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Abstract: The unscented Kalman filter (UKF) has been proposed as general-purpose model-
based soft-sensor (i.e. observer) for nonlinear dynamic processes. Prior work focused on use of 
the UKF with a dynamic model involving all reactions, including chemical speciation and acid-
base reactions, as dynamic phenomena in a set of ordinary differential equations (ODEs). This 
results in an observer that is sensitive to noise. In this work, we present recent results obtained 
with a reformulated model within which the fast chemical reactions are represented and solved 
as algebraic equilibria. This leads to an accurate and reliable estimate of the nitrite 
concentration, which is the key variable for process supervision and control of the urine 
nitrification process under study. 
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INTRODUCTION 
Monitoring and control challenge for decentralized wastewater treatment. The supervision of many 
decentralized process units for resource recovery comes with additional monitoring and control 
challenges. This is true for the fertilizer-producing urine nitrification process developed at Eawag 
(Udert & Wächter, 2012, Fumasoli et al., 2016). A failure occurs when the ratio of the activities of 
the ammonia oxidizing bacteria (AOB) and nitrite oxidizing bacteria (NOB) causes nitrite to 
accumulate. Washout of the NOB can occur if this left unmitigated. Recovery then requires 
washing the biomass with tap water or reactor emptying and start-up. Avoiding NOB-inhibiting 
nitrite concentrations is thus of paramount interest. 

Existing approaches. One approach to tackle the nitrite challenge consists of UV-Vis 
spectrophotometry (Masic et al., 2015) and is currently tested as an on-line instrument (Thürlimann 
& Villez, 2016, Thürlimann et al., 2016). This spectrophotometric method remains rather expensive 
today because measuring a single UV wavelength is not sufficient to estimate the nitrite 
concentration (0–50 mg NO2

--N/L) in the presence of high nitrate concentrations (2000–3000 mg 
NO3

--N/L). For this reason, soft-sensing has been adopted as an alternative approach (Masic & 
Villez, 2014). Soft-sensors comprise a wide array of methods to estimate unmeasured variables on 
the basis of quantified relationships with measured variables. Soft-sensors are also known as filters 
or observers if the relationships describe the process mechanistically. The Unscented Kalman Filter 
(UKF) was selected in Masic & Villez (2014) because it does not require differentiation of the rate-
of-change expressions, unlike the Extended Kalman Filter. The UKF however failed to provide 
reasonable estimates when more realistic disturbances and noise were added (not reported). This is 
attributed to the fact that the original model was given as a set of ordinary differential equations 
(ODE) which include the acid-base and salt speciation reactions.  
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Novelty of this contribution. With this work, we show that the above problem has been mitigated by 
reformulating the process model as a differential-algebraic-equation (DAE) system with the 
algebraic equations expressing the instantaneous equilibrium reactions. We also demonstrate that 
measurements of temperature, dissolved oxygen (DO), and the pH suffice for nitrite estimation.  

MATERIALS AND METHODS 
Model used for process simulation and within the observer. All results are based on a dynamic 
nonlinear model of the urine nitrification process (Fumasoli et al., 2015). This model is used for 
data simulation and soft-sensing, i.e. there is no mismatch between model and reality. We simulate 
urine nitrification in a continuous-flow stirred-tank reactor (CSTR) with suspended biomass and 
intermittent feeding as: 
 𝑡𝑡𝑘𝑘 ≤  𝑡𝑡 < 𝑡𝑡𝑘𝑘+1:    �̇�𝒙(𝑡𝑡) = 𝒇𝒇�𝒙𝒙(𝑡𝑡), 𝒄𝒄(𝑡𝑡),𝒖𝒖(𝑡𝑡),𝒗𝒗(𝑡𝑡𝑘𝑘)�,     𝟎𝟎 = 𝒉𝒉�𝒙𝒙(𝑡𝑡), 𝒄𝒄(𝑡𝑡)�,     𝒙𝒙(0) = 𝒙𝒙0, 

