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Abstract

Previous work on qualitative trend analysis (QTA) has led to
the development of a shape constrained splines (SCS) method. This
method delivers a deterministic and globally optimal solution for the
location of so called transitions in a qualitative representation (QR).
Unfortunately, the method is limited to the analysis of univariate data
series. This technical report describes and proves the bounding pro-
cedures that are necessary to expand the method to multivariate data
series.

1 Introduction

For the purpose of shape constrained function fitting it is important to distin-
guish between several ways multivariate properties of data can be interpreted.
The following three are identified:

1. Measurements are independent repetitions of each other

2. Measurements are different in value yet reflect the same underlying
state of the measured system

3. Measurements are repeated across spatial or time dimensions, reflecting
meaningful changes in the measured system. Across multiple spatial
and/or time dimensions, these changes can be additive or non-additive.

In the a following section, the bounding procedures are given for mul-
tivariate data considering the first and second way. Bounding procedures
accounting for the third way are not available yet.
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2 Definitions and notation

The following definitions are used in this work:

Episode. An episode is an argument interval over which the signs of al set
of functions and/or data series and/or one or more of their derivatives
are the same and do not change. An episode is defined by a primitive,
a start time, and an end time.

Primitive. A primitive is a unique combination of signs for a value of one or
more functions and/or one or more of their derivatives. Each primitive
is usually referred to by means of an arbitrary chosen character. In this
work, the sign of the first and second derivatives are of interest. The
correspondence between the signs of the derivatives and the characters
used in this study are given in Fig. 1.

Qualitative sequence. A qualitative sequence (QS) is a series of primi-
tives. Such a QS is used to describe the assessed or expected shape
of one or more functions or multivariate time series. A QS does not
include the argument locations (transitions) at which a change in prim-
itive is expected or observed.

Transition. A transition is defined as the argument location of a change-
point between two sequential primitives.

Qualitative representation. A qualitative representation is a complete
description of the expected or observed shape of a function or time
series and consists of a QS and values for the argument values of the
corresponding transitions and is equivalent to a series of contiguous
episodes.

A qualitative sequence is defined mathematically by means of symbols,
sd,e, with e indicating the index of the primitive in the QS (e ∈ {0, 1, ... , E})
and d indicating the considered derivative (d ≥ 0). Permitted symbol values
are -1, 0 +1, and ? and correspond to a positive, zero, negative sign, and
undefined or unknown sign. The symbols are combined into a sign symbol
matrix, S, with row corresponds to the primitives in the qualitative sequence
and columns corresponding to the index of the derivative (starting with 0 for
the function or data value). The transitions between primitives are given as
a vector θθθ =

[
θ1 θ2 ... θE

]
.
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Figure 1: Primitives according to the signs of the 1st and 2nd derivative: A =
anti-tonic convex, B = isotonic convex, C = isotonic concave, D = anti-tonic
concave. Taken from [Villez2014].
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3 Case 1: A single qualitative representation

for all data series

3.1 Problem definition

A multivariate data set is given as a set of nc univariate data series, in-
dexed by c (c ∈ {1, 2, ... , C}). Each series is given as a vector (yyyc) and a
corresponding vector of independent variables (xxxc). Repeated values within
xxxc correspond to repeated measurements. The sample pairs are indexed by
j (j ∈ {1, 2, ... , Jc},∀c : Jc ≥ 2). Each of these data series corresponds
to measurement sets with distinct values but with the identical qualitative
representation. Scalar measurements are referred to as yc,j.The independent
variable scalars are given as xc,j. The complete set of independent (depen-
dent) data is noted as X (Y). All symbol definitions as used in this section
are given in Table 1.

A separate shape constrained function (fc) is estimated for each of the C
data series. Importantly, each of these functions is constrained to have the
same shape. In more precise terms, the shape constraints of each function
are defined by the exact same qualitative representation (QR) as defined in
[1]. Mathematically, this is written as the following optimization problem:

min
ηηη,θθθ

g(ηηη) = g(ηηη,X,Y) (1)

subject to:

ηηη =
[
βββT1 βββT2 ... βββTC

]T
(2)

∀c ∈ {1, 2, ... , C} : βββc ∈ Ωc(θθθ,S) (3)

θθθ ∈ Θ (4)

with definitions and symbols as in Table 1.
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Table 1: Case 1 – Definitions.

