Working Papers in Environmental Social Sciences

Unpacking Reputational Power: Actors’ Attributes and Relations

Manuel Fischer and Pascal Sciarini

Working Paper 2013-02
Recommended Citation


Author Information

Manuel Fischer is a post-doc researcher at the Swiss Federal Institute of Aquatic Science and Technology (Eawag). He received his PhD in 2011 from the University of Geneva. His research focuses on political decision-making, political networks, Swiss politics, Europeanization, and water politics.

Pascal Sciarini is a full professor of Swiss politics at the Department of Political Science and International Relations at the University of Geneva. His research and teaching focuses on the Swiss political system, political institutions, Europeanization, and voting behavior.

Author Contact

Eawag, Überlandstr. 133, 8600 Dübendorf, Switzerland
manuel.fischer@eawag.ch
http://www.eawag.ch/about/personen/homepages/fischema/index_EN
Abstract

The reputational measure for assessing power of political actors has been used for decades in studies on policy networks and political decision-making. The basic idea behind reputational power is that actors involved in some political system or decision-making process do have the best idea about their fellows’ power. There has been, however, no systematic examination of the micro-foundations of reputational power, i.e. of why actors consider other actors as powerful. The paper fills this gap by studying the impact of attribute-related and relations-related effects that influence the attribution of power from actor i to actor j. Facing considerable insecurity, we argue that informants rely on cues when they judge actors’ power. We estimate Exponential Random Graph Models, relying on a unique data-set of network of reputation attribution in the 11 most important decision-making processes in Swiss politics between 2001 and 2006. Results show that informants mostly rely on the category that the actor to be judged belongs to, as well as on relational cues. Actors that collaborate attribute systematically more power to each other than actors not collaborating.

Keywords: reputational power, attributes, relations, social network analysis

Introduction

The reputational measure for assessing power of political actors has been used for decades in studies on public policy, policy networks and political decision-making (e.g. Fernandez and Gould 1994, Sciarini 1994, Knoke et al. 1996, Sciarini et al. 2004, Kriesi et al. 2006, Fischer et al. 2009, Henry 2011, Ingold 2011, Matti and Sandström 2011). The basic idea behind reputational power is that actors involved in a political system or decision-making process have the finest-grained view of how power is allocated in the network. In addition, the strength of reputational power is that it potentially encompasses all different aspects of power. Its encompassing nature is, however, also its main weakness. Reputational power is inherently subjective and one does not know, when asking a political actor about the power of his fellows, which parcels of power the informant is referring to. A given actor may indeed be considered as powerful for several reasons: because it has formal authority, because it has access to several institutional venues, because it is very active in the network, because it has lots of allies, or simply because the informant is particularly aware of a given actors’ activity in the decision-making process. We argue that informants rely on cues when judging the reputational power of their fellows. Yet, each political actor is likely to have its own view of power and to weight differently the dimensions of reputational power.

This raises the question where reputational power stems from. To our knowledge, this question has not been systematically addressed thus far. It is, however, of utmost importance. First, given that reputational power is so extensively used in empirical studies, it is crucial to know what are its underlying determinants. This is a prerequisite if one wishes to understand why some actors are perceived as powerful but others not. Second, identifying the sources of reputational power will be of great help for researchers that are planning to
use this measure, as it can give important hints on how to select informants and how to design their questionnaire.

Reputational power has an inherently hybrid character with respect to the fundamental distinction between attributes and relations. On the one hand, reputational power in its aggregated form is an actor's attribute, and it is used as such in policy analysis. On the other hand, in its non-aggregated, original form the attribution of power from one actor to another corresponds to a relation between two actors. Similarly, the sources of reputational power may also be of two different types, i.e. they may be linked to actors' attributes and/or to actors' relations. That is, actor i's (the informant's) attribution of power to actor j may depend on the attributes of actor j, and/or on the characteristics of the relations between actors i and j.

Against this background, the purpose of the paper is to identify the determinants of reputational power attribution and to evaluate the relative weight of attribute-related and relation-related sources of power. To that end, we apply Exponential Random Graph Models (ERGM) to a unique network data-set covering the 11 most important decision-making processes in Switzerland between 2001 and 2006. Nodes of the networks are collective political actors such as administrative agencies, interest groups, political parties, or cantons. Data stem from approximately 250 face-to-face interviews conducted with representatives of these collective political actors. The data-set offers systematic information regarding both the dependent variable (reputational power) and the likely determinants – attribute-related and relation-related – of power for each of the 11 decision-making processes under study. It thus enables us to compare the sources of reputational power across a range of policy processes, which obviously increases the confidence in our findings, and facilitates generalization. In addition, besides the sources of power "from within" a single decision-making process it also allows us to look at the possible sources of power "from across" processes, i.e. at the effects of relation-related factors that develop in parallel decision-making processes. This will thus provide us with the "big picture" that is often lacking in single, sectoral analyses of policy networks. In a recent paper, Heaney (2013) argues that the embeddedness of political actors (in his case, interest groups) in multiplex networks in a given policy domain is an important explanation for variation in the reputational power granted to these actors. We extend the argument regarding multiplexity by looking at the impact of collaborative ties that actors develop in the ten parallel decision-making processes on the perception of power in a given decision-making case.

