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∗∗ Laboratoire d’Automatique, Ecole Polytechnique Fédérale de
Lausanne, CH-1015 Lausanne, Switzerland

(e-mail: kris.villez@eawag.ch)

Abstract: Identification of mathematical models is an important task for the design and the
optimization of biokinetic processes. Monod or Tessier growth-rate models are often chosen by
default, although these models are not able to represent the dynamics of all bacterial growth
processes. This imperfect representation then affects the quality of the model prediction. This
paper introduces an alternative approach, which is based on constraints such as monotonicity
and concavity and the use of shape-constrained spline functions, to describe the substrate affinity
with high parametric flexibility. This way, the difficult task of searching through potentially
incomplete rate-model libraries can be circumvented. A simulated case study is used to illustrate
the superiority of the proposed method to represent non-ideal growth conditions, where neither
Monod nor Tessier kinetics offer a good approximation.

Keywords: mathematical models; microbial growth-rate kinetics; Monod equation;
shape-constrained spline function; wastewater treatment

1. INTRODUCTION

The characterization of the growth of a bacterial pop-
ulation has been important since the early days of the
field of microbiology, (Scott and Hwa, 2011). The growth
processes of many different bacterial species have been
described in countless works, with the most prominent
ones being Monod (1949) and Tessier (1942). The pro-
posed models establish a correlation between the biomass
growth rate and the concentration of the limiting nutri-
ent (Monod, 1949). Conventional biological wastewater
treatment processes make use of bacterial growth and
decay as a means to remove unwanted compounds such as
organic matter, nitrogen, and phosphorus. Decentralized
wastewater treatment, in contrast to a centralized system,
is spread out over many different locations at which rel-
atively smaller reactors are operated. In situations where
monitoring and reactor operation relies on the use of soft
sensors (Mašić and Villez, 2014), it is crucial to identify
reliable process models for different decentralized reactors
and to facilitate model updates over time. Mathematical
models of wastewater treatment processes have long been
used to describe these processes (Wanner et al., 2006;
Henze et al., 2008). To obtain reliable predictions, it is
often necessary to identify dynamic models on the basis of
dedicated experiments. The Monod growth-rate model is
often chosen by default in biological wastewater treatment
modeling. However, when the Monod model does not cap-
ture the behavior of certain groups of bacteria, this model
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is not suitable for use in process design and optimization
(Neumann and Gujer, 2008).

In almost every bacterial growth process, one can describe
substrate affinity as a monotonically increasing (isotonic)
rate law with a concave shape. This qualitative feature
is used in the construction of shape-constrained spline
(SCS) functions which are constrained to be of isotonic
and concave shape yet flexible enough to approximate any
effect of the substrate corresponding to such a shape. As
such, the chosen SCS function serves as a near-universal
biokinetic growth model and can approximate any isotonic
and concave rate laws that may be found in a conventional
and necessarily incomplete library of candidate growth-
rate models (Refsgaard et al., 2006).

Shape restrictions are commonly applied for fitting haz-
ard models (Meyer, 2008). More recently, SCS functions
were adopted for fault detection and fault diagnosis in a
qualitative trend analysis framework (Villez et al., 2013;
Villez and Habermacher, Submitted). Formal approaches
to use qualitatively described information have also been
proposed to facilitate automated selection of candidate
models. In Schaich and King (1999) and Schaich et al.
(2001), such information is obtained by means of qual-
itative simulation (QSIM), and in Madár et al. (2003),
this information is considered available as prior knowledge.
In contrast to previous studies, this study is focused on
identifying the most likely shape of the kinetic rate laws
governing the modeled process – not the shape of the
obtained measurement trends. This is achieved by placing
the proposed shape constrained spline function as a rate
law inside a model described by an ordinary differential
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equation (ODE). This particular use of SCS functions for
dynamic modeling is proposed for the first time in this
contribution. Thanks to the enforced shape restrictions,
the resulting models can be interpreted in the same way
as any conventional white-box model, while exhibiting the
parametric flexibility and generality of typical black-box
models.

The paper is organized as follows. Section 2 presents
the common growth-rate models, the concept of shape-
constrained spline functions and its numerical implemen-
tation. Section 3 illustrates the advantages and drawbacks
of fitting the kinetic models to either measured rates or
measured concentrations by means of a simulated example.
Finally, Section 4 concludes the paper.

