Exercise 5

Modelling Aquatic Ecosystems FS25

Today's agenda

- Look at today's model (section 11.6)
- Work on the exercise on your own
- Break
- Discuss the questions of the exercise
- Work on your own model and take the opportunity to ask questions

What are the dominant organisms in <u>shallow</u> and <u>deep</u> systems?

It's easy to visualize that most rivers are shallow and most lakes are deep. However, we can find systems that will require us to model organisms differently (i.e. shallow lakes may experience more impact of benthic organisms).

How to model a river?

2

3

Biogeochem/ecological processes:

- **1** Growth, death, respiration: **benthic algae**, **hetereotrophic bacteria**
 - Nitrification in two steps → growth, death, respiration: nitrosomonas (N1), nitrobacter (N2)
 - Hydrolysis of **POM** (particulate) turning into **DOM** (dissolved)

Environmental factors:

Process Table & Rate Expressions

		Process	Substances / Organisms							Rate				
			HPO_4^{2-}	$\rm NH_4^+$	NO_2^-	NO_3^-	O_2	DOM	SALG	SHET	SN1	SN2	SPOM	
			gP	gN	gN	gN	gO	g	gDM	gDM	gDM	gDM	gDM	
	Г	Growth of algae NH_4^+	_	_			+		1					$\rho_{\rm gro,SALG,NH_4^+}$
benthic algae		Growth of algae NO_3^-	_			_	+		1					$\rho_{\rm gro,SALG,NO_3^-}$
		Respiration of algae	+	+			_		-1					$ ho_{ m resp,SALG}$
		- Death of algae	0/+	0/+			0/+		-1				$Y_{\rm ALG, death}$	$ ho_{ m death,SALG}$
	Г	Growth of het. bact. NH_4^+	?	?			_	$\frac{-1}{Y_{\rm HET}}$		1				$\rho_{\rm gro,SHET,NH_4^+}$
heterotrophic		Growth of het. bact. NO_3^-	?			?	_	$rac{-1}{Y_{ m HET}}$		1				$\rho_{\rm gro,SHET,NO_3^-}$
bacteria		Respiration of het. bact.	+	+			_			-1				$ ho_{ m resp,SHET}$
	Ĺ	Death of het. bact.	0/+	0/+			0/+			-1			$Y_{\rm HET, death}$	$ ho_{ m death,SHET}$
	Г	Growth of N1	_	$\frac{-1}{Y_{\rm N1}}$	+		-				1			$ ho_{ m gro,SN1}$
nitrosomonas (N1)		Respiration of N1	+	+			_				-1			$ ho_{ m resp,SN1}$
		Death of N1	0/+	0/+			0/+				-1		$Y_{ m N1,death}$	$ ho_{ m death,SN1}$
		Growth of N2	_		$\frac{-1}{Y_{N2}}$	+	_					1		$ ho_{ m gro,SN2}$
nitrobacter (N2)	\neg	Respiration of N2	+	+			_					-1		$ ho_{ m resp,SN2}$
()		Death of N2	0/+	0/+			0/+					-1	$Y_{ m N2,death}$	$ ho_{ m death,SN2}$
		Hydrolysis	0/+	0/+			0/+	$Y_{ m hyd}$					-1	$ ho_{ m hyd}$
														1

