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Summary of key findings 

In this work, a deterministic global optimization approach to the selection of sampling locations and 
measurement types is tested on a small textbook example of a wastewater treatment plant (WWTP). 
This selection is aimed at the simultaneous optimization of (i) the number of selected measurements, 
(ii) the number of variables that can be estimated on the basis of these measurements (observability), 
and (iii) the fraction of selected measurements which are redundant. This approach allows to set up a 
measurement campaign or a sensor network before sampling, sensor installation, or data collection is 
started. Current results, while preliminary, suggest that this is possible thanks to graph-theory based 
algorithms for observability and redundancy evaluation and deterministic optimization schemes. 
Background and relevance 

Obtaining high quality data in environmental engineering systems is a challenging task. Thus far, 
many studies have focused on the evaluation of data quality a posteriori, i.e., after the data has been 
collected. This can be based on mechanistic models, such as mass balancing equations (e.g., Spindler 
& Vanrolleghem, 2012; Villez et al., 2013a) and dynamic models (Villez et al., 2011), or empirical 
data models. However, the success of these methods in detecting and identifying faulty measurements 
heavily relies on the availability of redundancy relationships between the measured variables. In 
practice, little is done to ensure the presence of such redundancy prior to data collection. However, the 
selection of measured variables and their sampling location can substantially affect the potential for 
automated fault detection and identification. For this reason, this study focuses on the optimal 
selection of measured variables and their sampling location in a WWTP. To this day, limited research 
has been conducted to evaluate how this can be executed best. In this work, it is explored how one can 
exploit mass balancing equations and deterministic optimization schemes to simultaneously minimize 
the number of taken measurements, maximize the number of variables (flow rates and concentrations) 
that can be estimated (observability) and maximize the fraction of chosen measurement locations 
which are redundant and for which faults are detectable on the basis of mass balances (redundancy). 
Results and discussion 

Methods. The above described problem is a multi-objective problem which is solved by means of 
deterministic global optimization. In particular, current results have been obtained with a branch-and-
bound algorithm (Nemhauser & Wolsey, 1988) for multi-objective optimization (Ehrgott & 
Gandibleux, 2002). The considered criteria are explicitly described as follows: 

1. Minimize the number of measurements, zC.

2. Minimize the number of structurally unobservable variables (flow rates, concentrations), zO, with
the following definition: A variable is considered structurally observable when (i) a direct
measurement is available as a value for the considered variable or (ii) other measurements are
available which, in combination with a mathematical representation of the measured process or
system, permit computation of a unique value (estimate) for the considered variable.

3. Minimize the fraction of measurements which are structurally non-redundant, zR, in the following
sense: A measurement is considered structurally redundant if the measured variable remains
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observable when the considered measurement is 
removed from the set of available measurements. 
Evaluation of structural observability and redundancy 
for a given set of mass balancing equations and set of 
measurement locations is a challenge of its own (e.g., 
Ponzoni, et al., 1999). In this work, the algorithms of 
Kretsovalis & Mah (1988a, 1998b) have been applied 
to execute this task (Villez et al., 2013b). These 
algorithms are based on a topological graph 
representation of the network of unit processes and are 
applicable to any biological or chemical plant, 
including WWTPs. 

Case study: A textbook wastewater treatment plant. A 
simple WWTP configuration has been selected for 
software development and demonstration purposes. 
This plant configuration consists of seven (7) streams 
connecting four (4) junctions as depicted in Fig. 1. It 
contains a single bioreactor, a settler, and one recycle 
stream. The considered variables are the flow rates and 
Total Suspended Solids (TSS) measurements. In this 
preliminary study, the plant is considered to be in 
steady state. In particular, the net effect of TSS 

production, TSS degradation, and TSS storage is zero in all plant locations. Practically, this means 
reactions with TSS and storage of the TSS component can be ignored for sensor layout evaluation and 
optimization. Each stream is considered to consist of two fractions, the TSS fraction and the remainder 
fraction. The remainder fraction represents all other components of the streams, including water, 
which are not measured or considered of particular interest for estimation. 

Optimization results. The possibility to individually decide to install any of the 14 candidate sensors (7 
flow meters and 7 TSS sensors) leads to a total of 16384 (214) sensor layouts. It is needless to say that 
even for a small example like this, enumeration and evaluation of all sensor layouts should be avoided 
in as much as possible. By means of the branch-and-bound algorithm, the GENOBS and GENRED 
algorithms were executed for 8352 
distinct sensor layouts. This means 8032 
sensor layouts had not to be evaluated, 
signifying a 49% reduction in explored 
measurement layouts compared to brute-
force enumeration. The evaluation of the 
Pareto front was completed in just under 
3 hours and 1257 distinct sensor layouts 
were retained in the Pareto set. This 
means that only 7.6% of all possible 
sensor layouts are part of the Pareto-
optimal solution set. The Pareto front is 
visualized in Fig. 2. Quite clearly, many 
sensor layouts on the Pareto front lead to 
the same combination of objective 
values since only 12 unique objective 
value combinations can be found on the 
Pareto front. Three extreme 
combinations for the objective values 
can be found. This includes (i) the 
(trivial) solution without sensors and 
consequently no observable variables or 
redundant sensors (red circle, zC =0, zO 

 

 
Figure 1. Scheme (left) and graph-theoretic 
representation (right) of a text-book WWTP. 

Figure 2. Visualization of the Pareto front by means of the 
considered objective values. Circles indicate the Pareto 

front sensor layouts whereas the dots indicate all evaluated 
sensor layouts which were evaluated during optimization. 
The red circle indicates the no-sensor layout. The green 

circles indicate layouts with all variables observable without 
redundancy. The blue circle indicates the sensor layouts 
with all variables observable and all-redundant sensors. 

White circles indicate sensor layouts without redundancy. 
Grey circles indicate sensor layouts with at least one 

redundant sensor. 



=14, zR =100%), (ii) 707 solutions with five (5) sensors, all variables observable, and without 
redundant sensors (green circle, zC =5, zO =0, zR =100%), and (iii) 148 solutions with six (6) sensors, 
all variables observable, and all sensors redundant (blue circle, zC =6, zO =0, zR =0%). Of the 
remaining solutions, (iv) 311 sensor layouts do not exhibit any redundant sensor (white circles, zR 
=100%) and (v) 72 sensor layouts exhibit at least one redundant sensor while some variables remain 
unobservable (grey circles, 0 < zR < 14; zR < 100%). 

Discussion. The currently available results indicate that global Pareto front optimization for 
measurement selection is possible prior to data collection on the basis of structural observability and 
redundancy criteria. Despite the advantages of using deterministic optimization schemes (guaranteed 
global optimality with minimal function evaluations), it remains to be seen whether the method can be 
scaled to larger WWTPs (e.g, the Benchmark Simulation Model No. 1, Gernaey et al., 2014). 
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