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Abstract: The identification of kinetic models can be simplified via the computation of extents
of reaction on the basis of invariants such as stoichiometric balances. In the extent space, one
can identify the structure and the parameters of reaction rates individually, which significantly
reduces the number of parameters that need to be estimated simultaneously. So far, extent-based
modeling has only been applied to cases where all the extents can be computed from measured
concentrations. This generally excludes its application to many biological processes for which
the number of reactions tends to be larger than the number of measured quantities. This paper
shows that, in some cases, such restrictions can be lifted. In addition, this study demonstrates
the applicability of extent-based model identification using laboratory experimental data.
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1. INTRODUCTION

The computation of extents of reaction from measured
concentrations has been advocated as a way of simpli-
fying the modeling task for complex reaction systems.
With extents, one can turn the joint estimation of all
rate laws and kinetic parameters into smaller estimation
problems involving a single reaction at the time (Bhatt
et al., 2011). This divide-and-conquer approach allows
reducing the computational complexity of finding appro-
priate rate laws (Masi¢ et al., 2016a; Srinivasan et al.,
2016). This is similar to the problem studied in Kotte and
Heinemann (2009). However, the solution of Kotte and
Heinemann (2009) assumes steady state conditions and a
just determined or underdetermined nature of the param-
eter estimation problem. Neither of these assumptions are
necessary to apply the extent-based framework. To this
day, extent-based model identification is limited to cases
where there are at least as many measured concentrations
as there are reactions, which clearly limits the applicability
of this method to reaction systems with a sufficient num-
ber of measurements. This generally excludes biological
wastewater-treatment processes. This work illustrates that
the computation of some but not all extents is possible and
applies this for extent-based modeling.

2. MATERIALS AND METHODS
2.1 Problem statement
We demonstrate the developed method by means of data
collected during a single cycle (a batch) of an intermit-

tently fed stirred-tank reactor for biological urine nitrifi-
cation (Udert and Wéchter, 2012; Fumasoli et al., 2016).

This cycle starts with a short feeding of source-separated
urine collected at Eawag with No-Mix toilets (Larsen et al.,
2001). During this cycle, ammonia is oxidized to nitrite
by ammonia oxidizing bacteria (AOB) and the produced
nitrite is oxidized to nitrate by nitrite oxidizing bacteria
(NOB). The aim of this experiment is to estimate a dy-
namic model describing the growth and decay of both AOB
and NOB. Ammonia and nitrite are measured with Hach
Lange cuvette tests approximately every 30 minutes during
the considered cycle, leading to 29 samples.

2.2 Process model

Theory. The process can be modeled as a set of ordinary
differential equations (ODEs):

e(t)=N"r(c(t),0), y,=Gelty), c(0)=¢o (1)

:'N/h =Yn + €n €p ~ N(Ou Eh) ) (2)

with ¢ the S-dimensional concentration vector, r the R-
dimensional vector of reaction rates, N the R x S stoichio-
metric matrix, y the M-dimensional measurement vector,
G the M x S measurement gain matrix, where M denotes
the number of measured quantities, € the measurement
error vector, 3 the measurement error variance-covariance
matrix, and h the sampling index (h = 1,2,..., H). The
structures of the rate laws r(c(t),@) are assumed to be
known, but not the parameters 8. One also assumes that
co is known and the parameters 6 are structurally identi-
fiable (as in Dochain et al., 1995; Petersen et al., 2003) or
otherwise known.

Application.  The process is described by a two-step
nitrification model involving two growth processes and two
decay processes:



NH; + oo, Oy + aco, CO,

e HN02 + OzH20H20 + Yaon XAOB
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XAOB + 70, 02 — YCO, COQ + vm,0 HQO
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with Xaop and Xnog the AOB and NOB biomasses, and
Yaop and Ynop the yield coefficients of AOB and NOB.
The internalization of nitrogen into the biomass is ignored.
The growth processes are modeled with two Monod-type
reaction rates while the decay processes are described with
first-order kinetics. We assume a stable pH and express
all rates as functions of component concentrations (e.g.
total ammonia, total nitrite). In the considered model, the
concentrations of CO,, H,O, and O, do not affect the
reaction rates. As they are not measured either, they are
omitted from the model. The model is defined with:

¢ = [eran eTNO, €TNO, CAOB CNOB}T (3)
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G=lo10 0 0 )
—1 1 0 YaoB 0

N — 0-1 1 0 YnoB (5)
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where cran, CTNO,, CTNO,, CAOB, and cnop are the total
ammonia, total nitrite, total nitrate, AOB, and NOB con-
centrations. The matrix G indicates that the concentra-
tions of ammonia and nitrite are measured. The stoichio-
metric matrix N includes the unknown yield coefficients
Yaon and Ynog. The kinetic parameters are the maximum
specific growth rates (uaoB, tnoB), the affinity constants
(Kaos, KnoB), and the specific decay rates (baos, bNOB)-

Define the relative biomass concentrations zaop and zxoB:
zaoB(t) = caos(t)/caos,o (7)
znoB(t) = enos(t)/enos,o (8)

with CAOB,0 = CAOB (0) and CNOB,0 = CNOB(O).

The specific growth rate parameters (paos, tnos) and the

yields (Yaos, YnoB) are replaced by the new parameters

AAOB = [AOB CAOB,0/YAa0B, MaoB = Yaos/caoso (9)

aNoOB = UNOB CNOB,0/YNOB, nNOB= YnoB/cNnOB,o- (10)

The equivalent concentration vector, stoichiometric ma-
trix, and rate vector are:

¢ ¢ [eran erNo, CTNO, ZA0B ZNOB (11)
[—1 1 0 naos 0
0-1 1 0 nNoB
Net 900 -1 0 (12)
0 0 O 0 -1
[ aaoB za0B cran/ (KaoB + cTan)
-« | @NoB 2n0B etvo, /(KNoB + ¢1No, ) . (13)
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with all remaining equations as in (1)-(4) and the symbol
+ indicating a redefinition. In the remainder, the redefined
vector ¢ includes the inorganic nitrogen concentrations in
their original scale and the biomass concentrations in their
relative scale. The relative biomass concentrations (zaoB,
znoB) are further referred to as the biomass concentrations
unless specified otherwise. The model exhibits 8 parame-
ters (aaoB, baoB; ma0B, Ka0B, anOB, bNOB, MNOB, and
Knogp) that are unknown and need to be estimated.

2.8 Definition of extents of reaction

As in previous work, the extents of reaction x indicate the
cumulative progress of the reactions, measured in moles,
since the start of the experiment. One writes:

() =m0+ v/o r(c(r))dr |

with V' the known and constant reactor volume. Impor-
tantly, this definition means that the concentrations can
be expressed as functions of the extents:

(14)

c(t) =co + NT z(t)

& (15)

2.4 Computation of extents under rank-deficient conditions

For the case with at least as many measured species as
independent reactions, Rodrigues et al. (2015) showed how
to compute the extents by means of a linear transfor-
mation. With rank(IN)=R, this transformation requires
rank(G NT)=R, from which it follows that M > R. If
the number of measurements is such that M < R, it is
no longer possible to compute all R extents from M mea-
surements without a kinetic model. In addition, the M x R
matrix G NT can be rank deficient. Let A := rank(G N7T),
with A < M < R.

Theory. The idea in this work is to compute a reduced
number of extents, say the R® observable extents x°(t),
from the M measurements y(t)=G c(t), with R° < R. For
this purpose, we propose to construct the R° x R selection
matrix S to select R° observable extents among the R
extents, x°=S x. S can be constructed as follows:

e Rearrange the matrix G N7 in reduced row echelon
form via Gauss-Jordan elimination (Meyer, 2000)

e Remove the rows that contain a zero vector and the
rows that contain more than one non-zero element to
generate the matrix S. The number of rows in S is
R° < A.

In what follows, we consider the case R°=A. When so,
STS is an R x R diagonal matrix with R° ones and
(R — R°) zeros on the diagonal. The zeros on the diagonal
correspond to columns in GNT that are zero vectors,
which allows writing G NT ST S = GNT. It follows that
GNTz = GNTSTz°, and thus

y, =G (co + NT:c(th)/V)

=G (co+ NTSTz°(t,)/V). (16)

With this selection of observable extents, one can find a
unique solution to the extent computation problem, which
is quadratic in the extents:



H
@ =argmin (G, — ) Su @ -y (A7)
" h=1
st. y,=G (co+NTSTzp/V). (18)
The estimates &; (h = 1,...,H) are referred to as

experimental observable extents.