5

Process Table & Rate Expressions

Rate	Rate expression
$\rho_{\rm gro,SALG,NH_4^+}$	$k_{\rm gro,ALG,T_0} \cdot \exp\left(\beta_{\rm ALG}(T-T_0)\right) \cdot \frac{I_0 \exp(-\lambda h)}{K_I + I_0 \exp(-\lambda h)} \cdot \min\left(\frac{C_{\rm HPO_4^{2-}}}{K_{\rm HPO_4^{2-},ALG} + C_{\rm HPO_4^{2-}}}, \frac{C_{\rm NH_4^+} + C_{\rm NO_3^-}}{K_{\rm N,ALG} + C_{\rm NH_4^+} + C_{\rm NO_3^-}}\right)$
$\rho_{\rm gro,SALG,NO_3^-}$	$ \frac{P_{\mathrm{NH}_{4}^{+},\mathrm{ALG}}C_{\mathrm{NH}_{4}^{+}}}{p_{\mathrm{NH}_{4}^{+},\mathrm{ALG}}C_{\mathrm{NH}_{4}^{+}}} \frac{K_{\mathrm{sha},\mathrm{SALG}}}{K_{\mathrm{sha},\mathrm{SALG}} + D_{\mathrm{SALG}}} \cdot D_{\mathrm{SALG}} $ $ k_{\mathrm{gro},\mathrm{ALG},T_{0}} \cdot \exp\left(\beta_{\mathrm{ALG}}(T-T_{0})\right) \cdot \frac{I_{0}\exp(-\lambda h)}{K_{I}+I_{0}\exp(-\lambda h)} \cdot \min\left(\frac{C_{\mathrm{HPO}_{4}^{2-}}}{K_{\mathrm{HPO}_{4}^{2-},\mathrm{ALG}} + C_{\mathrm{HPO}_{4}^{2-}}}, \frac{C_{\mathrm{NH}_{4}^{+}} + C_{\mathrm{NO}_{3}^{-}}}{K_{\mathrm{N},\mathrm{ALG}} + C_{\mathrm{NH}_{4}^{+}} + C_{\mathrm{NO}_{3}^{-}}}\right) $ $ \cdot \frac{C_{\mathrm{NO}_{3}^{-}}}{p_{\mathrm{NH}_{4}^{+},\mathrm{ALG}}C_{\mathrm{NH}_{4}^{+}} + C_{\mathrm{NO}_{3}^{-}}}} \frac{K_{\mathrm{sha},\mathrm{SALG}}}{K_{\mathrm{sha},\mathrm{SALG}}} \cdot D_{\mathrm{SALG}} $
$\rho_{\mathrm{resp,SALG}}$	$k_{\text{resp,ALG},T_0} \cdot \exp\left(\beta_{\text{ALG}}(T-T_0)\right) \cdot \frac{C_{\text{O}_2}}{K_{\text{O}_2,\text{ALG}} + C_{\text{O}_2}} \cdot D_{\text{SALG}}$
$ ho_{ m death,SALG}$	$k_{ m death,ALG} \cdot D_{ m SALG}$
$\rho_{\rm gro,SHET,NH_4^+}$	$k_{\text{gro,HET},T_0} \cdot \exp\left(\beta_{\text{HET}}(T-T_0)\right) \cdot \frac{p_{\text{NH}_4^+,\text{HET}}C_{\text{NH}_4^+}}{p_{\text{NH}_4^+,\text{HET}}C_{\text{NH}_4^+} + C_{\text{NO}_3^-}}$
$\rho_{\rm gro,SHET,NO_3^-}$	$ \min\left(\frac{C_{\text{DOM}}}{K_{\text{DOM,HET}} + C_{\text{DOM}}}, \frac{C_{\text{O}_{2}}}{K_{\text{O}_{2},\text{HET}} + C_{\text{O}_{2}}}, \frac{C_{\text{HPO}_{4}^{2-}}}{K_{\text{HPO}_{4}^{2-},\text{HET}} + C_{\text{HPO}_{4}^{2-}}}, \frac{C_{\text{NH}_{4}^{+}} + C_{\text{NO}_{3}^{-}}}{K_{\text{N,HET}} + C_{\text{NH}_{4}^{+}} + C_{\text{NO}_{3}^{-}}}\right) \frac{K_{\text{lim,SHET}}}{K_{\text{lim,SHET}} + D_{\text{SHET}}} \cdot D_{\text{SHET}} \\ k_{\text{gro,HET},T_{0}} \cdot \exp\left(\beta_{\text{HET}}(T - T_{0})\right) \cdot \frac{C_{\text{NO}_{3}^{-}}}{p_{\text{NH}_{4}^{+},\text{HET}}C_{\text{NH}_{4}^{+}} + C_{\text{NO}_{3}^{-}}} \\ \cdot \min\left(\frac{C_{\text{DOM}}}{K_{\text{DOM,HET}} + C_{\text{DOM}}}, \frac{C_{\text{O}_{2}}}{K_{\text{O}_{2},\text{HET}} + C_{\text{O}_{2}}}, \frac{C_{\text{HPO}_{4}^{2-}}}{K_{\text{HPO}_{4}^{2-},\text{HET}} + C_{\text{HPO}_{4}^{2-}}}, \frac{C_{\text{NH}_{4}^{+}} + C_{\text{NO}_{3}^{-}}}{K_{\text{N,HET}} + C_{\text{NH}_{4}^{+}} + C_{\text{NO}_{3}^{-}}}\right) \frac{K_{\text{lim,SHET}}}{K_{\text{lim,SHET}} \cdot D_{\text{SHET}}} \cdot D_{\text{SHET}} \\ \cdot \frac{C_{\text{DOM}}}{K_{\text{DOM,HET}} + C_{\text{DOM}}}, \frac{C_{\text{O}_{2}}}{K_{\text{O}_{2},\text{HET}} + C_{\text{O}_{2}}}, \frac{C_{\text{HPO}_{4}^{2-}}}{K_{\text{HPO}_{4}^{2-},\text{HET}} + C_{\text{HPO}_{4}^{2-}}}, \frac{C_{\text{NH}_{4}^{+}} + C_{\text{NO}_{3}^{-}}}{K_{\text{N,HET}} + C_{\text{NH}_{4}^{+}} + C_{\text{NO}_{3}^{-}}}\right) \frac{K_{\text{lim,SHET}}}{K_{\text{lim,SHET}} \cdot D_{\text{SHET}}} \cdot D_{\text{SHET}} \cdot C_{\text{NH}_{4}^{+}} + C_{\text{NO}_{3}^{-}}}$
$ ho_{\mathrm{resp},\mathrm{SHET}}$	$k_{\text{resp,HET},T_0} \cdot \exp\left(\beta_{\text{HET}}(T-T_0)\right) \cdot \frac{CO_2}{K_{O_2,\text{HET}}+C_{O_2}} \cdot D_{\text{SHET}}$
$ ho_{ m death,SHET}$	$k_{\text{death,HET}} \cdot D_{\text{SHET}}$
$\rho_{\rm gro,SN1}$	$k_{\rm gro,N1,T_0} \cdot \exp\left(\beta_{\rm N1}(T-T_0)\right) \cdot \min\left(\frac{C_{\rm NH_4^+}}{K_{\rm NH_4^+,nitri} + C_{\rm NH_4^+}}, \frac{C_{\rm O_2}}{K_{\rm O_2,nitri} + C_{\rm O_2}}, \frac{C_{\rm HPO_4^{2^-}}}{K_{\rm HPO_4^{2^-},nitri} + C_{\rm HPO_4^{2^-}}}\right) \frac{K_{\rm lim,SN}}{K_{\rm lim,SN} + D_{\rm SN1}} \cdot D_{\rm SN1}$
$ ho_{ m resp,SN1}$	$k_{\text{resp,N1},T_0} \cdot \exp\left(\beta_{\text{N1}}(T-T_0)\right) \cdot \frac{C_{\text{O}_2}}{K_{\text{O}_2,\text{nitri}} + C_{\text{O}_2}} \cdot D_{\text{SN1}}$
$ ho_{ m death,SN1}$	$k_{\mathrm{death,N1}} \cdot D_{\mathrm{SN1}}$
$\rho_{\rm gro,SN2}$	$k_{\rm gro,N2,T_0} \cdot \exp\left(\beta_{\rm N2}(T-T_0)\right) \cdot \min\left(\frac{C_{\rm NO_2^-}}{K_{\rm NO_2^-,nitri} + C_{\rm NO_2^-}}, \frac{C_{\rm O_2}}{K_{\rm O_2,nitri} + C_{\rm O_2}}, \frac{C_{\rm HPO_4^{2^-}}}{K_{\rm HPO_4^{2^-},nitri} + C_{\rm HPO_4^{2^-}}}\right) \frac{K_{\rm lim,SN}}{K_{\rm lim,SN} + D_{\rm SN2}} \cdot D_{\rm SN2}$
$\rho_{\mathrm{resp,SN2}}$	$k_{\text{resp,N2},T_0} \cdot \exp\left(\beta_{\text{N2}}(T-T_0)\right) \cdot \frac{C_{\text{O}_2}}{K_{\text{O}_2,\text{nitri}} + C_{\text{O}_2}} \cdot D_{\text{SN2}}$
$\rho_{\rm death,SN2}$	$k_{ m death,N2} \cdot D_{ m SN2}$
$ ho_{ m hyd,SPOM}$	$k_{\rm hyd,SPOM,T_0} \cdot \exp\left(\beta_{\rm hyd}(T-T_0)\right) \cdot D_{\rm SPOM}$