The remainder of this paper is structured as follows. Section 2 addresses the main theoretical and methodological issues raised by the measure of reputational power, and discusses its main strengths and weaknesses. In section 3, we develop our argument regarding the dimensions underlying reputational power, whereby we distinguish between attributes, relations, and endogenous network effects. Section 4 presents the data, the method, and the models. Results appear in section 5, section 6 concludes.
The reputational power measure

Assessing reputational power: Theoretical and methodological considerations

To gather reputational data, researchers in policy analysis typically rely on face-to-face interviews or on postal questionnaires. They ask collective actors – or, more specifically, representatives of collective actors – to choose from a predefined list those actors that, in their view, are very influential in a specific political system or a given decision-making process (e.g. Kriesi 1980). This data gathering results in a binary matrix with the same set of actors on both dimensions. On the horizontal dimension, actors are “active” as informants about their fellows’ power. In the terminology of network analysis, they are “senders” of ties, in that case of reputation attribution. On the vertical dimension, the same actors are “passively” evaluated by their fellows, that is, they are “receivers” of reputation attribution. The reputational power attribute of each actor is derived from the data regarding the attribution of influence (Knoke et al. 1996: 189): The score of reputational power of each actor corresponds to the sum or the mean of power attribution judgments that this actor receives. The resulting reputational power is thus an attribute of actors, and it is used as such in policy analysis. However, treating reputational power as an attribute means that one throws away crucial information regarding both the relational nature of power attribution and the characteristics of informants. First, as mentioned above, power attribution is implicitly a network relation between two actors. Consequently, the information included in the power matrix must be considered as a directed network of reputation attribution among actors, and it must be analyzed accordingly. Second, by treating reputational power as a pure attribute and neglecting its relational nature one fails to take into account important information regarding which actors (informants) attribute power to which actors. More specifically, by focusing on the total or average amount of power granted to a given actor one overlooks the fact that the receiver and the sender may be embedded in a – possibly complex – set of relations that are likely to influence power attribution. It is precisely this shortcoming that we wish to overcome in this paper. In our view, one must recognize first that reputational power is a hybrid between an attribute and a relation and second that reputational power may stem from both actors’ attributes (such as formal authority or resourced endowment) and actors’ embeddedness in the network and related relational profile. In other words, when looking at the determinants of reputational power, one needs to take into consideration relation-related factors in addition to actors’ attributes.

In political science and political sociology the use of the reputational measure to evaluate the power of political actors has a long tradition. Originating in the US community power literature in the 1960s (e.g. Dahl 1961, Emerson 1962, Gamson 1966, Laumann and Pappi 1976, Laumann and Knoke 1987), the measure of reputational power has also been extensively used in policy analysis, this in a variety of countries and policy domains (e.g. Kriesi 1980, Fernandez and Gould 1994, Sciarini 1994, Knoke et al. 1996, Sciarini et al. 2004, Kriesi et al. 2006, Fischer et al. 2009, Ingold 2010, Henry 2011, Ingold 2011, Matti and Sandström 2011). For instance, Knoke et al. (1996) compare networks of labor market policy in different countries and assess the relative power of state and interest groups. Sciarini et al. (2004) compare Europeanized and domestic decision-making processes in Switzerland and, based on the reputational method, find that state actors are more powerful in the former than in the latter. Henry (2011) uses the measure in order to analyze whether the perceived influence of an actor makes this actor more attractive as a cooperation partner for others.
Two sides of the same coin: Strengths and weaknesses of the reputational power measure

Critical discussions of the measure of reputational power are as old as its applications. The measure has two main strengths. First, reputational power is supposed to be close to reality, because it relies on judgments of actors that are directly involved in the decision-making process and are, therefore, presumably best positioned to evaluate their fellows’ power. True, the measure for reputational power is inherently subjective and may thus lead to inaccurate evaluations. But even if an evaluation is inaccurate, the simple fact that an ego believes that its alter is powerful will lead it to behave as if alter was powerful, which in the end will render alter powerful anyway ("self-fulfilling prophecy"). Second, the reputational measure is supposed to provide an encompassing and comprehensive view of power. The fact that the measure is based on the evaluation of actors that directly participate in a decision-making process helps to uncover part of the “hidden” face of power (Bachrach and Baratz 1962). That is, it helps us to take into account elements of power that are hardly measurable otherwise, like actors’ agenda-setting power, their ability to avoid the public discussion of certain subjects, or their potential referendum power (Fischer 2005). In other words, the measure can account for elements that are only hardly visible to an outside observer. It thus gives an encompassing account of actors’ power, no matter where power comes from.

