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1 Purpose and structure of this document

The main purpose of this document is to elaborate on a few variations on a
method for incremental parameter estimation based on an extent framework
dealing with rank deficient conditions. This version of the technical report is
best read as an addendum to [1] as it is assumed that the reader is familiar
with the methods therein. Early variations of this method can be found
in [2, 3]. Additional information concerning extent-based method preceding
this development can be found in [4, 5, 6, 7, 8, 9]

2 Notation and symbols

The notation and symbols in use are the same as in [1].

3 Methods

3.1 Observable and Unobservable Extent Directions
via Singular Value Decomposition

{sec:svd}
The next paragraphs continue from the end of Section 3.2 in [1] and provide
an alternative to the developments in sections 3.3 to 3.5.
A first variation of the method is obtained by considering an alternative
factorization of the extent-based measurement gain matrix based on singular
value decomposition (SVD). In the original work, G•,a is factorized by means
of the reduced-row echelon form (RREF). However, the same system parti-
tioning would be obtained if G were factorized directly. When using SVD
for decomposition, this is not the case anymore. This means two options are
available:

(a) Factorization of G•,a. In this case, the RREF is used to define observ-
able, ambiguous, and non-sensed extents. Then, the ambiguous extents
are decomposed into observable and non-observable directions among
them.

(b) Factorization of G. In this case, the results of the RREF factorization
are ignored and the SVD of G is used to define observable and non-
observable direction among all extents.
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In this report, only the second option is studied in detail. This is executed
for two reasons:

(a) It enables demonstrating that SVD leads to uncorrelated estimation
errors for all observable directions when G is factorized. This is not
the case when using the factorization of G•,a.

(b) It enables demonstrating that SVD does not lead to optimal partition-
ing of the parameter estimation problem.

3.1.1 Factorization of G
{factor}

Let A be the rank of the (M×R)-dimensional measurement matrix G. Then,
G can be factorized into the (M × A)-dimensional measurement matrix Go

and the (R× A)-dimensional matrix Vo:

G = Go Vo
T
. (1) {factor10}

The matrices Go and Vo are computed via singular value decomposition of
G:

G = U S Vo = Go Vo (2) {factor13}

3.1.2 Observable Extent Directions

We define the vector χo(t) consisting of the A observable directions among
the extents as follows:

χo(t) := Vo
T
x(t). (3) {direct13}

With this definition, the measurement equation (Eq. 13 in [1]) can be rewrit-
ten as:

ỹh = y0 +
1

V
Goχo(th) + εh.

Since the (R × A)-dimensional matrix Go has full column rank, one can
compute the maximum-likelihood estimates χ̃o,h of the observable extents
and extent directions directly from the measurements:

χ̃o,h = P (ỹh − y0) , (4) {comput10}
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with the (A×M)-dimensional matrix P given by:

P = V
(
Go

T
Σ−1
ε Go

)−1

Go
T

Σ−1
ε . (5) {comput11}

The associated expected variance-covariance matrix of the estimation errors
becomes:

Σχ = P Σε P
T =

(
Go

T
Σ−1
ε Go

)−1

. (6) {comput12}

Remark 1. Since Go consists of orthonormal column vectors it follows that
Σχ will be diagonal if Σε is diagonal, meaning that the estimation errors are
uncorrelated.

3.1.3 Unobservable Extent Directions

The unobservable extent directions span the null space of G, which is also the

null space of Vo
T

. Denoting this null space by the (R×(R−A))-dimensional
matrix Vu,

Vu := null
(
Vo

T
)
, (7)

we define the vector χu(t) consisting of the R−A unobservable extents and
non-sensed extent directions as follows:

χu(t) := Vu
T
x(t) . (8) {direct30}

With this definition, the expression for the number of moles (Eq. 12 in [1]
can be rewritten as:

n(t) = n0 + N o
T
χo(t) + N u

T
χu(t) (9) {direct31}

with:

N o :=
(
Vo

)+
N (10) {direct32}

N u :=
(
Vu

)+
N (11) {direct33}
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3.2 Partitioning into subsystems with smallest number
of parameters

{sec:partition}
An algorithm is developed to group the kinetic parameters into J parameter
subsets (j = 1, . . . , J), each represented as a T (j)-dimensional vector θ(j)

satisfying the following properties:

• The size T (j) of each parameter subset should be as small as possible.

• The estimates θ̂(j) in the jth parameter subset can be computed with-
out consideration of any other parameter subset θ(i), i 6= j.

• None of the parameter sets are a subset of any of the other parameter
sets.

Note that the last property is different from the one presented in [1]. To ac-
count for this, we apply modifications in step 1 and 2 of the procedure. These
are shown in blue. The original procedure is named SI (sharing infeasible).
The newly proposed one is named SP (sharing permitted). We also explain
the modifications necessary to account for the SVD-based decomposition de-
scribed above and indicate these in red. Note that these modifications can
be applied independently of each other, leading to four possible combined
methods: SVD-SI, SVD-SP, RREF-SI (as in [1]), and RREF-SP.