Symbol Definition
βββc Parameters of the cth spline function
εεε Optimization tolerance
ηηη Parameters of the spline functions
θθθ Transitions defining the enforced shape of the functions
θθθQP Upper bound solution for θθθ
λc,d Smoothness penalty coefficient (∀c ∈ {1, 2, ... , C},∀d ∈

{0, 1, ... , D} : λc,d ≥ 0)
Ωc(θθθ,S) Feasible set for βββc, which depends on θθθ and S
Θ Feasible set for θθθ
Θk kth considered set for θθθ during optimization
C Number of functions to fit
D Maximum considered derivative degree for shape constraints
E Number of episodes in the qualitative representation
Jc Number of samples in data series (c)
S Matrix describing the qualitative sequence, i.e. series of prim-

itives
X Independent data (argument values)
Y Dependent data (measurements)
bbb Boundary argument values for each episode
d Derivative index
fc cth function
g Objective function
hc cth term in the objective function
j Sample index
pc Power for lack-of-fit norm (∀c ∈ {1, 2, ... , C} : pc ≥ 1)
qc,d Power for smoothness penalty (∀c ∈ {1, 2, ... , C},∀d ∈

{0, 1, ... , D} : qc,d ≥ 1)
sd,e Sign for dth derivative in eth episode
v Function argument
xxxc Independent data vector
yyyc Dependent data vector
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The optimal fit of the function is defined as the sum of a convex lack-
of-fit objective, formulated as a norm on the residuals, combined with a
smoothness penalty, formulated by a convex sum of integrals of norms of the
function value or its derivatives. As a result, the problem can be formulated
in a more detailed form as follows:

min
ηηη,θθθ

g(ηηη) =
C∑
c=1

(
|yyyc − fc(βββc,xxxc)|pc

+
D∑
d=0

λc,d ·
∫ xJc

x1

|fdc (βββc, v)|qc,d dv
)

(5)

subject to:

θθθ ∈ Θ (6)

ηηη =
[
βββT1 βββT2 ... βββTC

]T
(7)

bbbLc = [ bLc,0 bLc,1 ... bLc,E ]

= [ xc,1 θ1 θ2 ... θE ] (8)

bbbUc = [ bUc,0 bUc,1 ... bUc,E ]

= [ θ1 θ2 ... θE xc,Jc ] (9)

∀d ∈ {0, 1, ... , D},
∀e ∈ {0, 1, ... , E} :

bLc,e ≤ v ≤ bUc,e ⇒


fdc (βββc, v) ≤ 0, if sd,e = −1

fdc (βββc, v) = 0, if sd,e = 0

fdc (βββc, v) ≥ 0, if sd,e = +1

(10)

3.2 Solving for ηηη

The above problem is hard to solve to global optimality, in particular due to
the apparent presence of an infinite number of shape constraint inequalities
(Eq. 10). Fortunately, for specific types of functions these inequality con-
straints can be reformulated as a finite number of necessary and sufficient
constraint equations in the function parameters. In [2] this was demonstrated
for polynomial functions. In [3, 4], this is applied to univariate piece-wise
polynomial functions, including spline functions. Spline functions are flexi-
ble and inherently smooth. Moreover, shape constraints can selectively be
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applied to segments of the spline function argument domain. Using a spline
functional basis is therefore a sensible choice for shape constrained func-
tion fitting. Importantly, the above problem is then a semi-definite program
(SDP) as long as values for θθθ are fixed and known. Depending on the applied
sign constraints and the exact objective function, the SDP is reduced to a
second-order cone program (SOCP) or a quadratic program (QP) [3, 4]. For
instance, shape constrained cubic spline functions can be solved at least as
a SOCP.

