Exercise 4

Modelling Aquatic Ecosystems FS25

Today's agenda

- Quick recap of last week's lecture
- Introduction to today's model 11.4
- Work on the exercise
- Break
- Discuss the results and the questions of the exercise
- Work on your project topics and take the opportunity to ask questions

Recap of last week's theory

- Mass balance in a continuous multi-reactor system (sections 3.3 and 3.4)
- Transport and mixing in lakes- Physical processes (sections 6.1 to 6.3)
 - Plunging of inflows
 - Stratification
 - Horizontal mixing
 - Vertical mixing (Sedimentation & gas exchange)
- Two box lake model (today's exercise,

sections 11.3 and 11.4)

One box model vs. Two box model

One box modelTwo box model5. Define the system
(one reactor-
Epilimnion)1. Define parameters
2. Calculate stoichiometric coefficients
3. Define processes
4. Define time-dependent conditions
6. Perform calculations5. Define the system
(two reactors
Epilimnion & Hypolimnion
+ one link
Metalimnion)

Two box biogeochemical-ecological lake model

Process rate expressions

Process	Substances / Organisms							Rate			
	HPO_4^{2-}	$^{\rm NH_4^+}$	NO_3^-	O_2	ALG gDM	ZOO gDM	POMD gDM	POMI gDM	SPOMD gDM	gDM	
	gı	giv	gı	gO	gDM	gDM	gDW	gDM	gDW	gDM	
Growth of algae NO_3^-	-		_	+	1						$\rho_{\rm gro,ALG,NO_3^-}$
Growth of algae NH_4^+	_	-		+	1						$ ho_{ m gro,ALG,NH_4^+}$
Respiration of algae	+	+		_	-1						$ ho_{ m resp,ALG}$
Death of algae	0/+	0/+		0/+	-1		$(1-f_{ m I})Y_{ m ALG,death}$	$f_{ m I}Y_{ m ALG,death}$			$ ho_{ m death,ALG}$
Growth of zooplankton	+	+		_	$\frac{-1}{Y_{\rm ZOO}}$	1	$rac{(1-f_{ m I})f_{ m e}}{Y_{ m ZOO}}$	$\frac{f_{\rm I}f_{\rm e}}{Y_{\rm ZOO}}$			$ ho_{ m gro,ZOO}$
Respiration of zoopl.	+	+		_		-1					$ ho_{ m resp,ZOO}$
Death of zooplankton	0/+	0/+		0/+		-1	$(1-f_{ m I})Y_{ m ZOO,death}$	$f_{ m I}Y_{ m ZOO,death}$			$ ho_{ m death,ZOO}$
Nitrification		$NH_4^+ + 2O_2 \rightarrow NO_3^- + 2H^+ + H_2O$							$ ho_{ m nitri}$		
Oxic mineral. of org. part.		$POMD + O_2 \rightarrow NH_4^+ + HPO_4^{2-} + CO_2 + H_2O$							$ ho_{ m miner,ox,POMD}$		
Ox. min. of org. part. in sed.		$SPOMD + O_2 \rightarrow NH_4^+ + HPO_4^{2-} + CO_2 + H_2O$							$ ho_{ m miner,ox,SPOMD}$		
Anox. min. of org. part. in sed.		$SPOMD + NO_3^- \rightarrow NH_4^+ + HPO_4^{2-} + CO_2 + H_2O$							$ ho_{ m miner,anox,SPOMD}$		
Sed. of deg. org. part.	$POMD \rightarrow SPOMD$							$ ho_{ m sed,POMD}$			
Sed. of inert org. part.	$POMI \rightarrow SPOMI$							$ ho_{ m sed,POMI}$			