3.2.1 Step 1—Model Reformulation
{Step1}

An extended model is first defined to describe the dynamics of all extents
and all observable directions among the ambiguous extents. To this end, the
following procedure is applied:

(a) Express ẋ(t) as a function of χo(t) and x(t)

The dynamic model (Eq. 6-8 in [1]) is modified by replacing n(t) with
the right-hand side of (9):

ẋ(t) = V f (χo(t),χu(t),θ) , x(0) = 0 . (12) {steponeA1}

The vector χu(t) is now replaced with the right-hand side of (8). As a
result, the above system becomes:

ẋ(t) = V f (χo(t),x(t),θ) , x(0) = 0 . (13) {steponeA2}
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(b) State augmentation

Define the ρaug-dimensional vector χaug(t) :=

[
x(t)
χo(t)

]
=

[
IR

Vo
T

]
x(t)

that includes all extents and observable extent directions, with ρaug =
R+A. The dynamic behavior of χaug(t) can be described by a differential-
algebraic system including the R differential equations (13) and the A
algebraic expressions (3):

ẋ(t) = V f (χo(t),x(t),θ) , x(0) = 0 (14) {steponeB1}

χo(t) = Vo
T
x(t) . (15) {steponeB2}

(c) Interpolation of the observable extents and extent directions

To increase the efficiency of system partitioning, it is useful to account
for the fact that the observable extents and extent directions can be
expressed in terms of measurements. However, since the observable ex-
tents and extent directions are only known at H discrete measurement
points, their values always need to be obtained via interpolation. In
this work, we apply piece-wise linear interpolation as follows:

χ̃o,i(t) := χ̃o,h +
t− th

th+1 − th
(
χ̃o,h+1 − χ̃o,h

)
, th ≤ t < th+1 , h = 1, . . . , H,

(16) {comput20}

with which the system (14) and (15) becomes:

ẋ(t) = V f
(
χ̃o,i(t),x(t),θ

)
, x(0) = 0 (17) {steponeC1}

χo(t) = Vo
T
x(t) . (18) {steponeC2}

3.2.2 Step 2—Graph-Based System Partitioning

The equation system (17) and (18) is now analyzed by means of a graph
partitioning procedure to determine the smallest groups of kinetic parameters
that can be estimated separately while allowing that parameters appear in
multiple sets. To this end, the following steps are performed:

(a) Create a graph
One creates a directed graph F with a vertex for every state variable
in χaug(t) and every parameter in θ. Hence, this graph has R+ ρo + T
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vertices. A directed arc is added from vertex v to vertex w if the vth
element of

[
χaug(t)

θ

]
appears in the right-hand side of the wth equation

in (17) and (18) (v = 1, . . . , R + A + T , w = 1, . . . , R + A). This
graph represents the information flow for simulating (17) and (18).
Additional arcs and vertices may be added to describe the influence of
known inputs and the links between extents and measured variables.
For system partitioning, this is however unnecessary and omitted for
clarity.

(b) Extents predicted from measurements or simulation
The simultaneous approach uses a complete model of the reaction sys-
tem to predict the extents (or concentrations) via simulation. If one
wants to partition the reaction system into small groups of reactions,
only the extents belonging to a given group can be generated via the
simulation of that group. The other extents that enter the rate laws
must be provided by the user as quantities known from measurements.

That information can be included in the graph F by annotating the
various arcs. The arcs that originate at a vertex corresponding to an
observable extent or an observable extent direction are labeled obser-
vation arcs, considering that observable extent or an observable extent
direction can be replaced with their measured values (16). They are
visualized as dashed-line arrows. The remaining arcs are labeled sim-
ulation arcs and visualized as solid-line arrows. The observation arcs
represent the idea that the elements of χ̃o,i(t) can be regarded as known
inputs for simulating (17) and (18).

(c) Subgraph selection
Identify the J := A subgraphs F (j) such that each of the subgraphs
consists of arcs and vertices in F on directed paths that (i) lead to
one of the A vertices representing an observable extent or an observ-
able extent direction (ignore observable extents in the SVD case); and
(ii) consist of simulation arcs only. The selected vertices represent an

R(j)-dimensional vector of extents x(j)(t), a ρ
(j)
o -dimensional vector of

directions χ(j)
o (t), and a T (j)-dimensional vector of parameters θ(j).

The positions of x(j)(t) in x(t) are given by the vector j so that:

x(j)(t) := Ij,• x(t) (19) {steptwoC11}

f (j) (•) := Ij,• f (•) , (20) {steptwoC12}
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and the selection matrices Λ
(j)
o and Λ

(j)
θ are defined so that:

χ(j)
o (t) := Λ(j)

o χo(t) (21) {steptwoC13}

θ(j) := Λ
(j)
θ θ. (22) {steptwoC14}

This means that each subgraph F (j) represents a subset of Equations
(17) and (18) that describes the dynamics of x(j)(t) and χ

(j)
o (t) without

reference to any other state variable:

ẋ(j)(t) = V f (j)
(
χ̃o,i(t),x

(j)(t),θ(j)
)
, x(j)(0) = xo (23) {steptwoC21}

χ(j)
o (t) = U(j) x(j)(t), (24) {steptwoC22}

with U(j) := Λ
(j)
o Vo

T Ia,• Ij,•
T .

(d) Redundant subsets of equations

It is possible that one subset of equations exhibits a parameter vec-
tor which is included completely in the parameter vector of subset of
equations. Three possible approaches to deal with this are feasible:

(a) Minimal overlap. Subsets of equations with parameter vectors in-
cluded completely in the parameter vector of another subset of
equations are merged into a single subset. This minimizes the
number of parameter estimation problems that are solved.

(b) Sequential. Subsets of equations with the exact same parameter
are merged. Then, the subsystems with parameter vectors in-
cluded completely in the parameter vector of another subset of
equations are used first during parameter estimation. The ob-
tained values can function as an initial guess for the subset of
equations with the larger parameter vector. This approach could
also be useful for model diagnosis, e.g. to identify whether certain
model components need an revised structure.

(c) One-by-one. The identified subsystems are left unmodified, even
when there are subsystems with parameter vectors that are exactly
the same. In this case, the number of subsystems will always equal
the rank A of G. The order in which the subsystems are used
can be optimized to enable reuse of parameter estimates as initial
guesses in subsequent parameter estimation problems.
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In the present report, the first approach is applied.

