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Summary of key findings 

A new method for fault detection in biological sequencing batch reactors is developed on the basis of 
shape constrained spline function fitting. The proposed method is based on the optimal fitting of a 
shape constrained spline function in the presence of discontinuities of its derivatives. The method is 
favorably compared to a conventional use of principal component analysis (PCA) thanks to (i) its 
intuitive interpretation and (ii) an improved fault detection performance. 

Background and relevance 

Effective fault detection in wastewater treatment systems remains an elusive goal today due to many 
factors complicating its execution. These include the fact that (i) involved processes are poorly 
understood, (ii) biological process are subject to stochastic variations which are hard to account for, 
and (iii) representative data of confirmed fault events are hard to come by. Faced with these 
challenges, many researchers have chosen statistical models, such as Principal Component Analysis 
(Rosén & Lennox, 2001) and derivative forms (Aguado et al., 2007; Villez et al., 2008). While often 
successful, application of such models requires frequent updating to account for process changes. This 
is difficult in practice because of lack of training in statistical modelling or associated time 
requirements. In addition, conventional statistical models are hard to interpret. Therefore, there is a 
need for fault detection methods which deliver high chances of fault detection while remaining 
straightforward to interpret.  

The proposed method is an extension of the shape 
constrained splines (SCS) method for qualitative trend 
analysis developed in Villez et al. (2013) for batch fault 
diagnosis. Basically, a spline function is optimized in the 
least-squares sense while satisfying a given shape for this 
function. This shape is defined as a sequence of episodes 
which are characterized by combinations for the signs of 
the first and second derivatives (Figure 1). A 
deterministic optimization algorithm is given in Villez et 
al. (2013). This algorithm exhibits a number of 
limitations. One of those limitations is that the fitted 
spline function cannot be discontinuous in the derivatives 
considered for the definition of shapes. Practically, this 
means that the permitted shapes are restricted. The SCS 
method was therefore extended to permit such 
discontinuities while retaining the global deterministic 
optimality of the optimization algorithm (Villez, 2014). 

Results and discussion 

Figure 2 shows a typical time series for the oxidation-reduction potential in the main line sequencing 
batch reactor (SBR) of an experimental side-stream reactor setup at Eawag. The first 513 data points 
are shown which correspond to the first 85 minutes of the 6-hour batch cycle. It is relatively easy to 
see that this time series exhibits a shape which can roughly be characterized by three consecutive 
episodes with (i) a decreasing linear trend (E), (ii) a decreasing convex trend (A), and (iii) an 
increasing concave trend (C). These episodes correspond to the following first three operational stages 
of this batch process’ recipe: (i) pumping of sludge between the SSR and the SBR (7 min.), (ii) 

Figure 1. Overview of commonly applied 
primitives and associated characters. 
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addition of fresh wastewater (10 min.) under anoxic conditions, and (iii) aerobic conditions in the SBR 
(total: 285 min.). The EAC shape as recognized by the human eye is considered the default shape 
corresponding to normal operation of the SBR. Both the EA and AC transitions exhibit a discontinuity 
in the first and second derivative which is why the new SCS method is necessary. 

The SCS consists of fitting a spline function 
constrained to exhibit the EAC shape. The 
locations in time where the shape changes from 
the E to A, and A to C primitives are considered 
unknown a priori and are estimated. In Figure 2, 
the fitted function with EAC shape is shown 
together with the residuals. It is easy to verify 
that the shape corresponds well to the imposed 
EAC shape. The function is an interpolating 
natural cubic spline function. This means that in 
the absence of any shape constraints, the function 
would fit the data perfectly. Any deviation 
between the measurements and the fitted function 
is thus due to a mismatch between the imposed 
shape and the data. This property is exploited for 
fault detection by computing the sum of squared 
residuals (SSRSCS), which is the sum of squared 
deviations between the measurements and the 
fitted function. The higher it is, the less likely the 
measured data series matches the imposed shape. 

To evaluate the potential of the SCS method for fault detection, all data series corresponding to 410 
batch cycles were interpreted by two operators of the experimental plant by answering the question 
“whether the observed time series can be explained by normal circumstances alone” by means of a 
simple yes or no. These 410 time series were collected with the same SBR recipe and settings for the 
bang-bang aeration controller. For 16 cycles out of 410, no consensus could be reached between the 
two operators. The remaining 394 time series are included for further study. The SCS method is 
applied to these cycles. In parallel, a PCA model was calibrated with the first 100 time series which 
were assessed to be normal by both operators. The calibrated PCA model consists of 2 principal 
components which capture 86.9% and 9.6% of the variance of the calibration data (total: 96.5%). To 
use the PCA model for fault detection, the sum of squared residuals (SSRPCA) is computed as the sum 
of squared deviations between the measured data and their reconstructions on the basis of the 
calibrated PCA model (Jackson & Mudholkar, 1979; Kresta et al., 1991). 

The resulting statistics (SSRSCS and SSRPCA) are shown in Figure 3. In this plot, the fault detection 
limit is set at the highest value for the statistics obtained for a normal cycle. This reveals a number of 
interesting results. First of all, the SCS method leads to detection of 39 anomalous cycles and the PCA 
method leads to detection of 30 anomalous cycles, out of 46 abnormal cycles in total. Twenty-nine 
(29) of the 46 cycles are detected by both methods. The improved result by the SCS method can in 
part be explained by the fact that the SSRSCS computed for normal cycles is subject to rather small 
variations over time in comparison to the SSRPCA statistic. The SCS method thus seems more robust to 
process variations in time compared to the PCA method. 

Initial results obtained with an extended method for shape constrained spline show that (i) fitting of 
shape constrained splines with discontinuous behavior is possible and (ii) the use of shape constrained 
spline fitting is promising for the monitoring of biological sequencing batch reactors. Particular 
advantages of the SCS method include (i) an intuitive interpretation of the resulting statistic as a 
measure of divergence from normalcy and (ii) the apparent robustness of the method against 
parametric process changes. Continued work is aimed at the evaluation whether the same benefits can 
be maintained when considering (i) the use of the methods under slightly different operational 
schemes (e.g., change of aeration control settings) and (ii) in different reactor setups (e.g., differences 
in process history and microbial culture). 

Figure 2: Exemplary time series corresponding to 
normal operation. Top: raw data and fitted function. 

Dashed lines indicate changes between the EAC 
primitives. Bottom: Residuals between the 

measurements and the fitted function. 



 
Figure 3: Sum of squared residuals (SSR) obtained with SCS (top) and PCA (bottom). 
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