However, the encompassing nature of reputational power is not only an asset, but it is also its main weakness. It is argued that the measure is problematic because it is difficult to make sure that the researcher and the informants share the same definition of power (Wolfinger 1960: 638, Knoke 1998). Given this, there is a risk that the researcher relies on data from informants who are not aware of the different aspects of power and/or who for their judgments rely on different – and possibly very narrow – aspects of power. Admittedly, this risk can be minimized by providing informants with a precise definition of what power means in the present context. This should allow the researcher to make sure that they will all rely on the same criteria when evaluating their counterparts. Alternatively, one may explicitly inform the interview partners that they should rely on all possible aspects of power. Further, one may argue that the likely differences in definition or criteria across informants are not problematic, as they will be reduced once the researcher calculates the average (or sum) of actors’ reputation scores. It is, however, highly likely that the average (or sum) hides substantial variety – if not disagreement – among the informants with respect to the criteria they use (Knoke 1998: 507-8). In that sense, the basic problem remains: The researcher does not know exactly why a given actor is considered as powerful.

Cues for evaluating actors’ power

To some extent, the uncertainty regarding which actors are actually powerful and where power comes from also affects actors that participate in the decision-making process (Heaney 2013). Even if they actively take part to the political game, informants are in a situation of incomplete information, as much of the relevant action in the policy process takes place behind the scene. In addition, modern decision-making is highly complex, and it involves many actors and events that may influence the policy outcomes. Under such circumstances, we argue that informants rely on cues to figure out how power is allocated
among actors. More specifically, there are two distinct but complementary types of cues that informants can use. On the one hand, they can rely on attributes of the actor and use categories and statutes as cues. On the other hand, they can base their judgment regarding their fellow's power on their relation with these fellows.

Attributes as cues
In the social psychology literature, the fact that perceptions of alters is based on alters' belonging to a category or group is known as “stereotyping” (e.g. Spears et al. 1997). Applying this idea to policy analysis and reputational power, we may assume that three categories of actors are likely to be deemed as powerful in a decision-making process. First, state actors, i.e. executive and administrative units of the central state responsible for a given decision-making process, enjoy formal authority (Laumann and Knoke 1987: 162). They have a certain leeway regarding how to design the decision-making process and they can also substantially influence the content of a legislative proposal, this especially in the preparatory, pre-parliamentary phase – from the very beginning of that phase (drafting of a pre-proposal) up to the final project that they then transmit to the parliament. Second, government parties are not only represented in government, but also dominate the parliament. They therefore have a decisive influence on the negotiations and final vote in parliament. Third, peak associations are usually seen as being very powerful in the corporatist-like political system of Switzerland (Kriesi and Trechsel 2008). They have important financial and organizational resources, and they are strongly present in the pre-parliamentary phase of a process. In addition, they are also credible veto-players, as they are able to challenge a policy project in a referendum vote.

H1: State actors responsible for the project, government parties, and peak associations are seen as more powerful than other actors.

Further, reputation is said to be influenced by third parties such as institutional intermediaries or high-status actors whose attention to or affiliation with organizations may be seen as a form of endorsement (Rindova et al. 2005). In the logic of the policy process, actors that are granted access to many venues of the decision-making process get this sort of endorsement by high-status state actors that are responsible for the project. The venues create a “political opportunity structure” for these actors, one that helps them to influence a policy proposal (Kriesi 1995). Opportunities for actors’ participation can take the form of working groups, bilateral discussions, consultation procedures, or parliamentary committees. Actors getting access to many venues are more able to influence the outcome. Another potential cue is also expressed by an attribute, i.e. the amount of an actor’s participation in the decision-making process.

H2: The higher the number of venues of the decision-making process actors participate in, the higher their reputational power.

Relations as cues
As discussed above, power attribution is not only a fix attribute of an actor, but it also depends on the specific relation between the informant and the actor whose power is
evaluated (Knoke 1990). Therefore, informants can also rely on their relations with alters when evaluating their power. The first – and most obvious – relational cue that one can think of is shared similarities. The fact that similarity, be it actual or only perceived, breeds attraction is one of the best documented generalizations in social psychology (Insko 1974, p. 149, in Montoya et al. 2008: 890). In this context, it has for example been shown that men rate other men as more powerful than women (Windquist et al. 1998: 379). Translating again this idea to policy analysis and reputational power, we may assume that actors sharing similarities are more likely to agree about influence reputations (Knoke 1998: 515). In the social network literature, the fact that a tie forms between two actors that share some sort of similarities is referred to as homophily (see e.g. Goodreau et al. 2009). Homophily can be of objective (such as actor type homophily) or of subjective nature (such as preference homophily). Regarding first actor type homophily, we may assume that the actors' own experience influences their perception of the decision-making process and of the related power distribution among actors. Due to the specific “lenses” through which they see the decision-making process, political actors are likely to attribute more influence to actors of their own actor type. Thus, we may assume that state actors are particularly sensitive to “their” contribution (e.g., in the pre-parliamentary phase), whereas political parties tend to emphasize the work they do in the parliamentary arena. Similarly, sharing similar views may also influence power attribution. Informants' beliefs filter their perceptions (Knoke 1998: 528). As a result, actors with converging policy preferences are likely to see each other as especially influential.

