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Abstract
A previously developed technique for qualitative trend analysis (QTA) based on shape constrained

splines (SCS) has been favourably compared to pre-existing techniques for the purpose of batch

process diagnosis. Thanks to the branch-and-bound algorithm, this approach leads to a determin-

istic and global solution for QTA. One limitation of this method is that local discontinuities in

otherwise continuous derivatives of the fitted spline function are not permitted. Recent work how-

ever allows to relax the optimization problem further so that provable bounds can be computed

for this more complicated case. In this contribution, the resulting shape constrained splines with

discontinuities (SCSD) method is applied for anomaly detection in batch process data. Impor-

tantly, the QTA approach to anomaly detection proves worthwhile because (i) tuning of the SCSD

method is limited to setting an upper control limit, (ii) the resulting sum of squared errors statis-

tic shows almost no drift for SCSD in contrast to the similar Q-statistic computed by principal

component analysis (PCA), and (iii) true positive rates by means of SCSD are over 80% while the

PCA method delivers at most 70% for false positive rates up to 5% based on a data set consisting

of 410 batches.

Keywords: Anomaly detection, Fault diagnosis, Batch process monitoring, Statistical process

control, Qualitative trend analysis

1. Introduction

Qualitative trend analysis (QTA) consists of a rather wide set of techniques for segmentation of

data series. Such segmentation is popularly used for fault diagnosis applications. For such ap-

plications, QTA offers the possibility of an intuitive fault diagnosis mechanism. Its advantages

include (i) that coarse-grained information about the faults symptomatic effects on measured data

is sufficient to characterize and recognize a fault, (ii) that the required coarse-grained information

corresponds to intuitive notions by human plant operators, and (iii) that consequently sparse oc-

currence of faults can effectively be dealt with. Despite these advantages, available techniques are

often based on heuristic rules or greedy optimization schemes tuned for a particular application

only. The lack of theoretical optimality makes it challenging to transfer such techniques from

their original application context as was observed in Villez et al. (2012). This motivated the con-

ception of a globally optimal approach to QTA based on shape constrained splines (SCS, Villez

et al., 2013). This SCS method is limited in a number of ways. One important limitation is that

any derivative of a degree smaller than or equal to o− 2, in which o is the order of the spline

function (for cubic splines: o = 4), must be continuous over the whole function domain. Indeed,

knots with multiplicity are not permitted. This is critical for QTA purposes as this means that

certain shape constraints are not permitted. For example, one cannot fit a spline function which
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is characterized by a segment which is decreasing (negative 1st derivative) and concave (negative

2nd derivative) followed by a segment which is increasing (positive 1st derivative) and concave

(negative 2nd derivative). Practically, this is solved by adding a knot of multiplicity o−1 when the

exact location where the segments meet, a.k.a. transition, is known. This is however not the case

in general. Unfortunately, the SCS method does not permit optimizing transitions which imply

a discontinuity in one or more derivatives which are otherwise continuous. This paper discusses

results obtained with a modified version of the SCS method which accounts for shape-implied

discontinuities. The method is therefore further referred to as the shape constrained splines with

discontinuities (SCSD) method. Similar to the SCS method, it is based on a combination of second

order cone programming (SOCP) and the branch-and-bound algorithm. This algorithm enables the

identification of all transitions. The method is successfully demonstrated by means of oxidation-

reduction potential (ORP, redox) measurements obtained from a laboratory scale sequencing batch

process for wastewater treatment.

2. Methods
2.1. Case study

The data used in this study stems from an experimental side-stream reactor (SSR) setup operated

at Eawag for a period of two years by the second author of this contribution. This SSR setup

consists of two connected tanks in which the first tank is a sequencing batch reactor (SBR). The

second tank is the so called SSR and is operated as a continuously stirred tank reactor for sludge

digestion. The SBR is operated with a fixed recipe which lasts 6 hours. Each SBR cycle starts with

pumping of sludge from the SSR to the SBR (7 min.) followed by addition of fresh wastewater

(10 min.) under anoxic conditions. A reaction phase follows in which air is supplied to provide

aerobic conditions in the SBR (285 min.). The SBR cycle ends with excess sludge withdrawal,

settling, and decanting (58 min.). Each new cycle starts right after decanting.
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Figure 1: Exemplary time series corresponding

to normal operation.

The SBR is equipped with an oxidation-

reduction potential (ORP) sensor, amongst

others. A typical profile of the first 513 data

points (85.33 min.) is shown in Fig. 1 (top

panel). The first phase corresponds to an al-

most linear decreasing trend, followed by a

convex decreasing trend in the second phase.

In the third phase, the trend roughly corre-

sponds to a concave increasing trend. The

ORP time series consisting of the first 513 data

points of 410 consecutive cycles are studied in

this work. The selected batch cycles represent

a period of 3.5 months in which no changes

were made to the SBR recipe, the installed

sensors (e.g., no replacements), or the data ac-

quisition and control system. Each of these

time series were inspected visually by two op-

erators which are familiar with the experimen-

tal setup and the use of ORP sensors, including the second author of this paper. These operators

addressed the question whether the observed time series can be explained by normal circumstances
alone by means of a simple yes or no. To this end, the time series were visually represented to

these operators on separate occasions and in a randomized order. Following this initial classifica-

tion of the ORP time series as normal or anomalous, batches for which the classification by the two

operators was different were visualized again with both operators present so to find a consensus

classification result. For 16 cycles out of 410, no consensus could be reached. Only the time series
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for which consensus was reached (394 batch cycles) are considered in the remainder of this study.

