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Abstract: While a lacking data quality is widely regarding as one of the major pitfalls for 
advanced automation strategies in wastewater treatment plants, there is limited information 
available regarding the performance of sensors in real-world conditions. This is true even for 
sensors based on measurement principles that have been in use since decades, such as the pH 
sensors studied in this work. To accommodate for this lack of information regarding sensor 
quality, we subject 8 pH sensors to the same reactor conditions over long periods of time. At 
regular intervals, dedicated step-response experiments are used to register the sensors’ 
performance under standardized conditions. This is expected to reveal detailed information 
regarding the effect of ageing on the important features of the sensors such as their offset, 
sensitivity, and response time. 
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INTRODUCTION 
The need for standardized assessment of online sensor data quality. On-line sensors are the most 
critical component in the control loops governing wastewater treatment processes. Despite decades 
of development in on-line instrumentation, sensing equipment is widely reported as a major source 
of measurement errors, next to calibration errors and errors caused wrongful installation. Slow 
changes in the provided data quality remain hard to detect without significant efforts. A promising 
approach is however given by Zambrano and Carlsson (2015). In this approach, changes in the 
sensor response time are detected by frequency analysis and analysis of the measurement variance 
of the signal. So far, this approach has not been tested under standardized conditions. Whether or 
not the changes in the sensors are detected timely with this method remains therefore difficult to 
assess. 

Our approach. To evaluate whether on-line signals are sufficient to determine whether the data 
quality provided by a given sensor has deteriorated over time beyond acceptable levels, we propose 
that one ideally executes experiments which combine several ideas already proposed in the context 
of automated data quality evaluation: (i) measure the same variable multiple times with the same 
sensor, (ii) measure the same variable multiple times, possibly based on different measurement 
principles (as in Thomann et al., 2002), (iii) execute dedicated experiments in standardized yet 
realistic conditions that mimic the actual application conditions (as in Villez et al., 2017), and (iv) 
apply advanced data analysis to determine whether significant deviations from normal conditions 
have occurred (Zambrano and Carlsson, 2015). 

Case study. In the present study, the urine nitrification process developed and studied at Eawag is 
taken as a motivating case. Measurements of dissolved oxygen and pH may suffice to determine 
whether an imbalanced activity of ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria 
(NOB) can lead to toxic nitrite accumulation events (Masic et al., 2014). So far, noisy but high 
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quality measurements have been assumed (Villez et al., Submitted). For this reason, we determine 
what kind of data quality can be expected from pH sensors and how it changes over time. 

MATERIALS AND METHODS 
Selected sensors. 4 pairs of the same type of ion-selective electrode (ISE) pH sensor were newly 
bought from Endress+Hauser and connected to a single transformer and data logging-computer 
(measuring interval: 1s). 

Exposure to reactor contents. All pH sensors were placed in a horizontal pipe at a 45 angle to the 
horizontal plane. The inlet and outlet of the pipe are both connected to a urine nitrification reactor 
operated with suspended biomass. The pipe contents are continuously recycled by means of a 
peristaltic pump. The main objective of this operation is to subject the pH sensors to normal wear-
and-tear. In addition, the collected data may be informative about the sensors’ conditions. 

Standardized experiments. At regular intervals, the sensor are removed from their normal 
placement, cleaned according to manufacturer’s recommendations, and exposed to five different 
mixed media. The media are tap water (TW), nitrified urine with pH set to 4 (U4), nitrified urine 
with pH set to 7 (U7), calibration solution with pH=4 (C4), calibration solution with pH=7 (C7). 
Each sensor is exposed to the following sequence of media: TW-U4-U7-U4-TW-C4-C7-C4-TW in 
intervals of at least 5 minutes. In this particular contribution, we focus on the response time (as 
defined in ISO15839 (2003)). The data collected during the U4-U7-U4 sequence to compute 
response times in nitrified urine and the data collected during the C4-C7-C4 media sequence is used 
to evaluate response times with the sensor calibration solutions. 

