

National Workshop on Small-Scale Sanitation Systems

A Roadmap for Small-Scale STPs in India: Fulfilling their Potential for Healthy and Water-Secure Cities

Cost and Management of ssSTPs Improving Sewage Management and Reuse

5th April 2018; New Delhi

Purpose of this Financial Study

- 1. Lack of detailed cost information on small-scale STPs
 - Understand cost of owning a STP over 10-20 years

2. Identify financially-driven reasons for why STPs fail

3. Options for de-centralized STPs at city-scale

Technologies Studied

- 1. MBR Membrane Bio-Reactor
- 2. SBR Sequencing Batch Reactor
- 3. MBBR Moving Bed Biofilm Reactor
- 4. ASP Activated Sludge Process
- 5. EA Extended Aeration
- 6. P-MBBR Packaged MBBR
- 7. DEWATS ABR-based non-mechanized systems
- 8. SBT-CAMUS Soil Bio-Technology (non-mechanized)

Many factors determine cost of a STP

- 1. Quality of components
- 2. Design Specifications: Capacity, component ratings etc
- 3. Climatic conditions
- 4. Soil type
- 5. Automation
- 6. Geographic location
- 7. Location within a site (underground/basement etc)
- 8. Profit margins of designer

Lifecycle Cost of STPs Failure and Management

3. City-scale De-centralization

Cost Headers

A. Capital Costs

- Civil Construction and Tanks
- Electro-mechanical components: Pumps, Blower etc.

B. O&M Costs

- Labor
- Electricity
- Consumables
- Minor maintenance
- **C. Capital Maintenance Costs**

Operation and Maintenance Costs

Life Cycle Costs (LCC) (10 years)

LCC (10yrs) = 2x-12x of Capital Costs

Scale makes STPs more affordable

Premium Components can be lowest LCC

• Premium components require least Capital Maintenance

SBR - 300 KLD system

1. Lifecycle Cost of STPs

2. Failure and Management

3. City-scale De-centralization

Key stakeholders

- Financial factors determine management choices
- Buyers and long-term owners are often different parties
- Conflicting incentives among Stakeholders

5 Common O&M Models

Model	Cost	Risks and Challenges
1. In-house staff (Part time)	\$	Training, Quality, AbsenteeismRisk of poor asset maintenance
2. In-house staff (Full-time)	\$\$	Supervision likely will be weakAutomation can reduce risks
3. O&M by System Designer	\$\$\$\$	 Operator may not report system problems
4. Independent Service Provider	\$\$\$\$	Can blame designer for problems
5. Facility Management Company	\$\$\$	Lack of specializationCan blame designer for problems

Why do systems fail?

Financial Issues	 Cash flow and interruption during construction No earmarked funds for O&M Seen as a cost center, little benefit 	
Quality Issues	Under-designing systemsCheap/low quality components	
HR Issues	 Lack of skilled operators and Job Perception Low pay attracts low quality players 	
Regulatory Issues	 Consent process is uninformed Negligible inspections Corruption in lab testing Periodic tests not enough—real-time monitoring Low accountability and alignment among actors 	

Recommendations

1. Lifecycle Cost of STPs

2. Failure and Management

3. City-scale De-centralization

De-centralizing Sewerage Networks

- Centralized Sewerage systems take 7-12 years to build
- Sometimes connect only 30-50% of the population
- Failure of large STP is catastrophic (60% don't meet stds)
- De-centralized is an option:
 - Neighbourhood-scale sewage networks
 - Many small STPs around the city (FSM for gaps)
- Requires a different approach by authorities
 - Different technologies, focus on re-use
 - New management processes

Cost Comparison

Depends on local conditions

• Soil, water table, land gradient, materials, flow etc

Component	Cost Comparison	
1. Feeder Networks	Similar	
2. Trunk Networks	Smaller Pipes—Cheaper	
3. Pumping Stations	Not required	
4. STP	Many more—higher Capital Cost	
Overall Cost: Similar		

- But can do by locality / ward, based on budget
- Can reduce if norms for pipelines are changed

It's a New Way : Benefits and Challenges

- Cap. Cost Similar to centralized, but can do locality-wise
- **Time** Can operationalize segments quickly (1-3 yrs)
- **Tech** More choice—select ideal tech for each STP
- Land Need many smaller plots
- **Re-use** Easier at local level (5-60% water shortage)
- **Expansion** Easier over time (save \$\$ today)
- **Op. Cost** Depends on STP tech
- Mgmt. Many locations—new systems and processes
 Speed, Flexibility and Re-use are key advantages

Conclusions and Key Lessons

- STPs cost < 0.2% of building project cost
- Lifecycle cost is 2-12x Capital Cost
- Alignment of interest is needed for proper O&M
 - Better rules / regulations, training and O&M models
 - Financial investment, fines and incentives
- De-centralized STPs viable and beneficial for cities
- Wastewater re-use—cut water supply capital / O&M costs and improve water security, health etc

Questions anyone?