$$\begin{array}{lll} \hline \text{Rate} & \text{Rate expression} \\ \hline \\ \hline \rho_{\text{gro,ALG,NH}_{1}^{+}} & k_{\text{gro,ALG,T}_{0}} \exp\left(\beta_{\text{ALG}}(T-T_{0})\right) \cdot \frac{1}{\lambda h} \log\left(\frac{K_{I}+I_{0}}{K_{I}+I_{0}}\exp(-\lambda h)\right) \\ & \quad \cdots \min\left(\frac{C_{\text{HPO}_{1}^{-}}}{K_{\text{HPO}_{1}^{-}}, \text{LC}+C_{\text{NH}_{1}^{+}}+C_{\text{NO}_{3}^{-}}}\right) \cdot \frac{p_{\text{NH}_{1}^{+}}C_{\text{NH}_{1}^{+}}}{p_{\text{NH}_{1}^{+}}C_{\text{NH}_{1}^{+}}+C_{\text{NO}_{3}^{-}}} \cdot C_{\text{ALG}} \\ \hline \\ \rho_{\text{gro,ALG,NO}_{3}^{-}} & k_{\text{gro,ALG,T}_{0}} \exp\left(\beta_{\text{ALG}}(T-T_{0})\right) \cdot \frac{1}{\lambda h} \log\left(\frac{K_{I}+I_{0}}{K_{I}+I_{0}}\exp(-\lambda h)\right) \\ & \quad \cdots \min\left(\frac{C_{\text{HPO}_{1}^{--}}}{K_{I}+I_{0}}\exp(-\lambda h)\right) \\ \hline \\ & \quad \min\left(\frac{C_{\text{HPO}_{1}^{--}}}{K_{1}+I_{0}}\exp(-\lambda h)\right) \\ \hline \\ \rho_{\text{resp},\text{ALG}} & k_{\text{resp,ALG,T}_{0}} \exp\left(\beta_{\text{ALG}}(T-T_{0})\right) \cdot \frac{C_{\text{O}_{2}}}{K_{\text{O}_{2},\text{ALG}}+C_{\text{OPO}_{1}^{-}}}, \frac{C_{\text{NH}_{1}^{+}}+C_{\text{NO}_{3}^{-}}}{K_{\text{N,ALG}}+C_{\text{NH}_{1}^{+}}+C_{\text{NO}_{3}^{-}}}\right) \cdot \frac{C_{\text{NO}_{3}^{-}}}{p_{\text{NH}_{1}^{+}}C_{\text{NH}_{1}^{+}}+C_{\text{NO}_{3}^{-}}} \cdot C_{\text{ALG}} \\ \hline \\ \rho_{\text{resp,ALG}} & k_{\text{resp,ALG,T}_{0}} \exp\left(\beta_{\text{ALG}}(T-T_{0})\right) \cdot \frac{C_{\text{O}_{2}}}{K_{\text{O}_{2},\text{ALG}}+C_{\text{O}_{2}}} \cdot C_{\text{ALG}} \\ \hline \\ \rho_{\text{death,ALG}} & k_{\text{death},\text{ALG}} \cdot C_{\text{ALG}} \\ \hline \\ \rho_{\text{gro,ZOO}} & k_{\text{gro,ZOO,T}_{3}} \exp\left(\beta_{\text{ZOO}}(T-T_{0})\right) \cdot \frac{C_{\text{O}_{2}}}{K_{\text{O}_{2},\text{CO}_{4}}} \cdot C_{\text{COO}} \\ \hline \\ \rho_{\text{resp,ZOO}} & k_{\text{resp,ZOO,T}_{3}} \exp\left(\beta_{\text{BAC}}(T-T_{0})\right) \cdot \frac{C_{\text{O}_{2}}}{K_{\text{O}_{2},\text{COO}}} \cdot \frac{C_{\text{O}_{2}}}{C_{\text{O}_{2}}} \cdot C_{\text{COO}} \\ \hline \\ \rho_{\text{death},\text{ACO}} & k_{\text{death},\text{ZOO}} \cdot C_{\text{ZOO}} \\ \hline \\ \rho_{\text{niter},\text{ons},\text{SPOMD}} & k_{\text{miner,ex},\text{SPOMD,T_{0}}} \exp\left(\beta_{\text{BAC}}(T-T_{0})\right) \cdot \frac{C_{\text{O}_{2}}}{K_{\text{O}_{2},\text{miner}} + C_{\text{O}_{2}}} \cdot \frac{D_{\text{SPOMD}}}{K_{\text{SpOM,\text{miner,sed}}} + D_{\text{SPOMD}}} \\ \rho_{\text{niter},\text{ans},\text{SPOMD},T_{0}} \cdot \exp\left(\beta_{\text{BAC}}(T-T_{0})\right) \cdot \frac{C_{\text{O}_{2}}}{K_{\text{O}_{2},\text{miner}} + C_{\text{O}_{2}}} \cdot \frac{D_{\text{SPOMD}}}{K_{\text{SpOM,\text{miner,sed}}} + D_{\text{SPOMD}}} \\ \rho_{\text{miner,ex},\text{SPOMD},T_{0}} \cdot \exp\left(\beta_{\text{BAC}}(T-T_{0})\right) \cdot \frac{C_{\text{O}_{2}}}{K_{\text{O}_{2},\text{miner}} + C_{\text{O}_{2}}} \cdot \frac{D_{\text{SPOMD}}}{K_{\text{SpOM},\text{miner,sed}} + D_{\text{SPOMD}}} \\ \rho_{\text{sed}$$