Application.  Let us discuss the construction of the
matrix S for the example introduced above, with S = 5,
R =4, and M = 2. The matrix GNT is

T _ |-1 0 0 O
GN { 1.1 o 0], (19)
with the following reduced row echelon form:
1 0 0 O

As (GNT),,.. + has no rows with only zeros or more than
one non-zero element, S = (G NT)rrgf~ The R° = 2
observable extents correspond to the growth reactions. The
extents of the two decay reactions cannot be observed on
the basis of the stoichiometric balances.

2.5 Reconstructed concentrations

Theory.  Given the extents x(t), one can always recon-
struct the concentration vector using (15). However, for
the case R° < R, there are R" = R — R° unobservable
extents labeled x". Hence, one can only reconstruct the
concentrations for the species that do not involve these un-
observable extents. The R x S stoichiometric matrix N can
be partitioned into the R°x .S submatrix N° corresponding
to the observable reactions and the R" x S submatrix N"

corresponding to the unobservable reactions, N = “:Z}
Eq. (15) can be written as:
ct)y=co+1/V (NOT x° + Nt a:“). (21)

All the species with a column in N" that contains at least
one non-zero element are affected by the unobservable
reactions and, thus, cannot be reconstructed solely from
the observable experimental extents &,. These concentra-
tions are labeled as structurally unobservable, similarly
to Kretsovalis and Mah (1987). Among the remaining
unlabeled species, one then finds those species whose
columns in N° contain only known stoichiometric pa-
rameters. These concentrations are labeled as structurally
observable since the effect of the observable extents on
these concentrations is known and there are no effects
of unobservable extents. The remaining unlabeled con-
centrations are also labeled as structurally unobservable.
The number of structurally observable concentrations is
S° and their concentration vector is ¢°. Note that this
observability consideration is based on the stoichiometric
balance alone. It does not account for the use of a dynamic
model to estimate unmeasured concentrations given that
the parameter of the dynamic model are not available
yet. The following procedure can be used to identify the
structurally observable concentrations:

Given the above labeling, the matrix R is constructed as
an S° x S matrix with a single one in every row and zeros
elsewhere. Each row in R corresponds to a structurally
observable species. The position of the element 1 identifies

the species. Hence, one can write, c® := R . With this,
the observable concentration estimates are:
& =R (co+NTST2p/V) . (22)
Application.  The identification of structurally observ-
able concentrations is illustrated with the example intro-
duced above. The matrix N is partitioned as follows:

o __ -1 1 OnAOB O

N _|: 0 -1 1 0 nNOB:|

« [0 0 0-1 0

N—[o 0 0 0—1]' (23)

In the matrix N", one observes non-zero elements in
the columns corresponding to the concentrations zaop
and znop. Hence, these concentrations are unobservable.
Since the first three columns of N°, corresponding to the
unlabeled concentrations cran, CTNO, and CTNO, contain
only known stoichiometric parameters, the concentrations
CTAN; CTNO, and ¢rNo, are observable. It follows that
S5° = 3 and that the 3 x 5 matrix R reads:

10000

R = lO 100 O] .
00100

(24)

2.6 Subsystem identification

In previous work on kinetic identification, every extent
was modeled individually, with the other extents needed
to compute the reaction rates being interpolated from
experimental measurements. This is no longer possible
here as there are extents for which no value can be
computed. Hence, a slightly different approach is taken by
identifying the smallest subsets of reactions whose kinetic
parameters can be estimated separately from all other
reactions. The main difference with previous work is that
these subsystems may include more than a single reaction.

Theory. A graph-based algorithm is used to deter-
mine the smallest subsystems whose parameters can be
identified separately. An introduction to graph theory is
available in Deo (2004). Here, we use directed bipartite
graphs with two sets of nodes corresponding to extents
and concentrations. The arcs from extents to concentra-
tions represent the algebraic relationships (15) used for
reconstruction. The arcs from concentrations to extents
represent the integration of the differential equations (14).
Nodes representing the interpolated extents are called
interpolation nodes. All the remaining nodes are referred
to as wariable nodes and represent concentrations and
extents that are simulated dynamically during parameter
estimation. Each of the graphs (G,,v = 1,..., V) identified
with the following algorithm represents a subsystem whose
parameters are estimated together:

(1) Create a graph Gy with nodes for all concentrations
and extents defined in (14) and (15).