H3: Actors of the same actor type consider each other as more powerful than actors that are not of the same actor type.

H4: Actors sharing similar policy preferences consider each other as more powerful than actors with dissimilar policy preferences.

Social context also provides cues that individuals can use to construct and interpret events (Salancik and Pfeffer 1978, cited in Lawrence 2006). More specifically, in order to understand why an actor i attributes power to an actor j, it is important to look at other, parallel (or "multiplex") relations between these two actors (Heaney 2013). The literature on social relations among individuals provides some ideas regarding the cues that informants use.

It has been shown that the longer two individuals have known each other, the more they rate each other as attractive (Cavior et al. 1975, Windquist et al. 1998). Applying this idea to the policy process, Heaney (2013) argues that multiplex networks (in his case the communication network, the coalition overlap network and the issue overlap network) are critical in helping interest groups to resolve uncertainty about which other interest groups are powerful. Reasoning along the same line, we assume that political actors that participate in the same venues of a decision-making process and political actors that collaborate closely with each other in a given process use their mutual knowledge as a cue when evaluating their respective power.

H5: The higher the number of venues of a decision-making process in which two actors jointly participate, the higher the likelihood that these actors see each other as powerful.

H6: Actors that collaborate closely consider each other as powerful.
Going one step further, we extend the idea of multiplexity to relations in parallel policy processes. In our view, multiplex networks arising from collaboration in separate, parallel decision-making processes is likely to have the same effects as multiplex networks within a given policy domain, that is, it will grant informants with a cue regarding their alters’ power in the policy process of interest.

H7: The higher the number of other, parallel decision-making processes in which two actors collaborate, the higher the likelihood that these actors see each other as powerful.

Data, method, and models

Data
Our empirical tests are based on data regarding the 11 most important political decision-making processes in Swiss politics between 2001 and 2006. The fact that these tests cover a wide range of different policy domains obviously increases the validity and generalizability of our results. Data on reputational power, collaboration, preference similarity, etc., was gathered through approximately 250 semi-structured face-to-face interviews with representatives of the main collective actors (administrative units, political parties, interest groups, cantons) involved in the processes. To identify the main collective actors we relied on the classic combination of decisional, positional and reputational approaches (Knoke 1993).

The 11 processes are the 11th pension reform (number of actors in the network: 23), the program of budget relief 2003 (25), the extension of the bilateral agreement on the free movement of persons and flanking measures (26), the bilateral agreement on the taxation of savings (19), the bilateral agreement on Schengen/Dublin (26), the law on nuclear energy (24), the law on the infrastructure fund (22), the new law on foreigners (20), the reform of fiscal equalization and tasks distribution (24), the new constitutional articles on education (20) and the law on telecommunication (22).

The outcome network of the analysis is given by directed ties of reputation attribution among actors involved in the respective decision-making process. In order to reconstruct the reputation attribution network among actors, we asked our interview partners to indicate, from a list of actors that participated in a given decision-making process, those that – in their view – were very influential (1 = very influential, 0 = not influential). If unclear, we specified that being very influential in a decision-making process means to be able to substantially influence the output of the decision-making process.

Exponential Random Graph Models
To identify the determinants of power attribution we estimate Exponential Random Graph Models (ERGM, Wasserman and Pattison 1996, Wasserman and Robins 2005, Robins et al. 2007). ERGMs calculate the probability of an observed network, given a set of statistics on the network, compared to all networks that could have been observed. ERGMs can include endogenous network structures, node covariates, or edge covariates. The first describes local network structure in the outcome network that influence tie formation, the second describes nodes (that send or receive ties), and the third are attributes of ties between two
nodes. When an ERGM includes only predictors that represent node or edge attributes (but no endogenous network parameters), like in this paper, it is similar to traditional logistic or log-linear models. In this case, parameters are based on maximum likelihood estimations. Such models are said to exhibit dyadic independence because the probability of any tie does not depend on the value of other ties, only on the attributes of the two actors or attributes of their relation.

The models

The attribute variables are constructed as follows. First, simple dummy variables indicate whether an actor is a state actor responsible for the project, a government party, or a peak association, respectively. Second, the participation of actors in the different venues of a decision-making process is based on interview data. From a list containing all the venues of the decision-making process, we asked interview partners to indicate in which venues their organization participated. Based on this information, we then calculated a participation ratio for each actor for the whole process (percentage of venues the actor participated over the total number of venues). All attribute variables are introduced in the model as node covariates.

