

S a n d e c Water and Sanitation in Developing Countries

Evaluation of biogas sanitation systems in Nepalese prisons

Summary Presentation of Evaluation Results August 09

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

- 1. Introduction
 - 1.1 Background
 - 1.2 Objectives
 - 1.3 Methodologies
- 2. Monitoring
 - 2.1 Monitored systems
 - 2.2 Treatment efficiency
 - 2.3 Biogas
- 3. Evaluation
 - 3.1 Technical
 - 3.2 Organizational
 - 3.3 Economic
 - 3.4 Environmental
 - 3.5 Socio-cultural
 - 3.6 Sanitation/Health
- 4. Discussion
 - 4.1 Recommendation
 - 4.2 Conclusion

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

Agreement between ICRC and local expert partner BSP-N to implement 5 biogas systems in 3 Nepalese prisons

May 2008

End of construction -> start of operation

April-June 2009
External evaluation by Eawag/Sandec

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

Objectives of biogas installations

- Improvement of human excreta disposal and management (reduction of health risks)
- Provision of renewable energy source as alternative to wood and kerosene
- Improvement of kitchen environment (reduction of health risks)
- Use of slurry as fertilizer
- Promote the construction of biogas plants on institutional level

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

Location of evaluated district jails

Source: commons.wikimedia.org (modified)

Biogas digesters

Kaski : 10m3 and 20m3Chitwan : 10m3 and 35m3

• Kanchanpur : 10m3

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

- Measurements/analyses on-site
- Gas production & composition
- pH, Temp., Redox, EC
- COD, NH4-N, N total, P total
- VFA, alkalinity, A/TIC-ratio
- E.Coli

- TS (Total Solids), VS (Volatile solids) -> KU lab
- Helminth eggs -> Swiss Tropical Institute

- Observations and Interviews
- Gas tightness of dome & piping
- Fuel savings, living conditions before/after biogas plant
- Construction, operation, maintenance and problems

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

OCENEY!

Digester design

> Nepalese GGC2049-model

Kaski, Chitwan and Kanchanpur District Jails

1. Introduction

Kaski District Jail:

Initial capacity of jail: 60 pers.

Number of detainees

2. Monitoring

Altitude: 819m above mean sea level

Pre-construction planning: 187 pers. Evaluation period 2009: 203 pers.

(Digester Size: 10m³ and 20m³)

3. Evaluation

4. Discussion

Chitwan District Jail:

Altitude: 240m above mean sea level

(Digester Size: 10m³ and 35m³)

Number of detainees

Initial capacity of jail: 55 pers.

Pre-construction planning: 321 pers. Evaluation period 2009: 268 pers.

Kanchanpur District Jail:

Altitude: 116m above mean sea level

(Digester Size: 10m³)

Number of detainees

Initial capacity of jail: 75 pers.

Pre-construction planning: 74 pers. (•)

Evaluation period 2009: 106 pers. (•)

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

- Reduction of Solids and Organic load
 95 98% reduction of Total Solids and Organic Load
- Reduction of pathogen

3-M Petrifilmtest

> E.Coli

WHO guideline values for agricultural use of greywater, excreta and faecal sludge:

- Restricted irrigation: < 10^5 CFU/100ml
- Unrestricted irrigation of crops eaten raw: < 10^3 CFU/100ml
- Requirements for restricted irrigation fulfilled

> Helminth eggs

WHO guideline values:

- Restricted/unrestricted irrigation: < 1 ova/L
- Requirements only partially fulfilled

Ascaris lumbricoides

Result of Pathogenic Analysis

	Chitwan		Kanchanpur	
Descriptions		10m3	35m3	10m3
E.COLI	Reduction- Influent vs Effluent in Compensation Chamber	92.0%	98.5%	99.7%
	Reduction- Influent vs Effluent in Storage Pit	99.9%	99.9%	99.99%
TOTAL HELMINTH	Reduction- Influent vs Effluent in Compensation Chamber	87.3%	94.4%	84.3%
	Reduction- Influent vs Effluent in Storage Pit	100.0%	100.0%	100.0%

- •Influent data for Kaski unavailable
- Due to limited samples results are not statistically representative

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

Daily gas production

		Kaski	Kaski	Chitwan	Chitwan	Kan'pur
		10m3	20 m3	10m3	35m3	10m3
	April 2009	1260	8620	2610	1920	3130
Monitoring:	May 2009	260	8210	3260	2500	-
Measurement/ Observation/	June 2009	2120	9210	3310	4800	3450
Estimation	Cooking time (h)	6.5	19.5	9.0	10.5	9.5
	No. of detainees	65	135	115	155	106
	Kitchen waste feeding (kg/d)	3	45	0	0	0
			ı			
Pre-	Daily kitchen waste feeding	4	43	0	73	19
Construction: Planning/	No. of detainees	68	119	115	206	74
Expectation	Biogas output	2000	4000	3000	7000	2000
Difference between expected & measured daily biogas production		+6%	+130%	+10%	-31%	+73%

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

Technical aspects

Process stability (Inhibiting factors)

Ø	Kaski 10	Kaski 20	Chitwan 10	Chitwan 35	Kanchanpur 10	Optimum
рН	7.17	7.05	7.11	7.44	7.20	6.5 - 7.5
Temp. [°C]	26.4	25.6	29.8	28.8	30.0	25 – 35
Redox [mV]	-372	-401	-389	-391	-402	< -330
VFA [mg/L]	49	95	28	46	31	< 1000
NH4-N [mg/L]	504	697	356	458	443	< 1500

