Sanitation Safety Plans for Safe Management and Valorization of Faecal Sludge

Guéladio Cissé
Swiss Tropical and Public Health Institute

Kate Medlicott
World Health Organization

Thor Axel Stenström
World Health Organization

Mirko Winkler
Swiss Tropical and Public Health Institute

Linda Strande
Sandec / Eawag

Pay Dreschel
International Water Management Institute
Overview

- Excreta - Faecal sludge - Health risks
- WHO guidelines, RRR project
- SSP principles, the loop with WSP, tasks
- SSP_City vs SSP_subsystems
- Specific FS subsystem, stakeholders
- Recommendations
Main sources of faecal sludge in developing countries: on-site sanitation systems (dry latrines, septic tanks)

A great number of pathogens can be found in human excreta and therefore in faecal sludge

One gram of feces would contain enough pathogens to lead to an infection

Potential risks that pathogens remain in the biosolids reused in agriculture

Long time need of an indicator organism that would allow making predictions about the die-off of pathogens in sludge
• Ascaris and Trichurus eggs: as representatives of helminth eggs

• Studies conducted in West Africa: all samples taken from public toilets and septic tanks were found infected with helminth eggs (Katharina Gallizzi 2003)

• Out of three helminth egg species analyzed (Ascaris lumbricoides, Trichuris trichiura, and Schistosomia mansoni) Ascaris was always the most frequent, followed by Trichuris and Schistosoma

• In all cases the helminth egg concentration was well above the recommended value for materials to be used in agriculture
• Usually before use the sludge are dewatered, like through drying beds

• Studies in West Africa showed that the helminth egg concentration even in the dried sludge ranged from 22 to 83 eggs per g total solids

• The helminth egg contamination of the even dried sludge still exceeds the 3-8 eggs/g TS recommended for biosolids to be used in agriculture
The viability of Ascaris in fresh sludge ranged from 40% to 82%, in dried sludge it ranges from 50% to 57%.

In most of the 2 cases, more than half of the Ascaris eggs were still alive and infective.

How can we go on promoting the use of a product that has such a potential of infection for the people? (Ethics)

Need for mitigation measures and good monitoring

WHO guidelines? SSP?
Call for Sanitation Safety Plans
to operationalize
the WHO 2006 Guidelines

The RRR project
WHO 2006 guidelines

- Paradigm shift from water quality standards to health-based targets
- Multi-barrier approach for risk mitigation

Implementation?
Health risks

- Risks of crops contamination (pathogens; chemicals, ..)
- Risks for human exposure / 4 exposed groups:
 i) agricultural workers and their families
 ii) crop handlers
 iii) consumers of crops
 iv) those living on or near the areas

Ethical dimensions
Developing countries vs Developed countries
a) Analyzing the viability of existing RRR cases and the feasibility of promising business models – IWMI, Sandec - EAWAG, CEWAS

b) Developing Sanitation Safety Plans (SSPs) supporting safe RRR – WHO, Swiss TPH
Sanitation Safety Plans

Principles

Loop with Water Sanitation Plan

Tasks
SSP Principles – a framework for assessing, managing and monitoring health risks

• **Maximize the benefits** of waste reuse in productive agriculture and aquaculture while minimizing risks to health

• Provide practical stepwise guidance to identify, prioritize and **manage risks** in the sanitation chain

• Consider **multiple routes** of exposure and multiple exposed groups related to microbial and chemical safety

• Expand the **systematic approach** to include downstream health and environmental effects

• Account for **fragmented sector responsibilities**, diverse decision-making and implementing agencies

• **Build on** the water safety planning
Expected benefits of SSP in contexts

- Allows a collective **eye opener** on integrated water and sanitation systems safety
- Allows to establish a **multisectoral team** tackling health risks of urban sanitation
- Allows targeting **limited resources** to the highest health risk areas
- Allows identifying **specific knowledge and capacity gaps**
- Incorporates **hazards** identification and risk management for emergencies and climate change
- Allows for progressive **improvement** and systematic **monitoring**
Multiple barriers to prevent contaminants coming in (single exposure group)