Turning to the variables measuring relations between actors, and starting with actor type homophily, we group actors that are of the same type along five categories: state actor, political party, interest group, canton, others. A “nodematch” variable then captures whether two actors belong to the same actor type. Second, networks of joint participation in the venues of the decision-making process measure in how many venues two actors had the opportunity to meet. These networks are based on interview data on actors’ participation in the venues of the decision-making processes, as described above. The strength of a tie between actors i and j in these networks is given by the number of venues actors i and j jointly participated in, divided by the total number of venues. Third, the similarity of actors’ preferences is again based on interview data. Actors were asked to select, from the list of actors participating in the process, those actors with whom they had convergent or divergent preferences about the specific project. This information is represented as a network whose ties express convergence (1) or conflict (-1) of opinions and is added to the model as an edge covariate term. Fourth, to reconstruct the collaboration network among actors, we asked our interview partners to indicate, from a list of actors that participated in the respective decision-making process, those with whom they had “frequent contacts”. We did not, however, specify the actual content of the relationship. Indeed, rationales for collaboration can be the exchange of information, advice, or resources, the coordination in a coalition, or the search for access to influential actors (Weible and Sabatier 2005: 182). Since there is no emerging agreement on the appropriate dimensions of relationships to measure, we focus on a very general collaboration relation rather than seeking to distinguish specialized relationships (Scholz et al. 2008). We then symmetrized the directed collaboration network with the minimum method, which leaves us with only the collaboration contacts confirmed by both actors. To some extent, this enables us to avoid problems of endogeneity. It has been shown that actors try to collaborate with others they perceive as powerful (Stokman and Zeggelink 1996, Henry 2011). If this holds, then the direction of causality between directed reputation attribution and directed collaboration may run in the opposite direction than the one assumed in this paper. Symmetrizing collaboration with the minimum method means that only a collaborative tie that is reciprocated is considered as
collaboration. Such a collaboration relation can thus not directly depend on an actor perceiving another actor as powerful. Fifth, the edge covariate “collaboration in other processes” ranges from 0 to 1 and indicates whether two actors collaborate in no other decision-making process (0) or in all the other 10 decision-making processes (1). As this variable measures collaboration in other domains, endogeneity is not a concern and collaboration does not have to be symmetrized as described above.

Contrary to Heaney (2013), we refrain from including endogenous network parameters in the models presented in this paper. First, we think that the theoretical argument that ties of reputation attribution should depend on each other because of gossip among actors is weak. As informants are not aware of the choices of other informants, actors have no knowledge about their network environment. This, however, is a pre-condition for observing endogenous network effects. Second, we tested the robustness of our models by including reciprocity and transitivity parameters (see Heaney 2013). Even if some of these endogenous patterns display significant effects, including them does not substantially affect the findings from the independency-models.

Analysis and discussion

Coefficient estimates for all models appear in table 1. The model described above is estimated for each collaboration network. The edges parameter in each model is important to control for the density of the network, but does not need to be interpreted substantially.

Starting with actor type attributes, it appears that their importance depends on the decision-making process under study. First, in 8 processes out of 11 the coefficient regarding the state actor that was responsible for the project is significant and positive. This means that in these 8 cases these state actors are seen as more powerful than other actors. By contrast, being a government party or a peak association matters in only 5 and 2 processes, respectively. As it turns out, government parties are considered as more powerful than other actors in decision-making processes dealing with “classic” issues in well-established policy domains, such as nuclear energy, pensions, regulation of immigration, and budget. Peak associations, for their part, are deemed more powerful in two decision-making processes where corporatist arrangements play an important role, namely the pension scheme reform and the free movement of persons. Overall, then, the actor category seems to be used as a cue by informants, but this to various degrees in different policy domains. We can thus partly corroborate our first hypothesis.

Results are also mixed with respect to the second type of attribute, i.e. the extent of participation in the venues of the decision-making process. This variable matters in a slight majority of decision-making processes (6 out of 11). By participating in several venues of a decision-making process, actors increase their opportunities to influence a decision-making process. It seems that informants do – at least partly – rely on this cue, i.e. they attribute more power to actors that participate intensely in the venues of the decision-making process. Hypothesis 2 is thus also partly confirmed.

Turning to the effects of relational cues, the results regarding actor type homophily show that state actors, cantonal actors, and other actors do not tend to see their peers as more powerful than other actors. The respective parameters have no effect in any of the 11
decision-making processes. Results for homophily effects among political parties and interest groups are either not significant or contradictory. Thus, political parties attribute more power to their peers in two processes, but they attribute less power in two other processes. In addition, this homophily effect fails to reach significance in 7 other processes. Similarly, interest groups do positively judge their peers in two processes, but negatively in one. Given these largely non-significant and highly diverging results, we have to reject our third hypothesis. Actor type homophily does not prompt actors to attribute power to their peers.

