.e. switch of the HMM state estimate

from the upward to downward state, needs to occur after both EN1 and EN2 are evaluated as true.

These rules ensure (i) that the minimum NH4
+ concentration as occurring during the Eco-mode

is recognised properly and (ii) a recognised maximum truly corresponds to an NH4
+ peak load.

To switch back from Normal- to Eco-mode, the following heuristic rules are applied: NE1 – The

pH difference signal has to drop below the level defined by the minimum pH difference signal

registered in the last Eco-mode plus a tolerance, called Maximal Difference. This rule ensures

that the nitrification activity is at a similar (low) activity as recorded before; NE2 – At least one

minimum needs to occur after NE1 is evaluated as true. NE3 – The Normal-mode needs to be

active for a minimal time period. These rules ensure that nitrification activity is always brought to

its minimum thereby allowing for proper registration of the minimum NH4
+ concentration. These

rules govern the bang-bang controller, which switches between the Eco-mode, corresponding to

low NH4
+ loads, and the Normal-mode, which corresponds to high NH4

+ loads.

3.2. Integration into the pre-existing control scheme.

The QTA based bang-bang controller only determines if the plant faces a high (Normal-mode) or

low (Eco-mode) NH4
+ load situation. In the Normal-mode, a high DO setpoint is set for the slave

PI controllers regulating the DO concentrations. In Eco-mode, a low DO setpoint is implemented.

Because the slave controllers and the aeration system exhibit their own response times, a number

of safety rules are implemented to ensure the QTA-based bang-bang controller output is handled

well and only when appropriate. One additional rule checks if the plant is facing a high hydraulic

load. Detection of peak hydraulic loads are detected faster by means of flow measurements at the

inlet of the WWTP and induce a switch to the Normal-mode without further delay. Similarly, a pH

sensor at the inlet of the plant can be used as a proxy for toxic, industrial wastewater. By switching

to the Normal-mode maximum survival of the sensitive bacterial community is then ensured.
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3.3. Experiences and Outlook

The proposed bang-bang controller has been tested on the full-scale WWTP Hard in Winterthur.

During this time, the effluent concentration of NH4
+ did not increase significantly compared to

exclusive operation in Normal-mode and remained below the legal limit. Current estimates of the

aeration energy savings amount to 15%. Early development and testing was executed jointly

with Rittmeyer AG, which has developed a commercially viable version as a module in the

RITUNE R© software for WWTP supervision and optimisation. Further work is focused on testing

and evaluation of the QTA-based controller for other WWTPs. Special attention will be given to

(i) the ease of implementation and fine-tuning and (ii) transparency of the controller to technical

operators. QTA methods are being developed to handle (i) inflection points, (ii) discontinuities

(Villez and Habermacher, 2015), as well as (iii) multivariate data series.

4. Conclusion

A new method for qualitative trend analysis (QTA) has been developed and tested as part of an

advanced control strategy for NH4
+ removal in biological WWTPs. By means of the QTA method,

called qualitative state estimation (QSE), one can differentiate between high and low NH4
+ load

situations on the basis of cheap and reliable pH sensor signals only. Initial tests with this controller

delivered reduction in aeration energy requirements of over 10%. As such, the proposed method

holds great promise as a robust approach to minimise energy costs in small biological WWTPs.
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