The consensus classification is used as the ground truth or true class for each analysed time series.

2.2. Qualitative trend analysis (QTA): Definitions
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Figure 2: Primitives and as-

sociated characters.

The identification of so called qualitative representations (QRs)

is the primary goal of QTA. Such QRs are defined as a sequence

of episodes. Each of these episodes is completely characterized

by means of (i) a start time, (ii) an end time, and (iii) a primitive.

Such a primitive corresponds a unique combination for the signs

of the measured variable and/or one or more of its derivatives with

respect to time. A primitive is usually represented by means of a

unique character, which can however be chosen arbitrarily. Fig. 2

shows the primitives and characters used in this study. Only the

signs of the first and second derivatives are considered relevant.

The episodes within a QR are contiguous, meaning that the end

time of one episode is the start time of the next episode. The loca-

tions (in time) where two episodes meet are known as transitions.

A sequence of primitives without specification of the transitions is

known as a qualitative sequence (QS). Conform these definitions,

the QS for a typical profile of ORP measurements as in Fig. 1 reads as EAC. The SCSD method

explained in the next paragraphs allows to identify the values for the corresponding transitions.

2.3. Shape constrained splines (SCS)

Table 1: Definitions of variables

and parameters for SCSD.

Symbol Definition

β Function parameters

θ Transitions

Ω(θ) Feasible set for β
Θ Feasible set for θ
x Argument vector

y Measurement vector

J Objective function

In essence, the fitting of a shape constrained spline function

can be written as the following mathematical problem:

min
β ,θ

J(β ,θ) = J(β ,θ ,x,y) (1)

subject to:

β ∈ Ω(θ) (2)

θ ∈ Θ (3)

with definitions given in Table 1. The spline function is de-

fined by a number, m, of parameters represented by the vec-

tor β . In Villez et al. (2013), the parameters are the spline

coefficients. Given a QR defining the shape constraints, the

feasible set for these coefficients, Ω(θ), is a convex subset of

the real space (Ω(θ)⊆R). This set depends on the values for

the transitions, θ . In the context given by Villez et al. (2013)

and this study, optimal values for θ are found by means of

the branch-and-bound algorithm. Proofs for the applied bounds were given in Villez et al. (2013).

The existing proofs are limited however in the sense that the bounding procedures only apply to

spline functions without knot multiplicity and any associated discontinuities of the derivatives in

such knots. This limitation is removed in the next paragraphs.

2.4. Shape constrained splines with discontinuities (SCSD)

To enable application of the branch-and-bound algorithm when discontinuities are implied by the

imposed QS, the fitted function is now redefined by representing the spline function explicitly

as a contiguous set of piece-wise polynomials. Once more, the problem is convex as long as θ
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is given. To solve the non-linear search for θ the branch-and-bound algorithm can be applied

again. The upper bound procedure is practically the same as in Villez et al. (2013). The lower

bound procedure is fairly different however. In Villez et al. (2013) it was sufficient to implement

only those constraints on β which are guaranteed to be included for any candidate solution for

θ within a given solution set. In this case, one further needs to modify the objective function as

well as set of implemented continuity constraints. The details of the lower and upper bounding

procedures are given in Villez (2014). Apart from the modified bounding procedures, the branch-

and-bound algorithm is applied exactly as in Villez et al. (2013). The branch-and-bound algorithm

was solved until a resolution of 1 sampling interval (10 seconds) was reached for the location of

the transitions. The fitted function is a natural cubic spline function (o = 4) with fixed spline knots

placed at each sampling time. The resulting function is an interpolating spline function when no

shape constraints are applied. As a result, any deviation of the SSE from zero is only due to a

mismatch between the measured time series and the imposed shape (EAC).

2.5. Shape constrained function fitting as a method for process monitoring

To test the shape constrained splines methodology for process monitoring, the following strategy

is applied. One optimizes the values for β and θ so to minimize the objective function value J.

Importantly, there is no calibration phase for the SCSD method as long as the expected shape is

known. In this study, this objective function is the sum of squared errors (SSE). In general, the

optimized SSE, further referred to as SSESCS, will be high when the profile of the analysed data

series does not correspond well to the imposed shape on the fitted function. As such, this SSE

can be used as a lack-of-fit statistic to detect deviations from the expected shape. To this end, one

defines a fixed upper limit, USCS, a priori and one classifies a data series as anomalous (normal)

when the obtained SSE is higher (lower) than this limit. There are no theoretical distributions

available for the SSESCS statistic. As such, an empirical evaluation is obtained by evaluating the

false positive rate (FPR, fraction of normal cycles which are erroneously classified as anomalous)

as well as the true positive rate (TPR, fraction of abnormal cycles which are correctly classified

as anomalous) by varying the value for USCS between the lowest and highest value for SSESCS
obtained. To this end, the ground truth classification as described above is used as a reference.