Second, preference similarity does not play any role on the attribution of reputational power either. It has a significant (positive) effect in only one process. This runs against hypothesis 4. On the other hand, the fact that this variable has no significant, negative effect on power attribution means that no “devil shift” mechanism (Sabatier et al. 1987) is at work in our networks. According to this argument, a coalition tends to see the challenger as more powerful than it really is. This, at least, does not seem to be the case either.

Third, close collaboration in the network and – to a lesser extent – joint participation in venues of the decision-making process have a consistent effect on reputational power. In 10 out of 11 processes actors who collaborate with each other also tend to see each other as particularly powerful. If actors know each other because they collaborate closely in a given decision-making process, the systematically attribute more power to each other than if they do not collaborate. Joint participation is associated with a positive evaluation of alter’s power in 5 decision-making processes, but it has a negative impact in one process. Thus, hypothesis 6 is confirmed, but hypothesis 5 is only partly confirmed.

Finally, actors do not only know about each other because they collaborate in the decision-making process under study, but also because they collaborate in other, parallel decision-making processes. This additional measure of collaborative ties has a positive effect in 5 out of 11 processes. The last hypothesis is thus only partly corroborated, but the underlying pattern is nevertheless interesting: The impact of the extent of collaboration in parallel processes on reputational power shows up in the two processes regarding finances (the reform of fiscal equalization and budget reliefs 2003), and in the Europeanized processes, i.e. the three bilateral agreements with the EU (extension of the agreement on the free movement of persons, Schengen-Dublin and taxation of savings).

Conclusions

This paper relies on the idea that reputational power is multifaceted. First, it is an encompassing measure of power that by definition comprises several dimensions, and second, actors are likely to evaluate power from several different perspectives. The purpose of our paper is to unpack the measure of reputational power and to identify the sources of reputational power. Where does reputational power come from? Answering this question is important in order to understand why actors are considered powerful by other actors and, relatedly, to assess the validity of the reputational measure. Further, given the high complexity of modern policy making and the fact that considerable parts of the decision-making takes place behind the scene, informants need to rely on cues when indicating their fellows power. Actors’ attributes as well as the specific relation between two actors can serve as cues.
Our empirical analysis shows that different cues are used by actors when evaluating their fellows’ power. On the one hand, actors' attributes play a role. First, and most importantly, informants tend to rely on “formal” criteria such as the authority of a state actor that is responsible for the project. Further, additional attributes such as being a government party or participating in a high number of venues matter in given decision-making processes also matter. However, attribute-related cues are only part of the whole story. Informants do also rely on cues arising from the relation they have with other actors. Most importantly, actors that collaborate in the decision-making process tend to see each other as particularly powerful. Similarly, joint participation in venues of the decision-making process, and collaboration in other decision-making processes also account, to some extent, for power attribution. By contrast, similar preferences and actor type homophily hardly play a role.

In sum, the mixed character of the reputational power measure, i.e. the fact that it can be considered as an attribute as well as a relation, also shows up when trying to explain where reputational power comes from. Indeed, our models show that both attribute-related and relation-related factors matter. Several results point to the role played by multiplexity in the attribution of reputational power. However, the fact that parallel relations are used as cues by informants may also raise a problematic issue: Ideally, joint participation and collaboration should improve the knowledge of an informant about an actors’ power, but should not necessarily increase the power attributed to the co-participant. Future work should thus be devoted to possible misperceptions, i.e. to identifying the mechanisms through which actors that share some sort of relation tend to overestimate the power of their counterpart.

Besides, several results are unstable, meaning that some factors matter in some decision-making processes, but not in others. This suggests that the factors that are hidden behind the reputational power vary across decision-making processes. Future research should thus also try to identify systematic differences in the sources of reputational power depending on the specific characteristics of (groups of) decision-making processes.

Acknowledgements

We would like to thank Sandrine Bossy, David Keller, Guenda Malinverni, Uwe Serdült and Denise Traber who contributed to the data gathering as project leaders or collaborators. This article is part of a wider research project sponsored by the Swiss Science Foundation (Grant No. 100012-113964).

