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ABSTRACT 
In the wastewater sector, water quality sensors constitute the most sensitive component to online 
monitoring and control systems. Consequently, the purported benefits of automation remain an 
elusive goal in many situations. This is especially true for decentralized wastewater resource recovery 
facilities (WRRFs) as studied in this work. Indeed, the use of frequent on-site sensor inspection and 
maintenance is typically economically prohibitive. For this reason, a tremendous amount of research 
has focused on the development of specialized algorithms for fault detection, isolation, and diagnosis. 
Such algorithms typically assume (i) that some historical normal data are available for algorithm 
tuning and (ii) that faults generally do not appear simultaneously in multiple sensors. In this work, 
we challenge these assumptions by means of a long-term study of wear-and-tear in pH sensors 
exposed to nitrified urine, a high-strength anthropogenic wastewater. Our results indicate that both 
assumptions are invalid, thereby preventing an effective use of the majority of fault detection 
algorithms available today. 
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INTRODUCTION & BACKGROUND 
By several accounts, sensors constitute the most sensitive component in advanced control systems for 
wastewater resource recovery facilities (WRRFs). For this reason, characterizing typical sources of 
measurement errors and other sources of uncertainty has been identified as an important and 
challenging endeavor1-2. To answer this need, a wealth of fault detection, fault isolation, and fault 
diagnosis methods have been developed to facilitate the identification and possibly even reconcile 
erroneous data3-4. Most of the methods available today are based on the following two assumptions: 

1. Gross errors, i.e. systematic deviations, never appear simultaneously in multiple sensors at
once.

2. Upon first-time use, a given sensor will function without any gross error for a while.

These assumptions are indeed very useful. For example, by placing 3 or more redundant sensors in a 
single location, one can identify the most likely sensor exhibiting a gross error as long as only one 
sensor becomes faulty at a single point in time. In addition, one can tune fault detection algorithms 
finely by using normal data, i.e. data that are free of gross errors. In the simplest methods, historical 
normal data are used to define statistical control limits (e.g., a 99%-confidence interval). 

In order to benchmark processing monitoring and control methods, the Benchmark Simulation Model 
(BSM) series was developed5-6. These models include sensor fault models to test fault detection and 
identification methods. Importantly, the incorporated sensor models adhere to the above assumptions, 
i.e. all simulated sensor faults start independently and only after some time. Consequently, any fault
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detection and identification method selected or tuned based on this benchmark simulation platform is 
likely to depend on the validity of the above assumptions. 
 
We study to which extent the above assumptions are valid. We focus on pH sensors as they are the 
simplest and most widely used ion-selective electrodes on the market. The DEMON process is one 
example of a process requiring precise pH measurement for control7. In our case, the pH sensors are 
used for control of a biological urine nitrification process8. This process is developed for the 
decentralized production of a fertilizer from anthropogenic urine and enables (i) reducing wastewater 
loads to existing WWRFs, (ii) avoiding the use of the energy-intensive Haber-Bosch process for 
nitrogen fertilizer production, and (iii) avoiding nitrogen pollution of natural water bodies. 
 
METHODOLOGY 
A set of 10 sensors by Endress+Hauser, consisting of pairs of 5 sensor types (T1 – T5), is used for 
testing. Each of these is a newly bought ion-selective electrode (ISE) pH sensor. The first 3 pairs of 
sensors (T1 – T3) are in continuous use since the start of the measurement campaign. The 4th pair 
(T4) was used during the first 180 days of the campaign and replaced after 180 days with the 5th pair 
of sensors (T5). 
 
The pH sensors are continuously exposed to the medium of a urine nitrification reactor. This medium 
consists of nitrified urine with total nitrogen concentrations around 5000 g.N/m3, which is present as 
ammonia and nitrate in roughly equal proportions. The treated urine exhibits a high salt concentration 
and conductivity (e.g, 16 mS cm-1)9. At regular intervals, the sensors are taken out of the reactor 
medium for testing. In each test, the sensors are mechanically cleaned with a sponge and then exposed 
to 5 media in 5-minute phases: (1) tap water, (2) calibration medium A (pH 4.01), (3) calibration 
medium B (pH 7.00), (4) calibration medium A (pH 4.01), and (5) tap water. During these tests, the 
raw voltage signal of the electrode is recorded at 1s intervals. The offset is computed as the averaged 
voltage signal in the last minute of the 3rd phase, at which point a steady-state signal is expected. The 
sensitivity is computed by computing the difference between the averaged voltage signal in the last 
minute of the 3rd phase and the 4th phase and dividing by 3. Under standard conditions, an ideal pH 
sensor is expected to deliver 0 mV for the offset and 59 mV per pH unit for the sensitivity. 
 
RESULTS 
We first discuss the results of the monitored offset. In Figure 1, one can see the recorded offset values 
as a function of time for all studied sensors. It is quite easy to see that the offset changes over time 
for every sensor. Moreover, the drifts appear largely unidirectional in the sense that the offset vaues 
decrease with time. For the 2nd, 3rd, and 4th pair the offset amounts to about -59 mV in a year or less. 
This means that after a year – and without any calibration – one can expect to measure a pH of 6 or 
lower when the true pH is 7. Important with respect to the assumptions mentioned above are the next 
observations. First, all sensors produce a non-zero offset immediately or shortly after their initial 
exposure. This is most dramatic for 4th pair of sensors. Consequently, it is difficult to find a period of 
time within which the produced data are free of gross errors. In addition, one can see that the offset 
and its rate of change is non-zero for all sensors at any given time. This means that placing redundant 
sensors as a way to find a single, faulty sensor is unlikely to work well in any realistic situation. 
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Figure 1. Sensor offset as a function of time. Exposure of the sensor to nitrified urine induces a drift 
in the sensor, which is visible in the computed offset. By the end of the studied time window of 
approximately 400 days, the pH drift can be as large as 59mV or larger for certain sensor types.  
 
Figure 2 shows the computed sensitivities with scales matching the scales of Figure 1. This means 
that the figures scales are set so that a given change of the sensitivity in Figure 2 has a similar effect 
to the same change in Figure 1 when the true pH equals 6. The first observation is therefore that the 
observed changes in sensitivity have a marginal effect on the pH sensor signal compared to the 
changes of the offset. The highest (lowest) recorded sensitivity is 61 (54) mV/pH, which corresponds 
to measuring a pH of 5.97 (6.08) when the true pH is 6 (and the offset zero). Consequently, pH sensor 
calibration is only beneficial as a way to account for slow changes in the offset. Furthermore, this 
means that the classical two-point calibration could be replaced with a one-point calibration. 
 
DISCUSSION & CONCLUSIONS 
With this work, we have studied the real-world behavior of pH sensors in a biological decentralized 
process for recovery of fertilizer from human urine. The produced data indicate that the main cause 
of systematic measurement errors in a pH sensor can be attributed to changes in the sensor’s offset. 
Quite naturally, such changes are compensated in practice by sensor calibration. It was also shown 
that drift occurs at all times in all sensors. This has important consequences for the application and 
study of fault detection and identification methods. Since one cannot record a drift-free reference data 
set, it follows that significant updates to the application, study, and fine-tuning of fault detection and 
identification methods are necessary. 
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Figure 2. Sensor sensitivity as a function of time. For comparison, the scale of all axes match the 
scale lengths in Figure 1. All recorded sensitivity value stay close to the ideal value of 59 mV/pH, 
meaning that the exposure to the treated urine medium has little to no effect on the sensitivity.  
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