2. MATHEMATICAL MODEL & METHODS

2.1 Model description

This paper focuses on a very simple model describing
bacterial growth through consumption of a substrate. The
model construction can be interpreted as a simplification
of the activated sludge models discussed in Henze et al.
(2008). Let S := cS(t) denote the substrate concentration
at time t. The change in substrate concentration with
respect to time can be expressed as

dS

dt
= −r(S), S(0) = S0 (1)

where r(S) := r
(
cS(t)

)
is a rate law expressing the bac-

terial growth and S0 := cS(0) denotes the initial sub-
strate concentration. The product concentration, denoted
as P := cP (t), can be computed as

P = S0 − S. (2)

The growth-rate expression r(S) can be defined in different
ways based on the biological phenomena, substrates and
products that are involved. In this study, a family of
rate models based on uninhibited bacterial growth is
considered. When the growth rate for a specific biological
reactor is not known, one has to test several rate laws
among this model family. Two rate laws of this family are
described in the next section.

2.2 Library of growth-rate models

The default bacterial growth-rate model used in wastewa-
ter treatment modeling is the Monod growth rate,

rM (S) = amax S

KS + S
(3)

where amax denotes the maximum activity of the biomass
and KS is the affinity constant. For the purposes of this
paper, amax is a lumped parameter incorporating the
maximum specific growth rate, the total biomass, and the
yield coefficient, all of which are assumed constant during
the experiment, that is, the net growth is assumed to be
zero.

Another rate law that is used to describe bacterial growth
is the Tessier growth rate,

rT (S) = amax
(

1− e−S/KS

)
. (4)

Both the Monod and Tessier models are monotonically
increasing, with a steep increase for small values of S and a

saturated response at high values of S. Each model has two
parameters that need to be determined, namely amax and
KS . However, regardless of their similarity, there exists no
parametrization of these rate laws that ensures that their
values are the same for every substrate concentration: the
two rate laws intersect at S = 0 and at at most in two
more points for S > 0.

2.3 Shape-constrained spline functions

As an alternative to the above library of rate models, a
single shape-constrained spline function is used to approx-
imate all growth-rate models. The use of the SCS function
is justified by the fact that it shares the concave and
monotonically increasing (isotonic) behavior and a zero
offset (i.e., it passes through the origin) with the rate laws
in the library.

In this study, a cubic B-spline basis (see Ramsay and
Silverman (2002)) is used. This rate law is a piecewise
cubic polynomial in the substrate concentration and is,
as will be shown below, a convenient functional basis to
use with shape constraints. One can write the growth-rate
model as a weighted sum of spline basis functions as

rSCS(S) = b0 (S)
T
θ (5)

with b0(S) the (nk + 3)-dimensional vector of spline basis
functions evaluated at the substrate concentration S, and
θ the (nk + 3)-dimensional vector of model parameters, as
in previous works (Villez et al., 2013; Villez and Haberma-
cher, Submitted). The piecewise behavior is controlled by
the location of the nk + 1 knots (or nk segments) placed
equidistantly between S0 and Snk

. For the simplicity of
notation, the location of these knots are further referred to
as {S0, S1, . . . , Snk

} with nk being the number of piecewise
polynomial segments.

For polynomial functions of any order and on a nonempty
domain, shape constraints can be specified as a finite num-
ber of semi-definite cone constraints (Nesterov, 2000). In
special cases, these inequality constraints can be reduced
to second-order cone constraints. This property has been
exploited by Papp and Alizadeh (2014), Villez et al. (2013),
and Villez and Habermacher (Submitted) to fit, in the
maximum-likelihood sense, spline functions to univariate
data series. However, in the present example (concave
isotonic shape with zero offset), the following linear con-
straints are sufficient to ensure the desired shape:

b0(S0)Tθ = 0 (6)

b1(Sk)Tθ ≥ 0 (7)

b2(Sk)Tθ ≤ 0 ∀k = 0, 1, . . . , nk (8)

with b1(·) and b2(·) the first and second derivatives of the
cubic spline basis functions.

In previous work by Villez et al. (2013) and Villez and
Habermacher (Submitted), the shape-constrained spline
functions were fitted directly to data pairs consisting of
values for the function input (substrate concentration) and
output (growth rate). By maintaining the function fitting
problem in this format and assuming Gaussian noise in
the growth-rate measurements, the maximum likelihood
estimation problem becomes a quadratic problem subject
to linear constraints. This convex problem can easily
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be solved to global optimality, even if the number of
parameters is large.