References


<table>
<thead>
<tr>
<th>Effect</th>
<th>Nuclear</th>
<th>Telecom</th>
<th>Foreigners</th>
<th>Pensions</th>
<th>Fiscal equal.</th>
<th>Education</th>
<th>Infrastructure</th>
<th>Budget relief</th>
<th>Persons</th>
<th>Schengen</th>
<th>Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>edges</td>
<td>-1.25</td>
<td>-2.26</td>
<td>-1.96</td>
<td>-2.75</td>
<td>-1.88</td>
<td>-2.00</td>
<td>-1.75</td>
<td>-1.75</td>
<td>-1.87</td>
<td>-1.52</td>
<td>-2.03</td>
</tr>
<tr>
<td></td>
<td>(0.25)</td>
<td>(0.25)</td>
<td>(0.36)</td>
<td>(0.26)</td>
<td>(0.24)</td>
<td>(0.31)</td>
<td>(0.36)</td>
<td>(0.33)</td>
<td>(0.21)</td>
<td>(0.40)</td>
<td>(0.40)</td>
</tr>
<tr>
<td>State authority</td>
<td>1.77</td>
<td>-2.92</td>
<td>0.48</td>
<td>4.62</td>
<td>1.21</td>
<td>1.21</td>
<td>1.00</td>
<td>3.29</td>
<td>0.21</td>
<td>0.53</td>
<td>2.03</td>
</tr>
<tr>
<td></td>
<td>(0.87)</td>
<td>(0.64)</td>
<td>(0.45)</td>
<td>(1.09)</td>
<td>(0.35)</td>
<td>(0.48)</td>
<td>(0.38)</td>
<td>(0.75)</td>
<td>(0.58)</td>
<td>(0.30)</td>
<td>(0.50)</td>
</tr>
<tr>
<td>Government party</td>
<td>0.82</td>
<td>-0.20</td>
<td>1.93</td>
<td>2.54</td>
<td>0.42</td>
<td>-0.26</td>
<td>-0.37</td>
<td>1.41</td>
<td>1.95</td>
<td>0.02</td>
<td>-0.13</td>
</tr>
<tr>
<td></td>
<td>(0.88)</td>
<td>(0.62)</td>
<td>(0.48)</td>
<td>(0.46)</td>
<td>(0.31)</td>
<td>(0.47)</td>
<td>(0.31)</td>
<td>(0.47)</td>
<td>(0.41)</td>
<td>(0.35)</td>
<td>(0.41)</td>
</tr>
<tr>
<td>Peak association</td>
<td>-0.15</td>
<td>-0.07</td>
<td>-0.27</td>
<td>1.63</td>
<td>-0.69</td>
<td>-0.16</td>
<td>-1.15</td>
<td>0.26</td>
<td>1.03</td>
<td>0.25</td>
<td>-0.60</td>
</tr>
<tr>
<td></td>
<td>(0.30)</td>
<td>(0.36)</td>
<td>(0.36)</td>
<td>(0.34)</td>
<td>(0.45)</td>
<td>(0.45)</td>
<td>(540.74)</td>
<td>(0.27)</td>
<td>(0.33)</td>
<td>(0.37)</td>
<td>(0.54)</td>
</tr>
<tr>
<td>Amount of participation</td>
<td>-0.28</td>
<td>3.07</td>
<td>2.82</td>
<td>-0.49</td>
<td>0.63</td>
<td>2.74</td>
<td>2.36</td>
<td>0.61</td>
<td>1.96</td>
<td>2.01</td>
<td>1.02</td>
</tr>
<tr>
<td></td>
<td>(0.85)</td>
<td>(0.61)</td>
<td>(0.95)</td>
<td>(0.75)</td>
<td>(0.56)</td>
<td>(0.69)</td>
<td>(0.56)</td>
<td>(0.93)</td>
<td>(0.91)</td>
<td>(0.44)</td>
<td>(0.72)</td>
</tr>
<tr>
<td>State actor homophily</td>
<td>-1.54</td>
<td>/</td>
<td>0.07</td>
<td>0.70</td>
<td>-0.33</td>
<td>1.00</td>
<td>0.51</td>
<td>-0.88</td>
<td>-0.32</td>
<td>-0.29</td>
<td>-1.44</td>
</tr>
<tr>
<td></td>
<td>(1.05)</td>
<td>/</td>
<td>(0.56)</td>
<td>(0.52)</td>
<td>(0.37)</td>
<td>(1.21)</td>
<td>(0.67)</td>
<td>(0.49)</td>
<td>(0.48)</td>
<td>(0.27)</td>
<td>(0.75)</td>
</tr>
<tr>
<td>Party homophily</td>
<td>-0.37</td>
<td>16.42</td>
<td>0.05</td>
<td>-0.65</td>
<td>-0.40</td>
<td>-0.26</td>
<td>1.17</td>
<td>-1.40</td>
<td>-0.38</td>
<td>-1.36</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td>(0.43)</td>
<td>(680.06)</td>
<td>(0.59)</td>
<td>(0.49)</td>
<td>(0.47)</td>
<td>(0.53)</td>
<td>(0.55)</td>
<td>(0.61)</td>
<td>(0.34)</td>
<td>(0.57)</td>
<td>(0.56)</td>
</tr>
<tr>
<td>Interest group homophily</td>
<td>0.75</td>
<td>-0.55</td>
<td>-0.40</td>
<td>1.27</td>
<td>1.19</td>
<td>1.16</td>
<td>0.26</td>
<td>0.63</td>