         𝒚𝒚(𝑡𝑡𝑘𝑘) = 𝑔𝑔�𝒙𝒙(𝑡𝑡𝑘𝑘), 𝒄𝒄(𝑡𝑡𝑘𝑘)� + 𝒘𝒘(𝑡𝑡𝑘𝑘),   𝒗𝒗(𝑡𝑡𝑘𝑘) = 𝒩𝒩(𝟎𝟎,𝑸𝑸),    𝒘𝒘(𝑡𝑡𝑘𝑘) = 𝒩𝒩(𝟎𝟎,𝑹𝑹)  
with 𝒙𝒙 the 𝑛𝑛𝑥𝑥 = 8 differential variables (reactor temperature; 5 component concentrations: oxygen, 
total ammonia, total inorganic carbon, total nitrate, total nitrite; 2 biomass concentrations: AOB and 
NOB), 𝒄𝒄 the algebraic variables which are the species concentrations (e.g., ammonium, molecular 
ammonia), 𝒖𝒖 known inputs, 𝒗𝒗 unknown input disturbances, and 𝒘𝒘 measurement errors. Both the 
input disturbances and measurement errors are sampled at regularly spaced times 𝑡𝑡𝑘𝑘 (5 minutes).  
The rate of change expressions 𝒇𝒇(∙) describe the dynamic effects of 4 AOB and NOB growth and 
decay reactions, 4 gas exchanges (CO2, HNO2, NH3, O2), and liquid transport (heat, biomass, and 
components). The algebraic constraints are given as 𝒉𝒉(∙) and the measured variables are defined 
with 𝒈𝒈(∙). The following components are only subject to transport and their influent concentration 
is assumed constant: K+, Na+, Ca2+, Mg2+, Cl-, acetate, inorganic phosphorus, and inorganic 
sulphate. Consequentially, their reactor concentrations are constant after sufficient time. 
The 2 known inputs 𝒖𝒖 are the expected liquid flow rate and the expected gas flow rate. All 𝑛𝑛𝑣𝑣=5 
input disturbances 𝒗𝒗(𝑡𝑡) are implemented as proportional errors. For instance, the actual feed flow 
rate is always given as 𝑢𝑢1(𝑡𝑡) ∙ (1 + 𝑣𝑣1(𝑡𝑡)). The remaining input disturbances are implemented in 
this manner (influent temperature, gas flow rate, influent ammonia concentration, and influent total 
inorganic carbon concentration (TIC)). The mean influent ammonia and total inorganic carbon 
concentrations are known. The 𝑛𝑛𝑦𝑦=3 measured variables, temperature, DO, and pH, are subject to 
𝑛𝑛𝑤𝑤=3 independent measurement errors 𝒘𝒘(𝑡𝑡). 𝑸𝑸 and 𝑹𝑹 are constant, diagonal, and known. 

Low-level control. A bang-bang controller sets the feed rate to 70 L/d when the (noisy) pH 
measurement is below a lower limit. The feed rate is set to 0 L/d when the pH measurement is 
above an upper limit. The limits are at +/-0.1 around the desired pH value. The air flow is constant. 

Unscented Kalman filter. The UKF is based on the generation of 𝐿𝐿 = 𝑛𝑛𝑥𝑥 + 𝑛𝑛𝑣𝑣 = 13 Sigma points. 
These are vectors of the form 𝜒𝜒 = [𝑥𝑥𝑇𝑇 𝑣𝑣𝑇𝑇], include the differential states and the input 
disturbances (Wan & van der Merwe, 2000, Wu et al., 2005), and are used to simulate the process 
from one time step to the next. Our implementation matches the UKF for additive measurement 
errors in [9] and is tuned conventionally (i.e., 𝛼𝛼 = 1,𝛽𝛽 = 2, 𝜅𝜅 = 3 − 𝐿𝐿 = −10). 

RESULTS 
Scenario 1. The data-generating process is simulated starting from a previously obtained pseudo 
steady-state operation with pH setpoint of 6.25. At 6 hours into the simulation, the pH setpoint is 
increased to 6.6 in an attempt to increase the process efficiency. Indeed, such a change increases the 
available fraction of the ammonia and speeds up the AOB activity. This therefore also increases the 
produced nitrite, hopefully leading to a matching increase of the NOB activity. In Figure 1, one can 
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see that this is not the case as nitrite starts to accumulate. After 18 hours following this change, the 
pH setpoint is reduced back to the original setpoint of 6.25. This is however unsuccessful given that 
the nitrite concentration keeps increasing and thereby stresses the importance of early detection of 
nitrite accumulation events. During this time, one can see that the UKF provides a reliable estimate 
of the nitrite concentration despite absence of a direct measurement.  