The above problem, with given values for θθθ, can be split into a separate
optimization of each function by solving the following problem for each value
of c (c = 1 ... C):

min
βββc

hc(βββc) = |yyyc,t − fc(βββc,xxxc,t)|pc

+
D∑
d=0

λc,d ·
∫ xJc

x1

|fdc (βββc, v)|qc,d dv (11)

subject to:

bbbLc = [ bLc,0 bLc,1 ... bLc,E ]

= [ xc,1 θ1 θ2 ... θE ] (12)

bbbUc = [ bUc,0 bUc,1 ... bUc,E ]

= [ θ1 θ2 ... θE xc,Jc ] (13)

∀d ∈ {0, 1, ... , D},
∀e ∈ {0, 1, ... , E} :

bLc,e ≤ v ≤ bUc,e ⇒


fdc (βββc, v) ≤ 0, if sd,e = −1

fdc (βββc, v) = 0, if sd,e = 0

fdc (βββc, v) ≥ 0, if sd,e = +1

(14)

3.3 Solving for ηηη and θθθ

The full optimization problem is nonlinear in θθθ. However, and as shown
in prior work, this kind of problem can be solved to global optimality in a
deterministic manner by means of the branch-and-bound algorithm [1]. To
this end, the algorithm repeatedly divides the set of feasible values for θθθ
into smaller subsets until convergence. For each subset, a lower and upper
bound value to the objective function is computed. These bounds allow to
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fathom, i.e. ignore, branches in the resulting solution tree which are proved
not to contain the global optimum. In what follows, the bounding procedures
enabling such fathoming are explained and proven.

3.3.1 Step 1: Finding a feasible solution for θθθ

Any kth subset, Θk, generated during execution of the branch-and-bound
algorithm can be described as follows:

∀e ∈ {1, 2, ... , E} : θLe ≤ θe ≤ θUe (15)

In addition, each feasible solution within this set satifies the following order
relationship:

∀e ∈ {1, 2, ... , E − 1} : θe ≤ θe+1 (16)

A practical way to propose a feasible solution is obtained by solving the
following optimization problem subject to the above conditions (Eq. 15–16):

min
θθθ

E∑
e=1

(θe − θLe )2 + (θe − θUe )2 (17)

The solution, if found, is further referred to as θθθQP. It is possible however
that no solution can be found due to the fact that the set defined by Eq. 15–16
is empty. This case is dealt with separately below.

3.3.2 Step 2a: No feasible solution available

Procedure In this case, the bounding procedures are very straightforward.
As in prior work, both the upper and lower bound are set to +∞:

gL = gL(Θk) = gU = gU(Θk) = +∞ (18)

Proof The proof of these bounds is fairly trivial. Indeed, if no feasible
solution can be found θθθ, then there no solution can be found with any ob-
jective function value lower than +∞. This automatically also defines the
upper bound at the same value. This concludes the proof.
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3.3.3 Step 2b: A feasible solution is found

Computing the upper and lower bounds is more involved when a feasible
solution for θθθ, namely θθθQP, has been found.

Upper bound

Procedure An upper bound value for the objective function is computed
by replacing θθθ with the proposed solution (θθθQP) in the original problem. This
means the following problem is now solved for each value of c (c = 1 ... C):

min
βββc

hc(βββc) = |yyyc,t − fc(βββc,xxxc,t)|pc

+
D∑
d=0

λc,d ·
∫ xJc

x1

|fdc (βββc, v)|qc,d dv (19)

subject to:

bbbLc = [ bLc,0 bLc,1 ... bLc,E ]

= [ xc,1 θQP
1 θQP

2 ... θQP
E ] (20)

bbbUc = [ bUc,0 bUc,1 ... bUc,E ]

= [ θQP
1 θQP

2 ... θQP
E xc,Jc ] (21)

∀d ∈ {0, 1, ... , D},
∀e ∈ {0, 1, ... , E} :

bLc,e ≤ v ≤ bUc,e ⇒


fdc (βββc, v) ≤ 0, if sd,e = −1

fdc (βββc, v) = 0, if sd,e = 0

fdc (βββc, v) ≥ 0, if sd,e = +1

(22)

Each of the above problems is an SDP and can thus be solved to deter-
ministic global optimality by means of interior-point algorithms. The indivi-
didual solutions for βββc are referred to as βββU

c . The vector containing all spline
coefficients is referred to as ηηηU. The resulting overall objective function is an
upper bound to the objective function:

gU = gU(Θk) =
C∑
c=1

hc(βββ
U
c ) (23)

9/13



K. Villez (2015). Bounding Procedures for Fitting of Shape Constrained Splines to
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Proof This optimization completes the computation of an upper bound
for g(ηηη). The objective function value for the computed solution is indeed
an upper bound since the existence of the associated solution proves that at
least one solution has a value equal or lower to this value.