(e) Add observation arcs and vertices

For every graph F (j), add (i) the observation arcs that have a target
vertex belonging to F (j) and (ii) the source vertices of the added obser-
vation arcs. These added source vertices represent the minimal subset
of interpolants in χ̃o,i(t) (16) that are required to simulate x(j)(t) and

χ
(j)
o (t) and are referred to as χ̃

(j)

o,i (t). This means that the graph F (j)

now represents all information required to simulate the observable ex-
tents x(j)(t) and the observable extent directions χ

(j)
o (t). Accordingly,

one can rewrite the jth equation subsystem as:

ẋ(j)(t) = V f (j)
(
χ̃

(j)

o,i (t),χ
(j)
o (t),x(j)(t),θ(j)

)
, x(j)(0) = xo (25) {steptwoD1}

χ(j)
o (t) = U(j) x(j)(t). (26) {steptwoD2}

At the end of this procedure, the equation system (17) and (18) is approx-
imated by J smaller equation subsystems, each including a subset of the
kinetic parameters. As intended, every kinetic parameter appears in at most
one of the J subsystems. In addition, the identified subsystems do not share
any of the observable extents or extent directions as state variables, that is,
each observable extent and extent direction is simulated in only one of the
identified subsystems.

3.3 Parameter Estimation Methods

The applicable parameter estimation methods are exactly the same as in
[1]. In this report, we do not solve the parameter estimation problems but
restrict ourselves to a discussion of the partitioning results.

3.4 Implementation

All results can be reproduced with the open-source Efficient Model Identifi-
cation (EMI) MATLAB package (v4.1) for efficient model identification [8]
that is extended to include all methods and simulations used in this study.
At the time of writing, this package can be found on Gitlab at this location:
https://gitlab.com/krisvillez/emi.
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4 Results

The methods are demonstrated with a small toy example, deliberately de-
signed to demonstrate observed challenges with the newly obtained methods.

4.1 Example

This reaction system has R = 5 reactions involving S = 4 species (A to D)
with the following reaction scheme:

R1 : A + B −−→ C

R2 : 2 A + 2 B −−→ 2 C

R3 : A −−→ C

R4 : B −−→ C

R5 : C −−→ D

with

N :=


−1 −1 +2 0
−2 −2 +4 0
−1 0 +1 0
0 −1 +1 0
0 0 −1 +1

 . (27) {ex11}

4.1.1 Dynamic Model in Terms of Numbers of Moles

The simulated kinetic rate expressions are:

f (n(t),θ) :=


k1
V 2 (n1(t)n2(t)−K1 V n3(t))

k2
V 4 n1(t)

2 n2(t)
2

k3
V
n1(t)

k4
V

(n2(t)−K4 n3(t))
k5
V
n3(t)

2

 (28) {ex12}

with θ :=
[
k1 k2 k3 k4 k5 K1 K4

]T
.

We assume all concentrations are measured, that is,

M := I4. (29)
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4.1.2 Extent labeling

It follows that G equals:

G = M NT =


−1 −2 −1 0 0
−1 −2 0 −1 0
+2 +4 +1 +1 −1
0 0 0 0 +1

 . (30)

The reduced row echelon form of G is

B =


+1 +2 0 +1 0
0 0 +1 −1 0
0 0 0 0 +1
0 0 0 0 0

 , (31)

which indicates that there are:

• Rn = 0 non-sensed extents,

• Ro = 1 observable extent, xo(t) = x5(t),

• Ra = 4 ambiguous extents, xa(t) =
[
x1(t) x2(t) x3(t) x4(t)

]T
,

which gives:

G•,a =


−1 −2 −1 0
−1 −2 0 −1
+2 +4 +1 +1
0 0 0 0

 . (32)

4.1.3 Method 1 – SVD-SI

Observable and Unobservable Extent Directions We start with the
SVD-SI method. This means the methods in Section 3.1 are used and the
modifications indicated in red in Section 3.2 are applied [1].
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SVD factorization of G leads to:

Go =


2.3199 −0.3433 −0.7071
2.3199 −0.3433 0.7071
−4.7863 −0.3026 0
0.1464 0.9892 0

 , (33)

Vo
T

=

 −0.4218 −0.8436 −0.2109 −0.2109 +0.1464
+0.0624 +0.1248 +0.0312 +0.0312 +0.9892

0 0 +0.7071 −0.7071 0

 , (34)

so that

χo(t) = Vo
T
x(t)

=

 −0.4218 −0.8436 −0.2109 −0.2109 +0.1464
+0.0624 +0.1248 +0.0312 +0.0312 +0.9892

0 0 +0.7071 −0.7071 0

 x(t) (35)

χo(t) =

[
x(t)
χo(t)

]
. (36)

The values of the observable extents and extent directions χ̃o,h :=
[
x̃5,h χ̃o,1,h χ̃o,2,h

]T
can be computed from (4) with

P =

 +0.0689 +0.0689 −0.1421 +0.0043
−0.2629 −0.2629 −0.2317 +0.7575
−0.7071 +0.7071 0 0

 . (37)

With Σε = I4 10−4 mol2L−2, the expected estimation error variance-covariance
matrix Σχ is:

Σχ =

 0.0297 0 0
0 0.7658 0
0 0 1.0000

 10−4. (38)

A clear advantage of the SVD decomposition is therefore that the estimation
errors in the computed extent directions are uncorrelated.
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Expression (9) is then specified with the following vectors and matrices:

N o :=

 +α1 +α1 −α4 +α6

−α2 −α2 −α5 +α7

−α3 +α3 0 0

 (39)

=

 +2.3199 +2.3199 −4.7863 +0.1464
−0.3433 −0.3433 −0.3026 +0.9892
−0.7071 +0.7071 0 0

 . (40)

N u := 05×4 (41)

System partitioning Following Steps 1(a)-(b) in Section 3.2.1 (with SVD-
related modifications, in red above), the augmented equation system be-
comes:

ẋ =



k1
V 2

[
(n0,1 + α1 χ̃o,1 − α2 χ̃o,2 − α3 χ̃o,3) . . .
. . . (n0,2 + α1 χ̃o,1 − α2 χ̃o,2 + α3 χ̃o,3) . . .
. . .−K1 V (n0,3 − α4 χ̃o,1 − α5 χ̃o,2)

]
k2
V 4 (n0,1 + α1 χ̃o,1 − α2 χ̃o,2 − α3 χ̃o,3)

2 . . .

. . . (n0,2 + α1 χ̃o,1 − α2 χ̃o,2 + α3 χ̃o,3)
2

k3
V

(n0,1 + α1 χ̃o,1 − α2 χ̃o,2 − α3 χ̃o,3)
k4
V

[
(n0,2 + α1 χ̃o,1 − α2 χ̃o,2 + α3 χ̃o,3) . . .

. . .−K4 (n0,3 − α4 χ̃o,1 − α5 χ̃o,2)
]

k5
V

(n0,3 − α4 χ̃o,1 − α5 χ̃o,2)
2


, x (0) = 0

(42)

χo =

 −0.4218 −0.8436 −0.2109 −0.2109 +0.1464
+0.0624 +0.1248 +0.0312 +0.0312 +0.9892

0 0 +0.7071 −0.7071 0

 x(t). (43)

Figure 1 shows the graph corresponding to the above equation system. The
vertices corresponding to the observable extents and extent direction are
shaded, while the other vertices are white. The simulation arcs are shown
with full-line arrows, while the observation arcs are shown as dashed-line
arrows. To identify possible subsystems, one removes all the observation
arcs, as shown in Figure 2. In this case, one can only identify a single
subsystem, meaning that the SVD-SI method is an ineffective approach to
divide the parameter estimation problem into smaller problems.
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Figure 1: Method 1—Graph F . There are three shaded vertices correspond-
ing the observable extent directions (χo,1, χo,2, χo,3). The remaining vertices
represent the extents (x1, x2, x3, x4, and x5) and the parameters (k1, k2, k3,
k4, k5, K1, K4). The simulation and observation arcs are shown as solid-line
and dashed-line arrows, respectively. {fig:method1:graph1}
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Figure 2: Method 1—Graph F without observation arcs. Removing the
observation arcs from F and graph partitioning results in a single subgraph
for all parameters. {fig:method1:graph2}
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4.1.4 Method 2 – SVD-SP

We continue with the SVD-SP method. This means the methods in Section
3.1 are used and all modifications (red and blue) indicated in Section 3.2 are
applied. In this case, all results are exactly the same as with the SVD-SI
method up to the generation of F as shown in Figure 3 .
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Figure 3: Method 2—Graph F . There are three shaded vertices correspond-
ing the observable extent directions (χo,1, χo,2, χo,3). The remaining vertices
represent the extents (x1, x2, x3, x4, and x5) and the parameters (k1, k2, k3,
k4, k5, K1, K4). The simulation and observation arcs are shown as solid-line
and dashed-line arrows, respectively. {fig:method2:graph1}

Applying the partitioning method shown above leads to three subgraphs at
the end of Step 2c. These are shown in Figure 4-6
Applying Step 2d means that each of these subgraphs are joined together
into one graph again. This is because all parameter vertices in subgraph 2
and 3 are also parameter vertices in subgraph 1. Consequently, the SVD-SP
method is ineffective as a way to separate the original parameter estimation
problem into smaller problems. However, and as indicated above, an alter-
native strategy could consist of estimating the parameters k3, k4, and K4 by
first solving the parameter estimation problem corresponding to subgraph 3,
followed by estimation of all parameters using the available estimates for k3,
k4, and K4 as initial guesses.
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Figure 4: Method 2— Subgraph 1. Removing the observation arcs from
F and finding paths to the vertex for χo,1 results in a subgraph in which
all parameters (k1, k2, k3, k4, K1, and K4) are connected to the observable
quantity χo,1. {fig:method2:graph2a}
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Figure 5: Method 2— Subgraph 2. Removing the observation arcs from
F and finding paths to the vertex for χo,2 results in a subgraph in which
all parameters (k1, k2, k3, k4, K1, and K4) are connected to the observable
quantity χo,2. {fig:method2:graph2b}
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Figure 6: Method 2— Subgraph 3. Removing the observation arcs from F
and finding paths to the vertex for χo,3 results in a subgraph in which the
parameters k3, k4, and K4 are connected to the observable quantity χo,3. {fig:method2:graph2c}
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4.1.5 Method 3 – RREF-SI

Observable and Unobservable Extent Directions We now apply the
RREF-SI method. This is the exact method represented in [1].
The factorization of G•,a gives:

Go =


−1 −1
−1 0
+2 +1
0 0

 , Vo
T =

[
+1 +2 0 1
0 0 +1 −1

]
, (44)

so that

χo(t) = Vo
T Ia,• x(t) =

[
+1 +2 0 +1 0
0 0 +1 −1 0

]
x(t) (45)

=

[
x1(t) + 2 x2(t) + x4(t)

x3(t)− x4(t)

]
(46)