(2) For each non-zero stoichiometric element N, . in N,
add a directed arc to Gy from the extent r to the
concentration c. This reflects the structure of (15).

(3) Among the directed arcs in the graph, label the arcs
that link the computed extents to the concentrations
that can be reconstructed as reconstruction arcs.
These arcs correspond to elements of N that are
retained in SN R™ and reflects the structure in (22).



(4) A directed arc is added to Gy from every concentration
appearing in a rate law to the extent of that reaction.
This reflects the rate law structures in (1).

Remove all reconstruction arcs.

Remove all single-node components.

Identify the connected components in the graph and

index them with v (1 <v < V). Set v = 1.

Define G, as the vth connected component in Gy.

Add those arcs removed from Gy in Step (5) that have

at least their ending node in G,. Add the starting

nodes of these arcs in Gy if they are not already in

G-

(10) Identify the strongly connected components in G,,. La-
bel the nodes not included in any strongly connected
component as an interpolation node. All remaining
nodes are labeled as a variable node.

(11) If v < V, set v < v+1 and go to (7). Else, terminate.

~J O Ut
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Application.  The graphs generated for the illustrative
example are shown in Fig. 1. Fig. la shows the graph
Go obtained at Step (3) of the algorithm. This graph
represents the relationships involved when simulating the
complete system. The rightward arcs represent the compu-
tation of concentrations on the basis of extents. One sees
that knowing zaop requires knowledge of x; and z3, while
knowing znyop requires knowledge of x5 and x4. Similarly,
knowing cTan (CTNO2; CTNOS) requires 1 (21 and xa; x2).
The leftward arcs represent the structure of the rate laws
used to simulate the extents (14). cran appears only in
the AOB growth rate law (cf. #1) and cTno, appears only
in the NOB growth rate law (cf. x3). ¢rno, appears in
none of the rate laws. zaop appears in the AoB growth
and decay rate laws (cf. z1 and x3). Finally, zxop appears
in the NOB growth and decay rate laws (cf. z2 and z4).

The dashed arcs represent the possibility to obtain a
number of concentrations via reconstruction on the basis
of the experimental extents (22). As established before,
this is possible for cran, erno,, and erno,. In Step (5)
these arcs are removed. As a result, the graph is split in
three components. One component has the nodes z1, x3,
cTAN, and zaop. A second component has the nodes xs,
T4, CTNO, and zyop. The last component is the single-
node component with node CTNO, - This third component is
removed in Step (6) so that only the first two components
remain in Step (7) (V = 2). This completes Go.

Steps (8) to (10) lead to the graph G; shown in Fig. 1b
corresponding to the first component in Gy. In Step (9),
the arc from x; to cran in Gp is added to G;. There
are no further arcs to add. In addition, the re-introduced
arc has all of its nodes in G; already so that no nodes
are added. In Step (10) one identifies a single strongly
connected component in Gy consisting of all nodes and all
arcs. All nodes are part of a strongly connected compo-
nent. Consequently, there are no interpolation nodes. This
means that identifying the kinetic parameters involved in
the identified subsystem does not require interpolation.
Simulation of the G; subsystem involves the parameters
ai, by, ni, and Kj.

Steps (8) to (10) are now repeated for the second compo-
nent in Gy. The result is shown in Fig. lc. In this case,
two arcs in Gy are introduced into Go: from x1 to €TNO,
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Fig. 1. Graphs obtained during subsystem identification
at Step (4) (subplot a) and at Step (11) (subplots b
and c¢). Dashed arcs indicate interpolation arcs. Grey
shading of nodes indicates the interpolation nodes.

and from z3 to crno,. @1 is added as a node as it does
not appear in G, initially. Again, Step (10) leads to the
identification of a single strongly connected component.
This time it consists of the nodes x5, x4, CTNO, and z2NOB
and all arcs between these nodes. The node x7 is not in the
strongly connected component and thus is an interpolation
node. This means that the interpolated first experimental
extent (#1) is used as a known input to simulate the
subsystem represented by Go. Such simulations involve the
parameters ao, by, no, and Ks.