Unfortunately, one cannot obtain direct measurements
of the growth rates in practice. Instead, one relies on
dynamic experiments during which concentrations of the
substrate(s) and product(s) are measured. To fit a rate
model to such data, it is necessary to differentiate the
measured time series, which leads to noise amplification,
or else to integrate the rate model and predict the concen-
trations. The latter option is chosen here. However, this
choice implies that the fitting problem becomes nonlinear
in the parameters of the spline function.

2.4 Model fitting

Experiments are performed by simulating bacterial growth
rate laws and generating appropriate measurements. These
measurements are used to fit the rate models from the
library and the proposed SCS model. All computations
are performed with Matlab (The Mathworks, 2015) and
the Functional Data Analysis toolbox by Ramsay and
Silverman (2002). The parameters used in all simulated
case studies are shown in Table 1.

Table 1. Parameter values used in the simula-
tion experiments.

Parameter Value Unit

S0 25 mg N/L
amax 11 mg N/L·d
KS 2 mg N/L
σ 0.5 mg N/L

The first study consists of fitting rate models to noise-
free rate measurements that have been generated using a
specific rate model evaluated at N = 2501 points (sub-
strate concentrations) Noise-free measurements are used
in this case to demonstrate approximation properties. The
parameters of the Monod and Tessier models are deter-
mined by regression using the Matlab built-in nonlinear
least-squares optimizer lsqnonlin. The parameters of the
SCS model are obtained through solving this as a second-
order cone program (SOCP) with an interior-point algo-
rithm. The number of parameters is chosen by the user
by selecting the number of knots between S0 and Snk

at
which the spline function is evaluated. To cover the entire
range of substrate concentrations, the first and final knots
are set to S0 = 0 mg N/L and Snk

= 26 mg N/L. Two
cases are considered: In the first case denoted SCS1, an
increment of 5.2 mg N/L is used, resulting in a spline
model with 8 parameters; in the second case denoted SCS2,
an increment of 1 mg N/L is used, leading to 29 parameters
for the spline model.

The second study consists of fitting the rate models by
comparing the measured concentrations with the predicted
concentrations obtained via integration of the differential
equation (1). The concentrations used were the substrate
concentration S and the product concentration P . The
simulated measurements are obtained by solving equations
(1)-(2) with a specific rate model r(S) for t = [0, 4]
h, sampling the time series every 2.5 min, which yields
N = 97 time points, and adding zero-mean Gaussian noise
of standard deviation σ = 0.5 to each measurement. The
regression procedure is as follows:

(1) In Step 1, the concentration measurements of the
substrate over time are differentiated to obtain the
measured growth rates;

(2) In Step 2, the rate models from the library and the
SCS model are fitted to these rate measurements
by adjusting their respective parameters, resulting in
initial guesses (amax)0, (Ks)0 and (θ)0 for the next
step;

(3) In Step 3, the measured and modeled concentrations
are compared for each rate candidate by solving Eqs.
(1)-(2) with ode15s and adjusting their respective

parameters, resulting in parameter values âmax, K̂s

and θ̂.

This procedure is summarized in Table 2. Steps 1 and 2
are required to obtain initial guesses for the parameter
optimization in Step 3.

Table 2. Numerical procedure for fitting rate
models to concentrations.

Step Library models SCS model Result

1. ˙̃S ˙̃S r̂

2.
fit of r̂ fit of r̂ (amax)0, (Ks)0

with lsqnonlin with fmincon and (θ)0

3.
fit of S̃ fit of S̃ âmax, K̂s

with fminunc with fmincon and θ̂

3. RESULTS & DISCUSSION

In Section 3.1, we present and discuss the results obtained
with simulated noise-free rate measurements. Section 3.2
covers the results obtained with simulated noisy substrate
and product concentration measurements.

3.1 Fitting rate parameters to measured rates

In a first scenario, the measured growth rate is simulated
as a Monod model. Simulated data are used to fit both the
growth-rate models from the library and the SCS models.
Figure 1 shows the 8 cubic B-spline basis functions of order
4.

The Monod and Tessier models are fitted to measured
growth-rate data using the fitting approach described in
Section 2.4. Also, two SCS models are fitted to the data.
Figure 2 shows the in silico measured (Monod) rate, the
fitted Monod rate and the two fitted SCS rates. It is
easy to see that all models fit the data very well since
the curves are almost indistinguishable. A similar figure is
obtained when the Tessier model is used to simulate the
rate measurements, and the Tessier and two SCS models
are then fitted to the data (not shown). In these cases,
an SCS model is able to approximate a known measured
growth-rate model such as the Monod or Tessier model.