χo(t) =

 x5(t)
x1(t) + 2 x2(t) + x4(t)

x3(t)− x4(t)

 . (47)

The values of the observable extents and extent directions χ̃o,h :=
[
x̃5,h χ̃o,1,h χ̃o,2,h

]T
can be computed from (4) with

P =

 −1
4
−1

4
−1

4
+3

4

+1
4
−3

4
+1

4
+1

4

−1 +1 0 0

 . (48)

With Σε = I4 10−4 mol2L−2, the expected estimation error variance-covariance
matrix Σχ is:

Σχ =

 +3 +1 0
+1 +3 −4

0 −4 +8

 1

4
10−4. (49)

Expression (9) is then specified with the following vectors and matrices:

N o :=

 0 0 −1 +1
−1 −1 +2 0
−1 0 +1 0

 . (50)

N u := 05×4 (51)
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System partitioning Following Steps 1(a)-(b) in Section 3.2.1 (without
modifications, as in [1]), the augmented equation system becomes:

ẋ =



k1
V 2

[
(n0,1 − χ̃o,1 − χ̃o,2) (n0,2 − χ̃o,1) . . .
. . .−K1 V (n0,3 − x̃5 + 2 χ̃o,1 + χ̃o,2)

]
k2
V 4 (n0,1 − χ̃o,1 − χ̃o,2)

2 (n0,2 − χ̃o,1)
2

k3 (n0,1 − χ̃o,1 − χ̃o,2)
k4
V

[
(n0,2 − χ̃o,1) . . .

. . .−K4 (n0,3 − x̃5 + 2 χ̃o,1 + χ̃o,2)
]

k5
V 2 (n0,3 − x̃5 + 2 χ̃o,1 + χ̃o,2)

2


, x (0) = 0

(52)

χo =

[
x1 + 2x2 + x4

x3 − x4

]
. (53)

Figure 7 shows the graph corresponding to the above equation system. The
vertices corresponding to the observable extents and extent direction are
shaded, while the other vertices are white. The simulation arcs are shown
with full-line arrows, while the observation arcs are shown as dashed-line
arrows. To identify possible subsystems, one removes all the observation
arcs, which results in two subgraphs as shown in Figure 8. The first subgraph
includes the parameters k1, k2, k3, k4, K1, and K4, which affect the observable
quantities χo,1 and χo,2 via a network that also involves the unobservable
extents x1, x2, x3, and x4. The second subgraph is much smaller and includes
the parameter k5 that influences the observable extent x5. Consequently, this
graph partitioning enables splitting the parameter estimation problem into
two smaller parameter estimation problems. One to estimate k1, k2, k3, k4,
K1, and K4 and one to estimate k5. The solutions are computed with the
EMI toolbox (not shown).
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Figure 7: Method 3—Graph F . There are three shaded vertices corre-
sponding the observable extent (x5) and extent directions (χo,1, χo,2). The
remaining vertices represent the unobservable extents (x1, x2, x3, and x4) and
the parameters (k1, k2, k3, k4, k5, K1, K4). The simulation and observation
arcs are shown as solid-line and dashed-line arrows, respectively. {fig:method3:graph1}
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Figure 8: Method 3—Graph F without observation arcs. Removing the
observation arcs from F and graph partitioning results in 2 subgraphs for
the parameters as shown in the inset: one graph in which k1, k2, k3, k4, K1,
and K4 are connected to the observable quantities χo,1 and χo,2, and another
graph in which k5 is connected to the observable extent x5. {fig:method3:graph2}
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4.1.6 Method 4 – RREF-SP

We now apply the RREF-SP method. This means the methods in [1] are
used except for the modifications indicated in blue in Section 3.2. In this
case, all results are exactly the same up to the generation of F as shown in
Figure 9 .
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Figure 9: Method 4—Graph F . There are three shaded vertices corre-
sponding the observable extent (x5) and extent directions (χo,1, χo,2). The
remaining vertices represent the unobservable extents (x1, x2, x3, and x4) and
the parameters (k1, k2, k3, k4, k5, K1, K4). The simulation and observation
arcs are shown as solid-line and dashed-line arrows, respectively. {fig:method4:graph1}

Applying the partitioning method shown above leads to three subgraphs at
the end of Step 2c. These are shown in Figure 10-12
Applying Step 2d has no effect in this case. This is because each of the sub-
graphs include at least one parameter vertex which does not appear in any of
the other subgraphs. Consequently, this graph partitioning enables splitting
the parameter estimation problem into three smaller parameter estimation
problems with 1, 3, and 5 parameters. One to estimate k5, one to estimate
k1, k2, k4, K1, and K4 and one to estimate k3, k4, and K4. This also means
k4 and K4 are estimated twice. The solutions are computed with the EMI
toolbox (not shown).
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Figure 10: Method 4— Subgraph 1. Removing the observation arcs from
F and finding paths to the vertex for χo,1 results in a subgraph in which the
parameter k5 is connected to the observable quantity x5. {fig:method4:graph2a}
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Figure 11: Method 4— Subgraph 2. Removing the observation arcs from
F and finding paths to the vertex for χo,2 results in a subgraph in which the
parameters k1, k2, k4, K1, and K4 are connected to the observable quantity
χo,1. {fig:method4:graph2b}
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Figure 12: Method 4— Subgraph 3. Removing the observation arcs from
F and finding paths to the vertex for χo,3 results in a subgraph in which the
parameters k3, k4, and K4 are connected to the observable quantity χo,2. {fig:method4:graph2c}
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4.2 Example – Alternative system representation 1

We now apply the RREF-SP method again to the same example studied
above. However, we change the order in which the reactions are represented.
Concretely, we swap the order of the 3rd and 4th reaction in the 4th and 3rd
position prior to analysis. This means N and f (•) are modified as follows:

N :=


−1 −1 +2 0
−2 −2 +4 0
0 −1 +1 0
−1 0 +1 0
0 0 −1 +1

 (54) {ex11alt1}

f (n(t),θ) :=


k1
V 2 (n1(t)n2(t)−K1 V n3(t))

k2
V 4 n1(t)

2 n2(t)
2

k4
V

(n2(t)−K4 n3(t))
k3
V
n1(t)

k5
V
n3(t)

2

 (55) {ex12alt1}

Everything else is the same as before.