Scenario 2. A similar scenario is simulated, however increasing the pH setpoint only to 6.5 after 6 
hours. In this case, the nitrite accumulation is successfully mitigated after 18 hours by reducing the 
pH setpoint back to 6.25. The UKF again tracks the nitrite concentration successfully.  

Figure 1. Scenario 1 – Top panels: Measured variables and measurements; Bottom panels: biomass and 
nitrogen components concentrations and their estimated 99.9% confidence intervals. At all times, 
the provided confidence interval for nitrite includes the true state value. 

CONCLUSIONS 
A major obstacle in the use of the UKF for nitrite estimation in a high-rate urine nitrification 
process has been removed. By means of reformulating the process model as a differential-algebraic 
equation (DAE), the UKF allows to estimate the nitrite reliably on the basis of three robust and 
commonly available measurements. Initial results suggest that the UKF can be used for a reliable 
detection of destabilizing nitrite concentration levels. Continued efforts, to be presented at the 
conference, are focused on evaluating whether the UKF is also robust to model-reality mismatch.  
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Figure 2. Scenario 2 – Top panels: Measured variables and measurements; Bottom panels: biomass and 
nitrogen components concentrations and their estimated 99.9% confidence intervals. At all times, 
the provided confidence interval for nitrite includes the true state value. 

REFERENCES 
Fumasoli A, Morgenroth E, Udert K M (2015). Modeling the low pH limit of Nitrosomonas eutropha in high-strength 

nitrogen wastewaters. Water Research 83, 161–170. 
Fumasoli A, Etter B, Sterkele B, Morgenroth E, Udert K M (2016). Operating a Pilot-Scale Nitrification/distillation 

Plant for Complete Nutrient Recovery from Urine. Water Science and Technology 73(1), 215–222. 
Masic A, Villez K (2014). Model-based observers for monitoring of a biological nitrification process for decentralized 

wastewater treatment – Initial results. 2nd IWA Specialized International Conference Ecotechnologies for 
Wastewater Treatment (EcoSTP2014), Verona, Italy, June 23–25, 2014, 402–405. 

Masic A, Santos A T L, Etter B, Udert K M, Villez K (2015). Estimation of nitrite in source-separated nitrified urine 
with UV spectrophotometry. Water Research 85, 244–254. 

Thürlimann C M, Villez K (2016). In-situ nitrite sensing in a urine nitrification reactor by means of UV-Vis 
spectrometry. WEF/IWA Nutrient Removal and Recovery 2016 Conference (NRR2016), Denver, CO, USA, July 
10–13, 2016, appeared on USB stick. 

Thürlimann C M, Udert K M, Morgenroth E, Villez K (2016). Nitrite sensing in a urine nitrification reactor with in-situ 
UV-Vis spectrometry. 3rd IWA New Developments in IT in Water Conference, Telford, UK, November 1–3, 
2016, presented orally. 

Udert K M, Wächter M (2012). Complete nutrient recovery from source-separated urine by nitrification and distillation. 
Water Research 46(2), 453–464.  

Wan E A, van der Merwe R (2000). The Unscented Kalman Filter for Nonlinear Estimation. IEEE 2000 Adaptive 
Systems for Signal Processing, Communications, and Control Symposium, 153–158. 

Wu Y, Hu D, Wu M, Hu X (2005). Unscented Kalman filtering for additive noise case: augmented vs. non-augmented. 
2005 American Control Conference, 4051–4055. 