Response time computation. A response time is computed for each sensor and for each of the 
following media changes: C4-C7, C7-C4, U4-U7, U7-U4. A second-order linear dynamic model is 
fitted in the least-squares sense to the first 120 seconds of voltage measurements obtained after a 
medium change (e.g., Rosén et al., 2008). Following this parameter estimation, the response time 
(as defined above) is evaluated with the fitted model. 

RESULTS 
A single standardized experiment. Fig. 1 displays the voltage signals obtained with four sensors 
during the first standardized experiment, executed 2 days after the sensors were exposed to the 
reactor contents for the first time. One observes that higher pH values (medium C7 and U7) lead to 
lower voltage signals and vice versa (medium C4 and U4). Interestingly, the steady-state voltage 
signals for urine media are not the same as those obtained with the calibration solutions (medium 
C4 vs U4 and C7 vs U7). This is explained by the fact that the urine media are not buffered. Still, 
the nitrified urine media cause voltage signal changes which are similar to those obtained with the 
calibration solutions. Another noteworthy observation is that the response following the U7→U4 
media change is very slow. Furthermore, the signal does not seem to converge to final steady-state 
within the 411 seconds before the next media change. The fact that no steady-state value is obtained 
within 6 minutes suggests that this sensor is unlikely trustworthy for the considered process.  

A comparison of the first set of collected response times. Table 1 summarizes the response times 
obtained with the first 4 pH sensors as well as for the second set of 4 pH sensors. In each row of the 
table, the ranking of the best-to-worst response times are indicated with colour. Interestingly, sensor 
type #3 is always the worst sensor type. Its response time ranges from 10.5 to 87.7 seconds. The 
response times for the other sensors range from 5.2 to 12.6 seconds. The ranking for sensor #1, #2 
and #4 is subject to some variation. It is potentially interesting that sensor type #1 is ranked the best 
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3 times with the calibration media whereas sensor type #2 is ranked the best 3 times with the 
nitrified urine media. The response times for sensor types #1, #2, and #4 are generally in the same 
range so that a best sensor among these cannot be identified yet.  

Figure 1. Voltage signals collected with one row of pH sensors during the first standardized 
experiment. The vertical dashed lines indicate the exact time of the media changes. The data used 
for time response characterization are indicated with grey zoning. 

Table 1. Obtained response times for each sensor type, sensor row, and imposed medium change. 
In each row the ranking of the response times is indicated in colour – from best to worst: green – 
yellow – orange – red. Value that are likely too low because steady-state was not reached are 
indicated in black. Incidentally, these are the highest values recorded. 
Sequence 
change 

Medium 
Type 

pH 
change 

Sensor 
row 

Sensor type 
#1 #2 #3 #4 

C4-C7 Calibration solution 4→7 1 5.2 10.2 13.9 9.2 
C4-C7 Calibration solution 4→7 2 6.2 10.6 19.0 11.8 
C7-C4 Calibration solution 7→4 1 7.6 7.9 10.5 8.6 
C7-C4 Calibration solution 7→4 2 12.6 10.3 14.9 8.0 
U4-U7 Nitrified urine 4→7 1 6.4 6.1 15.9 7.9 
U4-U7 Nitrified urine 4→7 2 7.2 10.3 19.0 12.4 
U7-U4 Nitrified urine 7→4 1 8.0 6.9 87.7 7.0 
U7-U4 Nitrified urine 7→4 2 8.9 7.7 37.1 9.1 
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CONCLUSIONS 
With this contribution, the first results obtained with a dedicated study of several pH sensors are 
presented. An initial experiment has been presented within which 8 pH sensors are exposed to 
media changes which emulate an abrupt change of the pH value. This experiment was executed 
after prior exposure to the reactor liquor within which the pH ought to be measured accurately. By 
means of this first experiment and an analysis of the sensors’ response times, one sensor type could 
already be excluded as a sensible sensor choice for the considered process, particularly in view of 
the development of an accurate model-based soft-sensor. Additional experiments have been 
executed and await detailed analysis to determine whether the response times of the considered 
sensor types change over time and whether the evaluation of additional properties (intercept value, 
sensitivity, precision) deliver important information. These sets of experiments are the first of their 
kind and will reveal so far little known details regarding the proper interpretation of data quality 
obtained with on-line ion-selective electrodes. 
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