4.2.1 Extent labeling

It follows that G equals:

G = M NT =


−1 −2 0 −1 0
−1 −2 −1 0 0
+2 +4 +1 +1 −1
0 0 0 0 +1

 . (56)

The reduced row echelon form of G is

B =


+1 +2 0 +1 0
0 0 +1 −1 0
0 0 0 0 +1
0 0 0 0 0

 , (57)

which delivers the same labelling as before.
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It follows that:

G•,a =


−1 −2 0 −1
−1 −2 −1 0
+2 +4 +1 +1
0 0 0 0

 . (58)

4.2.2 Method 4 – RREF-SP

We now apply the RREF-SP method as before.

Observable and Unobservable Extent Directions The factorization of
G•,a gives:

Go =


−1 0
−1 −1
+2 +1
0 0

 , Vo
T =

[
+1 +2 0 +1
0 0 +1 −1

]
, (59)

so that

χo(t) = Vo
T Ia,• x(t) =

[
+1 +2 0 +1 0
0 0 +1 −1 0

]
x(t) (60)

=

[
x1(t) + 2 x2(t) + x3(t)

x4(t)− x3(t)

]
(61)

χo(t) =

 x5(t)
x1(t) + 2 x2(t) + x3(t)

x4(t)− x3(t)

 . (62)

The values of the observable extents and extent directions χ̃o,h :=
[
x̃5,h χ̃o,1,h χ̃o,2,h

]T
can be computed from (4) with

P =

 −1
4
−1

4
−1

4
+3

4

−3
4

+1
4

+1
4

+1
4

+1 −1 0 0

 . (63)

With Σε = I4 10−4 mol2L−2, the expected estimation error variance-covariance
matrix Σχ is:

Σχ =

 +3 +1 0
+1 +3 −4

0 −4 +8

 1

4
10−4. (64)
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Expression (9) is then specified with the following vectors and matrices:

N o :=

 0 0 −1 +1
−1 −1 +2 0
0 −1 +1 0

 . (65)

N u := 05×4 (66)

System partitioning Following Steps 1(a)-(b) in Section 3.2.1 (without
modifications, as in [1]), the augmented equation system becomes:

ẋ =



k1
V 2

[
(n0,1 − χ̃o,1) (n0,2 − χ̃o,1 − χ̃o,2) . . .
. . .−K1 V (n0,3 − x̃5 + 2 χ̃o,1 + χ̃o,2)

]
k2
V 4 (n0,1 − χ̃o,1)

2 (n0,2 − χ̃o,1 − χ̃o,2)
2

k4
V

[
(n0,2 − χ̃o,1 − χ̃o,2) . . .

. . .−K4 (n0,3 − x̃5 + 2 χ̃o,1 + χ̃o,2)
]

k3
V

(n0,1 − χ̃o,1)
k5
V

(n0,3 − x̃5 + 2 χ̃o,1 + χ̃o,2)
2


, x (0) = 0

(67)

χo =

[
x1 + 2x2 + x3

x4 − x3

]
. (68)

Figure 13 shows the graph corresponding to the above equation system. The
vertices corresponding to the observable extents and extent direction are
shaded, while the other vertices are white. The simulation arcs are shown
with full-line arrows, while the observation arcs are shown as dashed-line
arrows.
Applying the partitioning method shown above leads to three subgraphs at
the end of Step 2c. These are shown in Figure 14-16
Applying Step 2d has no effect in this case. This is because each of the sub-
graphs include at least one parameter vertex which does not appear in any of
the other subgraphs. Consequently, this graph partitioning enables splitting
the parameter estimation problem into three smaller parameter estimation
problems with 1, 3, and 4 parameters. n this case, only 1 parameter (k3)
is estimated twice. The solutions are computed with the EMI toolbox (not
shown).
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Figure 13: Method 4—Graph F for alternative representation 1. There are
three shaded vertices corresponding the observable extent (x5) and extent
directions (χo,1, χo,2). The remaining vertices represent the unobservable
extents (x1, x2, x3, and x4) and the parameters (k1, k2, k3, k4, k5, K1, K4).
The simulation and observation arcs are shown as solid-line and dashed-line
arrows, respectively. {fig:alt1method4:graph1}
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Figure 14: Method 4— Subgraph 1 for alternative representation 1. Re-
moving the observation arcs from F and finding paths to the vertex for χo,1

results in a subgraph in which the parameter k5 is connected to the observable
quantity x5. {fig:alt1method4:graph2a}
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Figure 15: Method 4— Subgraph 2 for alternative representation 1. Remov-
ing the observation arcs from F and finding paths to the vertex for χo,2 results
in a subgraph in which the parameters k1, k2, k3, and K1 are connected to
the observable quantity χo,1. {fig:alt1method4:graph2b}
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Figure 16: Method 4— Subgraph 3 for alternative representation 1. Re-
moving the observation arcs from F and finding paths to the vertex for χo,3

results in a subgraph in which the parameters k3, k4, and K4 are connected
to the observable quantity χo,2. {fig:alt1method4:graph2c}
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4.3 Example – Alternative system representation 2

We now apply the RREF-SP method again to the same example studied
above. However, we change the order once more. This time, we reverse the
order of the first four reactions prior to analysis. This means N and f (•) are
modified as follows:

N :=


0 −1 +1 0
−1 0 +1 0
−2 −2 +4 0
−1 −1 +2 0
0 0 −1 +1

 (69) {ex11alt2}

f (n(t),θ) :=


k4
V

(n2(t)−K4 n3(t))
k3
V
n1(t)

k2
V 4 n1(t)

2 n2(t)
2

k1
V 2 (n1(t)n2(t)−K1 V n3(t))

k5
V
n3(t)

2

 (70) {ex12alt2}

Everything else is the same as before.