102


	Cover page
	Contents
	Editorial
	Scientific Committee
	Organizing Committee
	Keynote1_Looking at ICA in water through a power engineering lens_Olsson
	Keynote2_ICA and optimization in sewer, WRRF and river_Weijers
	1_Experimental design for data validation by application of linear data reconciliation to wwtp data_Le
	2_Monitoring fouling on dissolved oxygen sensors in WRRFs with active fault detection_Samuelsson
	3_Observing the observer Monitoring pH sensors by means of step response experiments_Villez
	4_Adaptive Feedback Linearizing Control of the Anaerobic Digestion Process_Nunez
	5_ICA applied to Membrane Anaerobic Co-Digester for wastewater nutrient and biogas recovery_Mora
	6_Optimizing the operationalcontrol conditions of a full scale industrial granular anaerobic digester_Feldman
	7_datEAUbase Water quality database for raw and validated data with emphasis on structured metadata_Plana
	8_Data cleaning, warehouse and mining for operation optimization in wastewater treatment plants in China_LIJi
	9_Using a Unified Data Platform and Analytics Toolbox for Data Management and Process Optimization_Kelly
	10_Simple control strategy for mitigating N2O emissions in phase isolated full-scale WWTPs_Ekstrom
	11_On line monitoring, control and mitigation of greenhouse gases_Baeza
	12_Continuous Aeration Control in a Full-Scale DEMON™ Reactor to Reduce N2O Emissions_NereaUri
	13_Soft-sensing nitrite in a urine nitrification system for resource recovery_Villez
	14_Predicting influent PO4 using a multivariate soft sensor_Miletic
	15_Advanced on-line monitoring at wastewater treatment plants_JAlferes
	16_Full-scale demonstration of novel nitrification control system with feedforward and feedback control_Nishida
	17_Case Studies of Ammonia Based Aeration Control at Multiple Advanced Water Resource Recovery Facilities_Yi
	18_Utilizing in-situ nutrient sensors and feedback PID controllers to implement and operate ammonia-based aeration_Uprety
	19_Development and validation of a novel monitoring system for batch flocculant solids settling process_Perez
	20_A simplified approach for activity monitoring in complex_Mauricio
	21_Prediction of performances and optimization of anaerobic digesters through near infrared spectroscopy and modeling_Charnier
	22_Anti-windup design for supervisory ammonium controllers_Carlsson
	23_Achieving Simultaneous Nitrification Denitrification in Ammonia Based Aeration Control_Klaus
	24_Ammonia-based aeration control with optimal SRT control improved performance and lower energy consumption_Schraa
	25_Failure Prediction of Multimedia Filters by Using a Hybrid_Bagheri
	26_Data validation and gross error detection in monitoring_Le
	27_Validating data quality for water quality monitoring_Alferes
	28_Control of chemically enhanced primary treatment based on microsieving_Väänänen
	29_Return activated sludge flow control and sludge settling properties at Henriksdal WWTP_Laurell
	30_Balancing the Sludge Blanket and Flow Distribution in Final Settlers Secures Stable Operation and Max Hydraulic Capacity_Oennerth
	31_A Stochastic Method to Manage Delay and Missing Values for In-Situ Sensors in an Alternating Activated Sludge Process_Stentoft
	32_Improved on-line simulations of wastewater treatment plants using time series methods_Miletic
	33_Qualitative control for stable and efficient urine nitrification_Thuerlimann
	34_Wastewater Disinfection by Peracids Advanced Dose Control_Sarathy
	35_Control strategies using dynamic alpha factors_Garrido
	36_Exploring the potential of dynamic air supply models to evaluate control strategies the experience at the Girona WRRF_Juan-Garcia
	37_Advanced control system based on pH, ORP and DO sensors for optimisation of full-scale WWTPs_Ruano
	38_Highly distributed long-term monitoring of in-sewer dynamics using low-power radio technology_Blumensaat
	39_A preliminary study of real-time monitoring and control of biofilters for stormwater harvesting_Pengfei Shen
	40_Identifying industrial wastewaters discharged to sewers from UV-Vis spectroscopy data_Zhang
	41_Nitric Oxide Production Interferes with Aqueous Dissolved Oxygen Sensors_Klaus
	42_Experiences from using acoustic soft sensors in wastewater treatment_Åmand
	43_Inline VFA monitoring using a mid-infrared spectroscopy based sensor Validation in lab-scale and full-scale AD reactors_Zhang
	INTRoDUCTION
	Materials and Methods
	Results and discussion
	conclusion
	Reference

	44_Online control of chemical dosing in sewers for sulfide abatement_Jiang
	45_Reinforcement learning-based control of storm water networks_Mullapudi
	46_An efficient formulation of overflow structures for_Halvgaard
	47_Instrumentation at Swedish WWTPs_Åmand
	48_One utility’s approach to evaluating new instrumentation and_Menniti
	49_Sensor location in WRRFs easy change, big win_Mulder
	50_Local Water-Level-Driven the Discrete Control for Sewer-WWTP Integrated Optimization Operation_Lu
	51_Coordinated Control of Collection Systems using Market-Based_McDonnell
	52_Experiences Using the Dynamic Volume in a Sewer Network to Optimize the Wastewater Treatment Plant and Sewer Network_Poulsen
	Blank Page