In a second scenario, we assume that the true growth
rate is unknown a priori and is not part of the library
described in Section 2.2. However, the unknown rate law
is assumed to exhibit a similar shape as before. We now
consider three such unconventional rate laws, namely, the
hyperbolic tangent law rht, a Monod+Tessier law rMT ,
and the root law rr:
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Fig. 1. Cubic B-spline basis functions using 6 knots.
The knots are indicated on the x-axis. All basis
functions are defined on the entire domain, but they
are constrained to be non-zero in a limited segment of
the domain. The black curve illustrates a single basis
function. The other basis functions are translated and
dilated versions of the black curve, except at the
domain boundaries. The functions are determined by
the knot locations.
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Fig. 2. Monod growth rate [1/day] as a function of the sub-
strate concentration [mg N/L]: noise-free measured
rate, Monod model, SCS1 model (6 knots), SCS2
model (27 knots).

rht(S) = amax tanh

(
S

KS

)
(9)

rMT (S) =
amax

2

((
1− e−

S
KS

)
+

S

KS + S

)
(10)

rr(S) = amax

√
5S√
1.5

+ 4− 2√
5S√
1.5

+ 4− 2 +KS

(11)

where amax = 11 and KS = 2 in all rate laws. Each rate
law is used to simulate the measured rates to which the
Monod and Tessier models and two SCS models will be
fitted. For these unconventional rate laws, which exhibit

the same qualitative behavior but are not present in the
library, the SCS model is expected to fit the data well,
while the fits of the Monod and Tessier models should be
worse.

Quality of fit is measured by computing the root mean
square residual

RMSRj,k =

√√√√ 1

N

N∑
i=1

(
rj(Si)− rk(Ŝi)

)2
(12)

where j ∈ {M,T, ht,MT, r} is the simulated growth
rate, k ∈ {M,T, SCS1, SCS2} is the candidate growth-
rate model, S is the noise-free substrate concentration,
and Ŝk,i is the modeled substrate concentration obtained
with the candidate rate k, at time point ti, with i =
1, . . . , N = 2501 measurements. The RMSR values are
shown in Figure 3. The horizontal axis lists the five
simulated rate laws. The RMSR values indicate some
differences in performance between the four candidate
models:

Simulated rate law
Monod Tessier Tanh M+T Root

R
M

S
R

 [-
]

0

0.1

0.2

0.3

0.4
Monod
Tessier
SCS1
SCS2

Fig. 3. RMSR values upon fitting the Monod, Tessier,
and two SCS models to growth-rate measurements
corresponding to five simulated rate laws (Monod,
Tessier, hyperbolic tangent, Monod+Tessier, square
root).

(1) For the measured Monod rate law, the Tessier model
has the worst fit, which comes as no surprise since the
two laws cannot be adjusted to overlap. As expected,
the Monod model has a perfect fit, while the SCS
model improves with the number of knots.

(2) An analogous behavior is observed when the Tessier
rate is measured: the Tessier model fits perfectly,
while the Monod model is poor and the quality of
the SCS model increases with the number of knots.

(3) The ability of the conventional rate law candidates to
approximate the unconventional rate laws can vary
significantly. For example, the simulated root law is
better fitted by the Monod than the Tessier model.
The simulated hyperbolic tangent rate law cannot
be fitted with the Monod or Tessier models. For the
simulated Monod+Tessier rate laws, the Monod and
Tessier models provide a relatively equal fit.
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(4) Both SCS models deliver a better fit than the Monod
and Tessier models when hyperbolic tangent and
Monod+Tessier rate laws are used for simulation. The
SCS2 model leads to a universally good fit for all sim-
ulated rate laws. This demonstrates a near-universal
approximation property of the SCS functions, i.e., an
isotonic-concave SCS will approximate any rate law
with the same shape to any level of precision as the
spline knot resolution is increased.

3.2 Fitting rate parameters to measured concentrations

Since it is rather uncommon to measure growth rates
directly, a different case is studied in this section. The
growth-rate model is now part of the ordinary differential
equation (1) describing the substrate concentration over
time in a biological reactor. The Monod growth rate is
used to simulate the concentrations in Figure 4. In the
biological reactor, bacteria convert the substrate S to a
product P . We see that the concentration of the substrate
decreases with time until it is completely depleted. The
simulated data points are corrupted with additive noise
(σ = 0.5). The product displays an opposite behavior
compared to that of the substrate, starting from 0 mg
N/L and increasing with time until all substrate has been
converted.