Heterotrophic bacteria's yield

If Y.HET is equal to 0.6, how many grams of DOM should HET eat to gain 2 grams ?

In the manuscript:							
POM	= Particulate OM						
POMD	= Particulate OM Degradable						
POMI	= Particulate OM Inert						
SPOM	= Sedimented Particulate OM						
DOM	= Dissolved OM						

In the code:

- C. = Substance concentration in the water column
- D. = Substance density in the sediment

Differences in self-inhibition terms

Growth of ALG on NH4

Growth of HET on NH4

```
# Growth of heterotrophic bacteria with ammonium:
gro.HET.NH4 <-
new(Class = "process",
name
      = "gro.HET.NH4",
       = expression(k.gro.HET
rate
         *exp(beta.HET*(T-T0))
         *min(C.DOM/(K.DOM.HET+C.DOM),
         C.02/(K.02.HET+C.02),
         C.HP04/(K.HP04.HET+C.HP04),
         (C.NH4+C.NO3)/(K.N.HET+C.NH4+C.NO3))
         *(p.NH4.HET*C.NH4/(p.NH4.HET*C.NH4+C.NO3))
         *D.HET*K.limit.HET/(K.limit.HET+D.HET)
stoich = as.list(nu["gro.HET.NH4",]),
pervol = F)
```

The inhibition represents the diffusion limitation of nutrients into the benthic biofilm.

The larger the density (D.HET) of the biofilm, the more the diffusion of nutrients and thus the growth get inhibited.

8

Time to work on Exercise 5

What is the difference between planktonic primary production (modelled in the previous lake models) and benthic primary production (modelled in this river model)?

Lake: Phytoplankton growing in the water column. Light dependence of growth has to be integrated over depth.

$$ar{f}_{
m rad}(I_0,\lambda,h) = rac{1}{h} \int\limits_0^h f_{
m rad} \Big(I_0 \exp(-\lambda z) \Big) \mathrm{d}z$$

When should we model nitrification as a one-step or two-step process?