2.7 Parameter estimation

Following the identification of each subsystem, all stoichio-
metric and kinetic parameters involved in the simulation
are estimated jointly. In this work, we adopt the determin-
istic optimization method given in Masi¢ et al. (2016b).



3. RESULTS

3.1 Experimental data

The top panel of Fig. 2 shows the H = 29 measurements
of ammonia and nitrite concentrations (7,) as a function
of time (t5) within the considered process cycle. One can
see that the ammonia concentration decreases from about
70 to 0 g/m? as a consequence of the AOB activity. As a
result, the nitrite concentration initially increases from 0
to a maximum of 20 g/m? at 5 h, after which it decreases
again to zero. This indicates that the nitrite oxidization
process is slower than the ammonia oxidation process. We
assume that the measurement errors are uncorrelated and
exhibit a standard deviation of 5% of the measured values.

3.2 FExtent computation

The experimental extents computed by means of (17)-
(18) are shown in Figs. 3 and 4 as a function of time.
The profiles suggest a monotonic progress of the growth
reactions and illustrate the slower progress of the nitrite
oxidation compared to the ammonia oxidation.
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Fig. 2. Concentrations as a function of time during a single
cycle of intermittently fed biological urine nitrifica-
tion process. Top: Ammonia and nitrite concentration
measurements (Jran, §rnoz2), hitrate concentration
estimates (érnyo3), and simulated ammonia, nitrite,
and nitrate concentrations with the complete model
(craN, crNoO2, ¢TNO3). Bottom: Simulated relative
biomass concentrations with the complete model.

3.8 Reconstructed concentrations

The nitrate concentration ¢éryops can be reconstructed
from the experimental extents using (22). In the top panel
of Fig. 2, one sees that these estimates follow the sigmoid
profile of the extent of the NOB growth reaction in Fig. 4.

3.4 Parameter estimation

Parameter estimation is executed for each of the two
subsystems identified in Section 2.6. This means that the
parameters a1, by, ny, and K; are optimized so that
the extent of the AOB growth reaction simulated with
Subsystem 1 (Fig. 1b) best matches the first extent in
the weighted least-squares (WLS) sense. Similarly, the
parameters as, ba, no, and Ko are adjusted in a second
optimization so that the extent of the NOB growth re-
action best matches the second extent, also in the WLS
sense. Figs. 3 and 4 show that the identified subsystem
models approximate the experimental extents well.

8.5 Recombined model

The identified parameters are used to simulate the com-
plete system (1)-(4) with (12)-(13). The ammonia, nitrite,
and nitrate concentrations obtained by means of this sim-
ulation are shown in the top panel of Fig. 2. One sees
that the modeled concentrations approximate the mea-
sured and estimated concentrations well. The simulated
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Fig. 3. Extent of AOB growth as a function of time: (¢)
measurements, (—) model prediction.

70+

zo/V
o | | | LT
012 3 456 7 8 9101112131415
Time [h]

Fig. 4. Extent of NOB growth as a function of time: (H)
measurements, (—) model prediction.



relative biomass concentrations are shown in the bottom
panel of Fig. 2. One sees that identified model parameters
suggest that the net AOB growth is marginal while the
NOB underwent a 50% increase during the experiment.

4. DISCUSSION
4.1 Benefits of the method

This contribution has presented a first case of extent-based
modeling under rank-deficient conditions. Prior work has
claimed that the stoichiometric matrix NT or — in case of
unmeasured species — the matrix G NT must be of rank R
to enable extent computation and modeling of the individ-
ual extents. This is true if one assumes that computing the
extent of every reaction is necessary. However, one may
still be able to compute a smaller number of extents of
reaction if the rank condition is not satisfied. In addition,
one may also be able to divide the parameter estimation
problem into smaller problems involving only parameters
affecting the dynamics of the computed extents. Both
claims were illustrated using data obtained from a bi-
ological urine nitrification process. Extent computation
allows reducing the size of parameter sets that need to
be identified simultaneously, thus leading to an increased
efficiency of the model identification process — this despite
not satisfying rank conditions that were considered essen-
tial previously.

A serendipitous benefit of the modeling method is that
it leads to a reformulation of the model, whereby the
yield coefficients become lumped into the parameters of
the kinetic rate laws. As a consequence, one does not need
to know the yield coefficients to describe the measured
concentrations.