Figure 4 shows the fit of the Monod and SCS models to
both S and P concentrations. Both models approximate
the measured data very well. The SCS model used in this
scenario is SCS1 with 6 knots.
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Fig. 4. Substrate S and product P concentration measure-
ments in a biological reactor simulated with Monod
growth rate. Fitting of the Monod and SCS1 models
to the measured concentrations, one model at a time.

Computation of the weighted root mean square residuals
(WRMSR) provides a more detailed comparison of the fit
quality. The WRMSR values are obtained by computing
the RMSR values as in (12) and dividing by the standard
deviation σ:

WRMSRj,k =
1

σ


√√√√ 1

N

N∑
i=1

(
S̃j(ti)− Ŝk(ti)

)2 (13)

where j ∈ {M,T, ht,MT, r} is the measured growth rate,
k ∈ {M,T, SCS1, SCS2} is the candidate growth-rate

model, S̃j,i is the noisy measured substrate concentration

(obtained with the true rate j), and Ŝk,i is the modeled
substrate concentration obtained with the candidate rate
k, at time point ti, with i = 1, . . . , N = 97.

The WRMSR values for the case in Figure 4 are very close
between the Monod and the SCS model. Both models fit
the S and P concentrations well. Figure 5 shows the S
and P residuals. These residuals, which are computed with
respect to the noisy simulated values, are plotted with
indication of the 2σ measurement error band. We see that
most residuals are within the 2σ band.
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Fig. 5. Substrate and product residuals between the noisy
simulated and the modeled concentrations using both
the Monod and SCS models, with the 2σ measure-
ment error band. Note that the simulated concentra-
tions were generated using the Monod rate law.

The same exercise is repeated for all five growth rate
laws as measured rates, namely, Monod, Tessier, root,
hyperbolic tangent, and Monod+Tessier. In each case, the
parameters of the Monod, Tessier and SCS models are
fitted. The WRMSR values are computed to facilitate
further comparison. Here, the residuals for S and P are
computed together (with N = 2 · 97 in equation (13)) to
obtain a single WRMSR value, taking into account the fit
for both substrate and product. Figure 6 shows a summary
of the performance of the different growth-rate models.
The behavior is similar to that observed in Figure 3, with
the Monod model having the best fit for the measured
Monod rate law, and the Tessier model having the best fit
for the measured Tessier rate law. When the other growth-
rate laws are simulated, the performance of the Monod
and Tessier models varies. In contrast, the optimized SCS
model has an excellent fit in all cases, even with as few
knots as 6 that were used in this case. This suggests that
the SCS model with the selected isotonic-concave shape
is likely to fit well to data produced with any known or
unknown growth rate law exhibiting the same shape.

Note that the use of the SCS approach can be advanta-
geous in a decentralized system, where the model identi-
fication needs to be performed for each reactor. As long
as the assumed shape remains valid, the SCS model will
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Fig. 6. WRMSR values for the Monod, Tessier and SCS
models fitted to concentrations generated by five sim-
ulated growth-rate laws (Monod, Tessier, hyperbolic
tangent, Monod+Tessier, square root).

achieve a good fit. Conversely, if the optimization results
in a bad fit, this could be interpreted as an indication that
the shape of the growth-rate law has changed, that is, the
behavior of the bacteria differs from that assumed by the
modeler. This approach could serve as a diagnostic tool in
the model identification process. This, however, assumes
that the parameter estimation problem can be executed
to acceptable optimality. Current results suggest that this
is indeed possible (Mašić et al., 2016).

4. CONCLUSIONS

The SCS model can fit all investigated growth-rate laws
and requires less computational efforts than searching
through a library of rate laws. When faced with an un-
conventional growth rate that is not already part of the li-
brary, the SCS approach allows identification of well-fitting
model as long as the assumed shape is valid. Furthermore,
the proposed SCS models deliver a consistently good fit
for all the five simulated rate laws, thus exhibiting a near-
universal approximation property. This is not possible
with conventional Monod and Tessier growth-rate models.
Finally, the SCS models are interpreted in the same white-
box way as any conventional rate law, despite its black-box
nature.

Future work aims at using the SCS approach for diagnosis,
that is, for determining whether an observed growth rate
belongs to a set of known growth rate laws. At the same
time, the fitting of SCS models with more complex shapes,
e.g. expressing substrate inhibition, is under investigation.
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