4.3.1 Extent labeling

It follows that G equals:

G = M NT =


0 −1 −2 −1 0
−1 0 −2 −1 0
+1 +1 +4 +2 −1
0 0 0 0 +1

 . (71)

The reduced row echelon form of G is

B =


+1 0 +2 +1 0
0 +1 +2 +1 0
0 0 0 0 +1
0 0 0 0 0

 , (72)

which delivers the same labeling as before.
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It follows that:

G•,a =


0 −1 −2 −1
−1 0 −2 −1
+1 +1 +4 +2
0 0 0 0

 . (73)

4.3.2 Method 4 – RREF-SP

We now apply the RREF-SP method as before.

Observable and Unobservable Extent Directions The factorization of
G•,a gives:

Go =


0 −1
−1 0
+1 +1
0 0

 , Vo
T =

[
+1 0 +2 +1
0 +1 +2 +1

]
, (74)

so that

χo(t) = Vo
T Ia,• x(t) =

[
+1 0 +2 +1 0
0 +1 +2 +1 0

]
x(t) (75)

=

[
x4(t) + 2 x2(t) + x1(t)
x3(t) + 2 x2(t) + x1(t)

]
(76)

χo(t) =

 x5(t)
x4(t) + 2 x2(t) + x1(t)
x3(t) + 2 x2(t) + x1(t)

 . (77)

The values of the observable extents and extent directions χ̃o,h :=
[
x̃5,h χ̃o,1,h χ̃o,2,h

]T
can be computed from (4) with

P =

 −1
4
−1

4
−1

4
+3

4

+1
4
−3

4
+1

4
+1

4

−3 +1 +1 +1

 . (78)

With Σε = I4 10−4 mol2L−2, the expected estimation error variance-covariance
matrix Σχ is:

Σχ =

 +3 +1 +1
+1 +3 −1
+1 −1 +8

 1

4
10−4. (79)
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Expression (9) is then specified with the following vectors and matrices:

N o :=

 0 0 −1 +1
0 −1 +1 0
−1 0 +1 0

 . (80)

N u := 05×4 (81)

System partitioning Following Steps 1(a)-(b) in Section 3.2.1 (without
modifications, as in [1]), the augmented equation system becomes:

ẋ =


k4
V

[
(n0,2 − χ̃o,1)−K4 (n0,3 − x̃5 + χ̃o,1 + χ̃o,2)

]
k3
V

(n0,1 − χ̃o,2)
k2
V 4 (n0,1 − χ̃o,2)

2 (n0,2 − χ̃o,1)
2

k1
V 2

[
(n0,1 − χ̃o,2) (n0,2 − χ̃o,1)−K1 V (n0,3 − x̃5 + χ̃o,1 + χ̃o,2)

]
k5
V

(n0,3 − x̃5 + χ̃o,1 + χ̃o,2)
2

 , x (0) = 0

(82)

χo =

[
x4 + 2x2 + x1
x3 + 2x2 + x1

]
. (83)

Figure 17 shows the graph corresponding to the above equation system. The
vertices corresponding to the observable extents and extent direction are
shaded, while the other vertices are white. The simulation arcs are shown
with full-line arrows, while the observation arcs are shown as dashed-line
arrows.
Applying the partitioning method shown above leads to three subgraphs at
the end of Step 2c. These are shown in Figure 14-20.
Applying Step 2d has no effect in this case. This is because each of the sub-
graphs include at least one parameter vertex which does not appear in any of
the other subgraphs. Consequently, this graph partitioning enables splitting
the parameter estimation problem into three smaller parameter estimation
problems with 1, 4, and 5 parameters. n this case, 3 parameters (k1, k2, and
K1) are estimated twice. The solutions are computed with the EMI toolbox
(not shown).
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Figure 17: Method 4—Graph F for alternative representation 2. There are
three shaded vertices corresponding the observable extent (x5) and extent
directions (χo,1, χo,2). The remaining vertices represent the unobservable
extents (x1, x2, x3, and x4) and the parameters (k1, k2, k3, k4, k5, K1, K4).
The simulation and observation arcs are shown as solid-line and dashed-line
arrows, respectively. {fig:alt2method4:graph1}

x
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Figure 18: Method 4— Subgraph 1 for alternative representation 2. Re-
moving the observation arcs from F and finding paths to the vertex for x5
results in a subgraph in which the parameter k5 is connected to the observable
quantity x5. {fig:alt2method4:graph2a}
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Figure 19: Method 4— Subgraph 2 for alternative representation 2. Re-
moving the observation arcs from F and finding paths to the vertex for χo,1

results in a subgraph in which the parameters k1, k2, k4, K1, and K4 are
connected to the observable quantity χo,1. {fig:alt2method4:graph2b}
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Figure 20: Method 4— Subgraph 3 for alternative representation 2. Remov-
ing the observation arcs from F and finding paths to the vertex for χo,2 results
in a subgraph in which the parameters k1, k2, k3, and K1 are connected to
the observable quantity χo,2. {fig:alt2method4:graph2c}
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4.4 Example – Screening alternative representations

As a final result, we enumerate all permutations of the order of first 4 reac-
tions and apply it to the example prior to analysis. There are therefore 24
possible presentations of the same example. We then apply the RREF-SP
method and investigate the partitioning result by inspecting the subsystems
to which each parameter belongs to.
The results are shown in Figure 21. Depending on the chosen permutation,
one obtains 1 of 3 distinct partitioning results:

(a) 4 permutations lead to subsystems with parameter set (i) k5; (ii) k1,
K1, k2, and k3; and (iii) k1, K1, k2, and K4. k1, K1, and k2 are thus
estimated twice.