Hydraulic Retention time

HRT [days]	23	21	14	33	15	70 - 90
inti [dayo]						, 0 , 0

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

Technical aspects

Feeding input -> Biogas output (theroretical and measured)

	Kaski 10	Kaski 20	Chitwan 10	Chitwan 35	Kanchanpur 10
Number of persons	65	135	115	155	106
Feaces [0.4kg/cap/d]	26	54	46	62	42
Flush water [3L/cap/d]	195	405	345	465	318
Urine [1.5L/cap/d]	97.5	202.5	172.5	232.5	159
Kitchen waste KW [kg/d]	3	45	0	3	0
Gas per faeces [30L/cap/d]	1950	4050	3300	4650	3180
Gas per KW [115L/kg/d]	345	5175	0	345	0
Total gas potential [L/d]	2295	9225	3450	4800	3180
Total gas (June 09) [L/d]	2120	9210	3310	4995	3450

> Average biogas output from faeces: 28 NL/cap./day

> With addition of kitchen waste: 62 NL/cap./day

Organizational

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

Operational aspects

- Kitchen waste feeding Only regularly done in Kaski Chitwan*/Kan'pur: Sold to piggery (* Since Sept 09 used to feed digester)
- Slurry No use as fertilizer No (aerobic) post-treatment

Kaski 20m3

Kaski 10m3

 Lack of internal and external maintenance strategy*

(* In Sept 09 maintence calendar was drawn up and PMD reviewing maintenance)

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

CENEUE CONTROL OF THE PROPERTY OF THE PROPERTY

Cooking fuel: money saving

Kaski DJ>>> 41% saving

• Chitwan DJ >>> 17% saving

• Kanchanpur DJ >>> 22% saving

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

Economic aspects

Cost effectiveness

10'000 NR • 140 CHF

	Kaski	Chitwan	Kanchanpur
Saving of cooking fuel [NR/y]	29'400	84'000	41'100
Saving of septic tank emptying [NR/y]	46'000	22'000	2'200
Cost of biogas system(s) [NR]	511'000	577'000	160'000
Min. amortisation period [year]	1.5	5.4	3.7

* Not considered:

Cost of

- Eventual repairing work
- Desludging of digester
- Changes in number of detainees
- Price fluctuations

• Lifespan of biogas system

Acc. BSP-N: Digester: min 20 years
Acc. BAT (2009) Acrylic emulsion paint: 4-6 years
Acc. BAT (2009) Piping: 7 years

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

Environmental aspects

- Mitigating deforestation
 - > Annual saving of firewood:Chitwan: 10 tonsKanchanpur: 4 tons

- Reduction of methane emissions
 - If biogas properly burned
 - If gas escape minimized

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

Socio-cultural aspects (Interview with 63 detainees)

- Knowledge of system
 79% of total interviewees know the new <u>sanitation system</u> by name (biogas)
- Objection

Only 7 detainees (1.2% of total) object biogas use because of faecal origin (Kan'pur) -> Acceptance is increasing

• Improvement of living conditions?

98%: yes

59%: Less smoke in kitchen

49%: Improved sanitation/hygiene/health

38%: Cleaner environment

35%: Time saving 35%: Money saving

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

OGENEVE.

Sanitation/Health aspects

Comparison Septic tank • biogas system
 All interviewees prefer biogas system

• Water use/hygiene

Recommended: 1L water per defecation

Observed: 3L!

• Kitchen: H2S, smoke

Hazardous H2S-content in biogas (>1000ppm)

- -> regular leakage check in kitchen
- -> complete combustion

97% of interviewees prefer biogas cooking to firewood/kerosene

Recommendation

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

CENEYE C

- Design / Construction
 - > Buffer wall
 - -> increased solid retention time -> improved efficiency

Short circuiting

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

Design / ConstructionEnsure sufficient inlet slope

- > Promote slurry use for banana cultivation
 - -> Widespread in Nepal
 - -> No contact between fruit and slurry
 - -> No risk of digester-damage by roots
 - -> No extensive shading by leaves
 - -> High nutrient demand
 - -> High water demand (no water logging)

- Operation/Maintenance:
- > Clarify/control responsibilities (duty calendar)
- > Annual monitoring (after drawback of ICRC WatHab)

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

General

- > Technology and design are suitable for treatment of human & kitchen waste on institutional level <u>if system is properly operated and maintained</u>
- > Technology is favourably perceived by users (less indoor air pollution, better hygiene, easy cooking, money & time saving, cleaner environment)
- > Domes are gastight
- > Room for improvement: Inlet slope, user commitment
- > Average quantity of toilet flush: 3L (not 1L) -> low HRT
- > Reduction of organic load substantial
- > Pathogen reduction needs further analyses
- > Slurry is not used as fertilizer -> promote banana cultivation
- > No regular maintenance work conducted -> jeopardizing sustainability

- 1. Introduction
- 2. Monitoring
- 3. Evaluation
- 4. Discussion

Objectives of biogas installations

- Improvement of human excreta disposal and management (reduction of health risks)
- Provision of renewable energy source as alternative to wood and kerosene
- Improvement of kitchen environment (reduction of health risks)
- Use of slurry as fertilizer
- Promote the construction of biogas plants on institutional level