This leads to the so called receiver operating characteristic (ROC, Fawcett, 2006).

2.6. Principal component analysis (PCA)

Principal component analysis (PCA) is by far the most commonly used method for process mon-

itoring in a multivariate context. PCA is of use primarily when significantly large data sets are

available and first principles modelling is impossible or cost-prohibitive. The successful applica-

tion of classical PCA depends on a number of factors such as (i) whether relationships between

measured variables are linear and time-invariant, and (ii) whether sufficient and representative data

is available for PCA modelling of the normal process data variation. Despite these restrictive statis-

tical requirements, PCA has been applied successfully to many processes. In this study, the batch

process data is organized in a matrix with rows corresponding individual batches and columns to

individual time instants in each of the analysed batches. A PCA model is then fitted to a subset

of the data by (i) selecting a number of rows corresponding to normal process conditions, (ii)
subtracting the column-wise mean, and (iii) computing a number of principal component loadings

and associated scores by means of singular value decomposition. In this study, a simple scree plot

is used as the device to select the number of principal components (PCs). Once the PCA model is

identified, one projects the data not used for calibration and evaluation the so called reconstruction

errors or residuals. Following this step, one computes the corresponding SSE, SSEPCA, which is

also known as the Squared Prediction Error (SPE, Kresta et al., 1991) and as the Q statistic (Jack-

son and Mudholkar, 1979). Theoretical and/or empirical confidence limits can be computed for

this statistic (Jackson and Mudholkar, 1979). In this study, the ROC is computed as is done for the

SCSD method to enable an effective comparison.
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3. Results
3.1. Example

Fig. 1 displays the exemplary oxidation-reduction potential (ORP) time series, the optimized shape

constrained spline function with EAC shape, and the 1st derivative of this fitted function. Finding

the optimal transitions required 34 branching steps in the branch-and-bound algorithm which is

equivalent to solving 69 SOCPs. This took 1.2 minutes on a dedicated desktop machine (Intel�

CoreTM i7-4770 CPU, 3.40 GHz, 16.0 GB RAM). The optimized SSESCS is equal to 332.

3.2. Benchmarking

All batch time series were analysed with the SCSD method on a dedicated desktop machine (as

above). Computing the optimal transitions took less than 20 minutes in all cases. The PCA model

was identified by means of the first 100 normal batch cycles and included two principal compo-

nents which capture 86.9% and 9.6% of the variability (total: 96.5%). The statistics obtained with

SCSD and PCA are shown in Fig. 3 as a function of batch index. The SSESCS is relatively stable

with a number of outlying values sparsely present during the covered time span. In contrast, the

SSEPCA shows more variation and is generally higher. This is believed to be a result of non-linear

parametric changes of the ORP profiles which are hard to capture by a linear PCA model. The

SCSD method is robust to these variations because of a greater parametric flexibility of the spline

function compared to PCA. In the top panel, an upper detection limit, USCS, is set at 610.33 which

is the lowest value for which no false alarms (no false positives) result. Similarly, in the bottom

panel, the upper detection limit, UPCA, is set at 37659. With SCSD 38 of the 46 abnormal time

series have an SSESCS which is higher than the set limit (TPR: 83%). With PCA only 30 positive

detections result (TPR: 65%). Closer inspection reveals that 29 cycles are identified as abnormal

by both methods. The SCSD method correctly flags 8 batch cycles as anomalous which are not

detected by PCA. One batch cycle not identified with SCSD is identified as anomalous by PCA.
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Figure 3: Sum of squared errors (SSE) statistics obtained with SCSD (top) and PCA (bottom).
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Figure 4: Receiver operating characteristics

(ROC) showing the true positive rate (TPR) as

a function of the false positive rate (FPR).

Decreasing values of the upper limits for the

SSR statistics increase both the FPR and the

TPR. For example, at an FPR of 5% the TPR

for SCSD is 85% while the TPR for PCA is

70%. The complete receiver operating charac-

teristics (ROCs) are shown in Fig. 4. One can

observe that the SCSD method performs better

for FPRs up to 69%. PCA dominates only for

FPRs ranging from 88% to 93%. In other sec-

tions of the curve, the methods are performing

equally. In the present application as well as

for most anomaly detection schemes, normal

operating conditions are more frequent than

anomalous conditions. It is thus reasonable to

give larger weight to a low FPR than a high

TPR. Selecting FPRs lower or equal than 5%

is common. At such rates, the SCSD method

clearly outperforms PCA-based detection.

4. Conclusion

With this contribution, an extended version of the shape constrained spline (SCS) method for qual-

itative trend analysis (QTA) has been tested for batch process monitoring. The proposed extension

allows to optimize the location of abrupt changes (discontinuities) in one or more derivatives of

measured variable trends. Importantly, the identification of shape constrained splines with dis-

continuities (SCSD) is based on the optimization of the sum of squared errors which is has been

successfully used as a lack-of-fit statistic for anomaly detection. A preliminary comparison with

principal component analysis underscores the value of a qualitative approach to fault detection.
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