<td>0.80</td>
<td>0.29</td>
<td>0.79</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(0.24)</td>
<td>(0.42)</td>
<td>(0.56)</td>
<td>(1.04)</td>
<td>(0.54)</td>
<td>(0.40)</td>
<td>(0.34)</td>
<td>(0.42)</td>
<td>(0.36)</td>
<td>(0.53)</td>
</tr>
<tr>
<td>Cantons homophily</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>0.51</td>
<td>-0.05</td>
<td>1.26</td>
<td>0.89</td>
<td>/</td>
<td>13.66</td>
<td>-2.15</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>(0.59)</td>
<td>(0.90)</td>
<td>(1.16)</td>
<td>(0.89)</td>
<td>/</td>
<td>(621.10)</td>
<td>(1.51)</td>
<td>/</td>
</tr>
<tr>
<td>Other actors homophily</td>
<td>/</td>
<td>0.24</td>
<td>/</td>
<td>/</td>
<td>-0.17</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td></td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>(0.89)</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
<td>/</td>
</tr>
<tr>
<td>Similar preferences</td>
<td>0.14</td>
<td>-0.01</td>
<td>-0.02</td>
<td>-0.44</td>
<td>0.37</td>
<td>0.27</td>
<td>0.29</td>
<td>-0.05</td>
<td>-0.10</td>
<td>-0.19</td>
<td>1.90</td>
</tr>
<tr>
<td></td>
<td>(0.18)</td>
<td>(0.17)</td>
<td>(0.24)</td>
<td>(0.24)</td>
<td>(0.27)</td>
<td>(0.31)</td>
<td>(0.23)</td>
<td>(0.19)</td>
<td>(0.18)</td>
<td>(0.17)</td>
<td>(0.33)</td>
</tr>
<tr>
<td>Joint participation</td>
<td>6.55</td>
<td>-2.52</td>
<td>2.50</td>
<td>3.19</td>
<td>2.33</td>
<td>0.49</td>
<td>1.52</td>
<td>0.25</td>
<td>0.41</td>
<td>-0.05</td>
<td>0.84</td>
</tr>
<tr>
<td></td>
<td>(1.19)</td>
<td>(0.79)</td>
<td>(1.23)</td>
<td>(1.07)</td>
<td>(0.72)</td>
<td>(0.68)</td>
<td>(0.71)</td>
<td>(0.93)</td>
<td>(0.73)</td>
<td>(0.53)</td>
<td>(0.88)</td>
</tr>
<tr>
<td>Collaboration</td>
<td>0.39</td>
<td>0.59</td>
<td>1.58</td>
<td>1.07</td>
<td>1.71</td>
<td>1.74</td>
<td>1.95</td>
<td>0.77</td>
<td>1.45</td>
<td>1.79</td>
<td>1.79</td>
</tr>
<tr>
<td></td>
<td>(0.23)</td>
<td>(0.25)</td>
<td>(0.46)</td>
<td>(0.45)</td>
<td>(0.40)</td>
<td>(0.37)</td>
<td>(0.40)</td>
<td>(0.33)</td>
<td>(0.31)</td>
<td>(0.36)</td>
<td>(0.48)</td>
</tr>
<tr>
<td>Collaboration other domains</td>
<td>-0.03</td>
<td>-0.02</td>
<td>-0.16</td>
<td>0.14</td>
<td>0.14</td>
<td>0.63</td>
<td>-0.06</td>
<td>0.16</td>
<td>0.37</td>
<td>0.25</td>
<td>0.24</td>
</tr>
<tr>
<td></td>
<td>(0.08)</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.10)</td>
<td>(0.13)</td>
<td>(0.08)</td>
<td>(0.12)</td>
<td>(0.09)</td>
<td>(0.08)</td>
<td>(0.09)</td>
<td>(0.09)</td>
</tr>
<tr>
<td>AIC</td>
<td>682.19</td>
<td>592.15</td>
<td>426.56</td>
<td>477.09</td>
<td>591.18</td>
<td>422.27</td>
<td>514.92</td>
<td>623.63</td>
<td>660.32</td>
<td>791.43</td>
<td>333.54</td>
</tr>
<tr>
<td>BIC</td>
<td>742.58</td>
<td>645.91</td>
<td>481.72</td>
<td>536.26</td>
<td>651.57</td>
<td>477.43</td>
<td>572.82</td>
<td>680.79</td>
<td>718.52</td>
<td>849.63</td>
<td>383.40</td>
</tr>
</tbody>
</table>

Results are based on maximum likelihood estimation.

Coefficients and standard errors displayed in bold are statistically significant at or beyond the traditional p = 0.05 level.

/ indicates that the respective effect cannot be computed as there is no or only 1 actor of this type present in the decision-making process.