Environmental limits in ground and surface waters

Guidelines on Safe Use of Wastewater, Excreta & Greywater Codex Alimentarius

Multiple barriers to prevent contaminants coming out (multiple exposure groups)

Environmental limits in soils

Guidelines for Drinking-water Quality (GDWQ)

EXPOSURE GROUPS
W waste handlers
F farm workers
L local community
C consumers

Source: Kate Medlicott 2012
(1) define the **system boundaries** and assemble the **SSP team**;

(2) describe **sanitation system** within a defined boundary;

(3) identify **hazards**, assess existing controls, and assess exposure risk;

(4) develop and implement an incremental **improvement** plan;

(5) **monitor** the plan and check that controls are working;

(6) develop supporting programs and **regularly review** SSP

Key outputs:

- Stakeholder coordination
- Prioritized improvement plan
- Operational monitoring plan

Source: Thor Axel Stenström 2012
SSP boundaries

City level vs Subsystems levels
Wastewater treatment plant

Biosolids co-composting

Groundwater recharge

source waters

vegetable production

vege distribution storage and sale

drinking water system (under WSP)

Households

Industry SSP

Farming SSP

Non-point sources. Eg Stormwater,

Non-point sources SSP

System Boundary

System boundary, subsystems
New sanitation system(s)
Existing sanitation system
Task X – Define the overall system boundary
Task X – Define option(s) for potential sanitation systems(s) within the system boundary
Task X – Establish a sanitation safety steering group
SSP of sub-system X
SSP of sub-system Y
Task X – Develop the SSP, coordination plan that defines sub-system boundaries and corresponding SSP items
Task X – Analyse sanitation system options through technical assessments (e.g. LCA, QUALA, cost-benefit analysis)
Task X – Identify potential hazards and assemble required evidence base
Task X – Assess exposure risks and existing controls
Task X – Define and implement an incremental improvement plan
Task 4 – Development of supporting processes
Task 5 – Operational monitoring of the SSP
Task 6 – Verification monitoring of the SSP
Task 7 – Review of the SSP and development of supporting processes
System boundary, subsystems
SSP

Challenges and recommendations
Specific SSP for FS

Critical points:
• Adequate de-sludging on sites
• Safe handling and transport of sludge
• Treatment of sludge
• Safe disposal or reuse

Need for holistic thinking:
• FSM as an integral part of sanitation plan
• FSM as a major component of the overall sanitation system

Specific FSM stakeholders to be considered:
householders, community based organizations and non governmental organizations, authorities, public utilities managers, private sector actors, end users/farmers,
Challenges for SSP

Involvement
- **Government & regulators**
- **Professional associations**
- **Surveillance authorities**
- **Municipality & town associations**
- **Building owner associations**
- **Universities & training providers**
- **Institutions which can fund improvements**
- **NGOs**

Source: Oliver Schmoll 2010, Thor Axel Stenström 2012
Recommendations FSM and SSP

• **Health dimensions** of FSM are not enough covered
• Call for of a **specific important initiative of research** on Health Aspects of FS management and valorization
• **Synergies** with an ongoing project like the RRR can give a good start for that initiative
• The initiative could **test and promote SSP principles** on the specific stream of FS on different sites
• **Fields** of such initiative could be on the **3 continents** (America, Asia and Africa)
• A **core group** to be put in place (starting with the contributors at the FSM2 under Health Aspects: Louton, Cissé, Maradufu, Stenström +?)
Thank you very much!

WHO
- Robert Bos
- Kate Medlicott
- Thor Axel Stenström

IWMI
- Pay Drechsel

SANDEC
- Linda Strande
- Chris Zurbrügg

CEWAS
- Johannes Heeb

Swiss TPH
- Guéladio Cissé
- Mirko Winkler
- Juerg Utzinger

gueladio.cisse@unibas.ch
Thank you very much!

- **WHO**
 - Robert Bos
 - Kate Medlicott
 - Thor Axel Stenström

- **IWMI**
 - Pay Drechsel

- **SANDEC**
 - Linda Strande
 - Chris Zurbrügg

- **Swiss TPH**
 - Guéladio Cissé
 - Mirko Winkler
 - Juerg Utzinger

Photo: RR&R Project, meeting Geneva February 2012

gueladio.cisse@unibas.ch