Lower bound

Procedure A lower bound can be computing by means of the following re-
laxation of the problem. For the considered subset Θk, one applies only those
sign constraints which are applied irrespectively of which solution within the
set one chooses. Practically, the entries for θθθ are replaced in the original
problem by their bounds as follows:

min
βββc

hc(βββc) = |yyyc,t − fc(βββc,xxxc,t)|pc

+
D∑
d=0

λc,d ·
∫ xJc

x1

|fdc (βββc, v)|qc,d dv (24)

subject to:

bbbLc = [ bLc,0 bLc,1 ... bLc,E ]

= [ xc,1 θU1 θU2 ... θUE ] (25)

bbbUc = [ bUc,0 bUc,1 ... bUc,E ]

= [ θL1 θL2 ... θLE xc,Jc ] (26)

∀d ∈ {0, 1, ... , D},
∀e ∈ {0, 1, ... , E} :

bLc,e ≤ v ≤ bUc,e ⇒


fdc (βββc, v) ≤ 0, if sd,e = −1

fdc (βββc, v) = 0, if sd,e = 0

fdc (βββc, v) ≥ 0, if sd,e = +1

(27)

Each of the above problems is a again an SDP and can thus be solved to
deterministic global optimality by means of interior-point algorithms. The
individidual solutions for βββc are referred to as βββL

c . The resulting overall
objective function is a lower bound to the objective function:

gL = gL(Θk) =
C∑
c=1

hc(βββ
L
c ) (28)
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Proof Because the applied constraints in the modified lower bounding
problem are always applied for any particular choice of θθθ within the con-
sidered solution set, one can write that the feasible set for βββ in the lower
bound case, ΩL

c (Θk,S), includes the feasible set for any feasible proposal for
θθθ:

∀θθθ ∈ Θk : Ωc(θθθ,S) ⊆ ΩL
c (Θk,S) (29)

Given that the objective function and remaining constraints remain un-
changed, it holds that the proposed procedure leads to a proven lower bound.
Consider that a feasible vector θθθ leads to optimized spline coefficients ηηηθ, then
one can write:

∀θθθ ∈ Θk : gL ≤ g(ηηηθ) (30)

This proves the lower bound.

3.3.4 Convergence

It can be shown the lower bound solution will deliver the globally optimal
solution within a considered set for the transitions in a number of special
cases and only when the considered intervals define a set for θθθ that does not
include any spline basis knot inside its boundaries. The special cases in-
clude transitions implying a change of sign in a piece-wise linear or quadratic
polynomial. In the case of cubic spline functions this corresponds to inflec-
tion points (2nd derivative is piece-wise linear) and extrema (1st derivative is
piece-wise quadratic). This was demonstrated in [1] for the univariate case
(R = 1, C = 1). This features makes that the upper bound solution can be
improved so that it matches the lower bound solution, effectively resulting
in a collapse of the bounds onto each other. As a result, the transition loca-
tions can be solved to absolute precision and to global optimality in a finite
number of steps. This is limited to the single-function case (C = 1).

When fitting multiple functions with the same shape constraints, the
above features of the optimization problem do not necessarily hold anymore.
For example, the lower bound solution described above computed for a set of
shape constrained cubic spline functions and for a set of transitions which are
each limited to a single knot interval will ensure that implied sign changes
in the first and second derivatives occur within the same knot interval for
each fitted function. This does not guarantee however that the sign changes
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for each function occur at the exact same location within the considered
intervals. As such, a collapse of the lower and upper bound is unlikely. A few
convergence properties remain true however. These are given here without
proof.

Conjecture 1. The lower and upper bound converge to each other with
decreasing size of the considered solution sets:(

gU(Θk)− gL(Θk)
)∣∣
k→+∞ → 0 (31)

Conjecture 2. Any strictly positive tolerance (ε > 0) for the difference
between the bounds can be reached within a finite number of iterations of
the branch-and-bound algorithm:

∃k ∈ N0 : gU(Θk)− gL(Θk) < ε (32)
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Multivariate Data Series. Eawag, Dübendorf, Switzerland, Technical Report
TR-002-01-0.

4 Case 2: Distinct qualitative representations

In a more general case, one wishes to fit functions in such a way that different
QRs are applied to different functions. Solving this problem becomes intri-
cate when the transitions for these different QRs have to satisfy equality or
inequality constraints. Proofs for this general setup are under development.
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