Rate Rate expression $\frac{\rho_{\text{gro,SALG,NH}_{4}^{+}}}{\rho_{\text{gro,ALG},T_{0}} \cdot \exp\left(\beta_{\text{ALG}}(T-T_{0})\right) \cdot \frac{I_{0}\exp(-\lambda h)}{K_{I}+I_{0}\exp(-\lambda h)} \cdot \min\left(\frac{C_{\text{HPO}_{4}^{2-}}}{K_{\text{HPO}_{4}^{2-},\text{ALG}} + C_{\text{HPO}_{4}^{2-}}}, \frac{C_{\text{NH}_{4}^{+}} + C_{\text{NO}_{3}^{-}}}{K_{\text{N,ALG}} + C_{\text{NH}_{4}^{+}} + C_{\text{NO}_{3}^{-}}}\right) \\ \cdot \frac{p_{\text{NH}_{4}^{+},\text{ALG}}C_{\text{NH}_{4}^{+}}}{p_{\text{NH}_{4}^{+},\text{ALG}}C_{\text{NH}_{4}^{+}} + C_{\text{NO}_{3}^{-}}} \cdot D_{\text{SALG}}}$ $\rho_{\rm gro, SALG, NO_{3}^{-}} \left[k_{\rm gro, ALG, T_{0}} \cdot \exp\left(\beta_{\rm ALG}(T-T_{0})\right) \cdot \frac{I_{0}\exp(-\lambda h)}{K_{I} + I_{0}\exp(-\lambda h)} \cdot \min\left(\frac{C_{\rm HPO_{4}^{2-}}}{K_{\rm HPO_{4}^{2-}, ALG} + C_{\rm HPO_{4}^{2-}}}, \frac{C_{\rm NH_{4}^{+}} + C_{\rm NO_{3}^{-}}}{K_{\rm N, ALG} + C_{\rm NH_{4}^{+}} + C_{\rm NO_{3}^{-}}}\right)^{1/3}\right]$ $\cdot \frac{C_{\mathrm{NO}_{3}^{-}}}{p_{\mathrm{NH}_{+}^{+}\mathrm{ALG}}C_{\mathrm{NH}_{+}^{+}} + C_{\mathrm{NO}_{2}^{-}}} \cdot D_{\mathrm{SALG}}$ $k_{\text{resp,ALG},T_0} \cdot \exp\left(\beta_{\text{ALG}}(T - T_0)\right) \cdot \frac{C_{\text{O}_2}}{K_{\text{O}_2,\text{ALG}} + C_{\text{O}_2}} \cdot D_{\text{SALG}}$ $\rho_{\rm resp,SALG}$ $k_{\text{death,ALG}} \cdot D_{\text{SALG}}$ $\rho_{\text{death,SALG}}$ $\rho_{\text{gro,SHET,NH}_{4}^{+}} \left| \begin{array}{c} k_{\text{gro,HET},T_{0}} \cdot \exp\left(\beta_{\text{HET}}(T-T_{0})\right) \cdot \frac{p_{\text{NH}_{4}^{+},\text{HET}}C_{\text{NH}_{4}^{+}}}{p_{\text{NH}_{4}^{+},\text{HET}}C_{\text{NH}_{4}^{+}} + C_{\text{NO}_{3}^{-}}} \\ \cdot \min\left(\frac{C_{\text{DOM}}}{K_{\text{DOM,HET}} + C_{\text{DOM}}}, \frac{C_{\text{O}_{2}}}{K_{\text{O}_{2},\text{HET}} + C_{\text{O}_{2}}}, \frac{C_{\text{HPO}_{4}^{2-}}}{K_{\text{HPO}_{4}^{2-},\text{HET}} + C_{\text{HPO}_{4}^{2-}}}, \frac{C_{\text{NH}_{4}^{+}} + C_{\text{NO}_{3}^{-}}}{K_{\text{N,HET}} + C_{\text{NH}_{4}^{+}} + C_{\text{NO}_{3}^{-}}}\right) \cdot D_{\text{SHET}} \right)$ $\rho_{\rm gro,SHET,NO_{3}^{-}} \begin{bmatrix} \kappa_{\rm DOM,HET} + C_{\rm DOM} & \kappa_{O_{2},\rm