Time to work on Exercise 4

Discuss the results

Process	Substances / Organisms							Rate			
	HPO_4^{2-} gP	$^{ m NH_4^+}_{ m gN}$	$rac{\mathrm{NO}_{3}^{-}}{\mathrm{gN}}$	O_2 gO	ALG gDM	$_{ m gDM}$	POMD gDM	POMI gDM	SPOMD gDM	SPOMI gDM	
Growth of algae NO_3^-	-		-	+	1						$\rho_{\rm gro,ALC}$
Growth of algae NH_4^+	-	-		+	1						$ ho_{ m gro,ALC}$
Respiration of algae	+	+		_	$^{-1}$						$ ho_{ m resp,AL}$
Death of algae	0/+	0/+		0/+	$^{-1}$		$(1-f_{ m I})Y_{ m ALG,death}$	$f_{\rm I}Y_{\rm ALG, death}$			$ ho_{ m death,A}$
Growth of zooplankton	+	+		_	$\frac{-1}{Y_{\rm ZOO}}$	1	$rac{(1-f_{ m I})f_{ m e}}{Y_{ m ZOO}}$	$rac{f_{ m I}f_{ m e}}{Y_{ m ZOO}}$			$ ho_{ m gro,ZOO}$
Respiration of zoopl.	+	+		_		-1					$ ho_{ m resp,ZO}$
Death of zooplankton	0/+	0/+		0/+		-1	$(1-f_{\rm I})Y_{\rm ZOO,death}$	$f_{\rm I}Y_{\rm ZOO, death}$			$ ho_{ m death,Z}$
Nitrification		-1	+	-							$ ho_{ m nitri}$
Oxic mineral. of org. part.	+	+		_			$^{-1}$				$ ho_{ m miner,on}$
Ox. min. of org. part. in sed.	+	+		_					-1		$ ho_{ m miner,or}$
Anox. min. of org. part. in sed.	+	+	-						-1		$ ho_{ m miner,a}$
Sed. of deg. org. part.							$^{-1}$		1		$ ho_{ m sed, POP}$
Sed. of inert org. part.								$^{-1}$		1	$\rho_{\rm sed, PON}$

t

t

t

1. Why is it important that some stoichiometric coefficients are indicated as 0/+?

- 1) Allows for conditional release of substances
 - a. For example, during the death of algae, nutrients (like NH_4^+ and $HPO_4^{2^-}$) and oxygen might be released but not necessarily.
 - b. If they're 0, it means all organic matter goes to detritus.
 - c. If they're greater than 0, it means **a portion of organic matter is mineralized.**
 - d. If they're negative, it means **the death process leads to a consumption of nutrients**. It's biologically non-sense.