(b) 10 permutations lead to subsystems with parameter set (i) k5; (ii) k1,
K1, k2, k4, and K4; and (iii) k3, k4, and K4. k4 and K4 are thus
estimated twice.

(c) 10 permutations lead to subsystems with parameter set (i) k5; (ii) k1,
K1, k2, and k3; and (iii) k3, k4, and K4. k3 is thus estimated twice.
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Figure 21: Method 4—Partitioning results for the seven parameters and for
every permutation of the order of the first 4 reactions. Black, dark blue, and
white are used for parameters belonging exclusively to subsystem 1, 2, and 3.
Parameters belonging to subsystem 2 and 3 simultaneously are shown with
light blue. One can see that the chosen permutation affects the obtained
subsystem partitioning result. {fig:permute}
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5 Discussion

5.1 Summary

This technical report explores a number of variations of the method for in-
cremental parameter estimation presented in [1]. These variations include:

(a) A variation in which the computed extents and extent directions are
defined via singular value decomposition (SVD) rather than the reduced
row echelon form (RREF).

(b) A variation in which the system partitioning procedure is set up so to
obtain smaller parameter sets compared to the original method (sharing
infeasible, SI), in particular by allowing that a number of parameters
appear in multiple subsystems (sharing permitted, SP).

The main results for the SVD variation are that:

(a) SVD, instead of RREF, enables to compute extent directions whose
estimation errors are uncorrelated.

(b) Unfortunately, SVD leads to sub-optimal partitioning results, regard-
less of the applied partitioning procedure.

This means that applying SVD may produce tangible benefits when using
the extent framework for process monitoring, including state estimation, and
data reconciliation. Beneficial use for parameter estimation is expected to
be limited.
The main results for the proposed SP variation are that:

(a) The SP variation permit to estimate parameters separately in a larger
number of parameter sets which are smaller in size.

(b) Unfortunately, the partitioning result is not unique for a given sys-
tem and depends on the order in which reactions are represented in
the stoichiometric matrix (N) and the vector-valued rate function (f).
Suggestions for improvement are discussed below.
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5.2 Definitions of optimality

This technical report demonstrates that the utility of a given method for
extent computation and partitioning depends on the definition of optimality.
For example, SVD-based methods may be optimal for estimation but are
sub-optimal for system partitioning. The same holds for the partitioning
procedures as is discussed next.
In this study, we have assumed that the numbers of parameters that ought
to be estimated simultaneously is a proper definition of optimality for sys-
tem partitioning. One can easily challenge this notion of optimality. For
example, there exist specialized methods which can separate parameters into
parameters that appear linearly in the model predictions and parameters that
appear non-linearly [10, 11]. One may therefore argue that the parameters
that appear linearly in the model predictions should weigh much less when
deciding between candidate partitions into subsystems. Once more, the ex-
act definition of optimality may depend strongly on the exact application
one has in mind.

5.3 Outlook – Optimal alternative to the SP procedure

To obtain a variation of the partitioning procedure which allows to split the
parameter estimation problem in such a way that the subsystems contain
the smallest number of parameters while allowing that a minimal number of
parameters is estimated multiple times, we propose two additional variations
of the partitioning procedure. These have not been tested yet:

• SM1. The RREF-SP method is modified as follows:

I. The RREF is used to group the extents into clusters according to
the subspace clustering paradigm of [12, 13]. Clusters consisting
of one element are labeled observable. Extents not present in any
cluster are non-sensed. The remaining clusters represent the am-
biguous extents, grouped into one or more clusters of ambiguous
extents. The columns of the extent-based measurement gain ma-
trix corresponding to the extents in the kth cluster are used for
form the matrix Ga,k.

II. For each cluster k:

(a) Enumerate all order permutations of the reactions in this clus-
ter.
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conditions Eawag, Dübendorf, Switzerland, Technical Report TR006030.

(b) For each permutation, order the columns in Ga,k according
the considered permutation and apply the SP partitioning
procedure

(c) Select the permutation of the reactions which delivers an op-
timal partitioning, e.g. the smallest number of parameter in
each subsystem and define the incremental parameter estima-
tion procedure with these subsystems.

• SM2. The RREF-SP method is modified to avoid the exhaustive search
in Step II.c of SM1. The SM2 method, if available, is expected to
become practically relevant for cases where the clusters of ambiguous
extents become so large that evaluating the partitioning results for
every permutation of the order of the extents in a single cluster becomes
prohibitively expensive. Practically relevant cases where this happens
have not been identified yet.

Note that it is unclear at this time how the SM2 method can be realized.
A particular challenge is that a parameter vertex in the graph F (without
observation arcs) with multiple directed paths to a single extent direction
should only be counted once in a candidate subsystem. Inspiration for a
solution may be drawn from sparse principal component analysis [14, 15],
network component analysis [16, 17], and other sparse methods [18, 19, 20,
21].
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