HET} + C_{O_{2}} & \kappa_{\rm HPO_{4}^{-},\rm HET} + C_{\rm HPO_{4}^{-}} & \kappa_{\rm N,\rm HE1} + C_{\rm NH_{4}^{-}} + C_{\rm NO_{3}^{-}} \\ \kappa_{\rm gro,\rm HET,T_{0}} & \exp\left(\beta_{\rm HET}(T-T_{0})\right) \cdot \frac{C_{\rm NO_{3}^{-}}}{p_{\rm NH_{4}^{+},\rm HET}C_{\rm NH_{4}^{+}} + C_{\rm NO_{3}^{-}}} \\ & -\min\left(\frac{C_{\rm DOM}}{K_{\rm DOM,\rm HET} + C_{\rm DOM}}, \frac{C_{O_{2}}}{K_{O_{2},\rm HET} + C_{O_{2}}}, \frac{C_{\rm HPO_{4}^{2-}}}{K_{\rm HPO_{4}^{2-},\rm HET} + C_{\rm HPO_{4}^{2-}}}, \frac{C_{\rm NH_{4}^{+}} + C_{\rm NO_{3}^{-}}}{K_{\rm N,\rm HET} + C_{\rm NH_{4}^{+}} + C_{\rm NO_{3}^{-}}}\right) \cdot D_{\rm SHET} \end{bmatrix}$ $k_{\text{resp,HET},T_0} \cdot \exp\left(\beta_{\text{HET}}(T-T_0)\right) \cdot \frac{C_{\text{O}_2}}{K_{\text{O}_2,\text{HET}} + C_{\text{O}_2}} \cdot D_{\text{SHET}}$ $\rho_{\text{resp,SHET}}$ $\begin{array}{ll} \rho_{\rm gro, SN1} & k_{\rm gro, N1, T_0} \cdot \exp\left(\beta_{\rm N1}(T-T_0)\right) \cdot \min\left(\frac{C_{\rm NH_4^+}}{K_{\rm NH_4^+, nitri} + C_{\rm NH_4^+}}, \frac{C_{\rm O_2}}{K_{\rm O_2, nitri} + C_{\rm O_2}}, \frac{C_{\rm HPO_4^{2-}}}{K_{\rm HPO_4^{2-}, nitri} + C_{\rm HPO_4^{2-}}}\right) \cdot D_{\rm SN1} \\ \rho_{\rm resp, SN1} & k_{\rm resp, N1, T_0} \cdot \exp\left(\beta_{\rm N1}(T-T_0)\right) \cdot \frac{C_{\rm O_2}}{K_{\rm O_2, nitri} + C_{\rm O_2}} \cdot D_{\rm SN1} \\ \rho_{\rm death, SN1} & k_{\rm death, N1} \cdot D_{\rm SN1} \\ \rho_{\rm gro, SN2} & k_{\rm gro, N2, T_0} \cdot \exp\left(\beta_{\rm N2}(T-T_0)\right) \cdot \min\left(\frac{C_{\rm NO_2^-}}{K_{\rm NO_2, nitri} + C_{\rm NO_2^-}}, \frac{C_{\rm O_2}}{K_{\rm O_2, nitri} + C_{\rm O_2}}, \frac{C_{\rm HPO_4^{2-}}}{K_{\rm HPO_4^{2-}, nitri} + C_{\rm HPO_4^{2-}}}\right) \cdot D_{\rm SN2} \\ \rho_{\rm resp, SN2} & k_{\rm resp, N2, T_0} \cdot \exp\left(\beta_{\rm N2}(T-T_0)\right) \cdot \frac{C_{\rm O_2}}{K_{\rm O_2, nitri} + C_{\rm O_2}} \cdot D_{\rm SN2} \\ \rho_{\rm death, SN3} & k_{\rm death, SN4} & k_{\rm death, SN4} \\ \end{array}$ $k_{\text{death,N2}} \cdot D_{\text{SN2}}$ $\rho_{\text{death,SN2}}$ $k_{\text{hyd},\text{SPOM},T_0} \cdot \exp\left(\beta_{\text{hyd}}(T-T_0)\right) \cdot D_{\text{SPOM}}$ $\rho_{\rm hyd,SPOM}$