Substances	Condition of stoichiometric coefficients	Biological meaning
Nutrients (NH_4^+ , HPO_4^{2-}) and Oxygen(O_2)	$\nu = 0$	All organic matter goes to detritus.
	ν > 0	A portion of organic matter is mineralized.
	ν < 0	The death process leads to a consumption of nutrients.

2) Helps the model remain mass-balanced under different assumptions

2. How is the metalimnion represented in the model?

• A 'Link' between reactors

3. How and why do we differentiate oxic and anoxic mineralization ?

In a more realistic model

In our two-box model

4. Look at the mass balance for P and N. If there is a difference between input and output + accumulation, where does it come from?

<pre># Phosphorus mass b nr.days <- (as.num nr.steps <- (nrow(r F.in.P <- c(HP04 F.out.P <- c(HP04 ALG</pre>	<pre>palance: meric(rownames(res.11.4)[nrow(res.11.4)])-as.numeric(rownames(res.11.4)[1])) res.11.4)-1) = param\$Q.in*param\$C.HP04.in*nr.days*86400/1e6) = sum(param\$Q.in*res.11.4[,"C.HP04.Epi"])*nr.days/nr.steps*86400/1e6, = sum(param\$Q.in*res.11.4[,"C.ALG.Epi"]*param\$alpha.P.ALG)* nr.days/nr.steps*86400/1e6</pre>		Run this part of the script to get the average mass fluxes of P and N (input, output and accumulation) (see Table 11.11)			
Z00	<pre>= sum(param\$Q.in*res.11.4[,"C.ZOO.Epi"]*param\$alpha.P.ZOO)* nr.days/nr.steps*86400/1e6,</pre>	_				
POMD	<pre>= sum(param\$Q.in*res.11.4[,"C.POMD.Epi"]*param\$alpha.P.POM)* nr.davs/nr.steps*86400/1e6.</pre>					
POMI	<pre>= sum(param\$Q.in*res.11.4[,"C.POMI.Epi"]*param\$alpha.P.POM)* nr.days/nr.steps*86400/1e6)</pre>		Ŷ			
Acc.P <- c(HPO4	<pre>= param\$A/1e6* ((param\$h.epi*res.11.4[prow(res.11.4)."C.HP04.Epi"]+</pre>	Flux	Substances	Phosphorus (t/a)	Nitr	
	param\$h.hypo*res.11.4[nrow(res.11.4),"C.HP04.Hypo"])-	Input	HPO_4^{2-}, NO_3^{-}	12.6		
	param\$h.hypo*res.11.4[1,"C.HP04.Hypo"])),	Output	$HPO_4^{2-}, NO_3^-, NH_4^+$	9.3		
ALG	= param\$A/1e6*param\$alpha.P.ALG*		ALG, ZOO, POMD, POMI	1.2		
	param\$h.hypo*res.11.4[nrow(res.11.4), "C.ALG.Hypo"])-	Accumulation	$HPO_4^{2-}, NO_3^-, NH_4^+$	1.2		
	(param\$h.epi*res.11.4[1,"C.ALG.Epi"]+ param\$h.hypo*res.11.4[1,"C.ALG.Hypo"])).		ALG, ZOO, POMD, POMI	0.0		
Z00	= param\$A/1e6*param\$alpha.P.ZOO*		SPOMD	0.0		
	((param\$h.epi*res.11.4[nrow(res.11.4),"C.ZOO.Epi"]+ param\$h.hypo*res.11.4[nrow(res.11.4),"C.ZOO.Hypo"])-		SPOMI			
	<pre>(param\$h.epi*res.11.4[1,"C.ZOO.Epi"]+ param\$h.hypo*res.11.4[1,"C.ZOO.Hypo"])),</pre>	Loss	Denitrification of NO_3^-	0.0		

Nitrogen (t/a)

158

127

11.5

-7.4 0.1

0.2

<u>8.6</u> 18.0

Work on your own model

- If you didn't tell us yet which model you chose, it's time to do it!
 Team up with someone, choose a topic and inform us which one you picked.
- Read the assignment carefully and start thinking about how to modify today's model 11.4.
- Don't hesitate to ask questions !