4.2 Opportunities and future work

It was shown for one case that the matrix GNT does
not need to be full rank to benefit from the extent-based
modeling philosophy. However, it remains to be evaluated
how general this situation is. The currently imposed re-
quirement that R°=A means that all parameters still need
to be estimated simultaneously as soon as R° < A. This
may still restrict the utility of extent-based model identi-
fication in practice and deserves further attention. Even
more important, it is relevant to know which variables
ought to be measured to separate the model identification
task into smaller problems.

5. CONCLUSIONS

Historically, extent-based modeling has been considered
applicable to process modeling only when there are at
least as many measured variables as there are indepen-
dent reactions. This contribution demonstrates that this
is not a strict requirement for separated estimation of
smaller subsets of kinetic parameters. This proves espe-
cially valuable for biological systems, where the number
of modeled reactions may easily exceed the number of
measured variables. In addition, our work demonstrates
that model reformulation may allow applying extent-based
modeling also when some elements of the stoichiometric

matrix are unknown. This strongly benefits the applica-
tion of extent computation and extent-based modeling to
biological systems where the yield coefficients appearing
in stoichiometric matrices are typically unknown.

ACKNOWLEDGEMENTS

This study was financed by Eawag Discretionary Funds
(grant no.: 5221.00492.009.03, project: DF2015/EMISSUN).

REFERENCES

Bhatt, N., Amrhein, M., and Bonvin, D. (2011). Incremen-
tal identification of reaction and mass-transfer kinetics
using the concept of extents. Industrial €& Engineering
Chemistry Research, 50(23), 12960-12974.

Deo, N. (2004). Graph Theory with Applications to Engi-
neering and Computer Science. PHI Learning Pvt. Ltd.

Dochain, D., Vanrolleghem, P.A., and Van Daele, M.
(1995). Structural identifiability of biokinetic models of
activated sludge respiration. Water Research, 29, 2571—
2578.

Fumasoli, A., Etter, B., Sterkele, B., Morgenroth, E., and
Udert, K.M. (2016). Operating a pilot-scale nitrifica-
tion/distillation plant for complete nutrient recovery
from urine. Water Science and Technology, 73(1), 215
222.

Kotte, O. and Heinemann, M. (2009). A divide-and-
conquer approach to analyze underdetermined biochem-
ical models. Bioinformatics, 25(4), 519-525.

Kretsovalis, A. and Mah, R.S.H. (1987). Observability and
redundancy classification in multicomponent process
networks. AIChE Journal, 33(1), 70-82.

Larsen, T.A., Peters, 1., Alder, A., Eggen, R., Maurer,
M., and Muncke, J. (2001). Re-engineering the toilet
for sustainable wastewater management. Environmental
Science and Technology, 35(9), 192A-197A.

Magi¢é, A., Srinivasan, S., Billeter, J., Bonvin, D., and
Villez, K. (2016a). Biokinetic model identification via
extents of reaction. In 5th IWA/WEF Wastewater
Treatment Modelling Seminar (WWTmod2016), An-
necy, France, April 2-6, 2016, appeared on USB-stick.

Masié, A., Udert, K., and Villez, K. (2016b). Global
parameter optimization for biokinetic modeling of sim-
ple batch experiments. FEnvironmental Modelling and
Software, 85, 356-373.

Meyer, C.D. (2000). Matriz Analysis and Applied Linear
Algebra. STAM, Philadelphia, PA.

Petersen, B., Gernaey, K., Devisscher, M., Dochain, D.,
and Vanrolleghem, P.A. (2003). A simplified method
to assess structurally identifiable parameters in Monod-
based activated sludge models. Water Research, 37(12),
2893-2904.

Rodrigues, D., Srinivasan, S., Billeter, J., and Bonvin,
D. (2015). Variant and invariant states for chemical
reaction systems. Computers & Chemical Engineering,
73, 23-33.

Srinivasan, S., Billeter, J., and Bonvin, D. (2016). Iden-
tification of multiphase reaction systems with instanta-
neous equilibria. Industrial €& Engineering Chemistry
Research, 29(55), 8034-8045.

Udert, K.M. and Wichter, M. (2012). Complete nutrient
recovery from source-separated urine by nitrification
and distillation. Water Research, 46(2), 453-464.