When should we model nitrification as a **one-step** or **two-step** process? (section 8.6)

Explanation video on nitrification and denitrification, related to waste water plant treatments: <u>https://www.youtube.com/watch?v=gF8rZVmuipw</u>

Based on your interest in the nitrite for human and environmental health protection

Nitrite is toxic to fish!

Time to work on your own project

Deadlines: send us the code by **08.05** and your report by **23.05** !

What do you consider when deciding about the number and length of the boxes to discretize a river model?

Assumption: In our model the boxes are completely mixed reactors. Therefore the longitudinal dispersion coefficient (eq. 6.65) is determined by the length of the boxes. If we choose a length that is too large, the mixing will be unrealistically large as well.

Ideally, the length of the boxes should be chosen so that the coefficient matches the estimated dispersion coefficient described in eq. 6.61, or so that the coefficient is much smaller and we would then introduce a diffusion/dispersion process separately.

$$E_{\chi} = \frac{\nu \Delta x}{2} = \frac{Q \Delta x}{2wh} \quad (6.65)$$

$$E_x \approx 0.011 \frac{w^2 v^2}{\sqrt{ghS_0}h}$$
 (6.61)

What is the importance of the advective transport process compared to the transformation processes for concentrations in the reactors ?

print(paste("hydraulic retention time: ",round(param\$L*param\$w*param\$h/param\$Q.in/8 print(paste("maximum inverse specific growth rate ALG: ",round(1/param\$k.gro.ALG,2),"d")) print(paste("maximum inverse specific growth rate HET: ",round(1/param\$k.gro.HET,2),"d")) ",round(1/param\$k.gro.N1,2),"d")) print(paste("maximum inverse specific growth rate N1: print(paste("maximum inverse specific growth rate N2: ",round(1/param\$k.gro.N2,2),"d")) print(paste("maximum inverse specific respiration rate ALG:",round(1/param\$k.resp.ALG,2),"d")) print(paste("maximum inverse specific respiration rate HET:",round(1/param\$k.resp.HET,2),"d")) print(paste("maximum inverse specific respiration rate N1: ",round(1/param\$k.resp.N1,2),"d")) print(paste("maximum inverse specific respiration rate N2: ",round(1/param\$k.resp.N2,2),"d")) print(paste("maximum inverse specific death rate ALG: ",round(1/param\$k.death.ALG,2),"d")) print(paste("maximum inverse specific death rate HET: ",round(1/param\$k.death.HET,2),"d")) print(paste("maximum inverse specific death rate N1: ",round(1/param\$k.death.N1,2),"d")) print(paste("maximum inverse specific death rate N2: ",round(1/param\$k.death.N2,2),"d")) print(paste("maximum inverse specific hydrolysis rate: ".round(1/param\$k.hyd.POM,2),"d"))

What is the importance of the advective transport process compared to the transformation processes for concentrations in the reactors ?

##	[1]	"hydrauli	0.058 d"				
##	[1]	"maximum	inverse	specific	growth rate ALG:		0.67 d"
##	[1]	"maximum	inverse	specific	growth rate HET:		0.67 d"
##	[1]	"maximum	inverse	specific	growth rate N1:		1.25 d"
##	[1]	"maximum	inverse	specific	growth rate N2:		0.91 d"
##	[1]	"maximum	inverse	specific	respiration rate	ALG:	10 d"
##	[1]	"maximum	inverse	specific	respiration rate	HET:	5 d"
##	[1]	"maximum	inverse	specific	respiration rate	N1:	10 d"
##	[1]	"maximum	inverse	specific	respiration rate	N2:	10 d"
##	[1]	"maximum	inverse	specific	death rate ALG:		10 d"
##	[1]	"maximum	inverse	specific	death rate HET:		5 d"
##	[1]	"maximum	inverse	specific	death rate N1:		10 d"
##	[1]	"maximum	inverse	specific	death rate N2:		10 d"
##	[1]	"maximum	inverse	specific	hydrolysis rate:		2 d"

The substances are being transferred faster than they are being transformed!

So the biggest <u>contributor</u> to the movement of dissolved substances here is <u>advection</u>!