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Preface

It is the goal of this course to give an introduction to modelling of aquatic ecosystems with
a focus on model formulation and use of model simulations to improve our understanding of
processes that characterize the behaviour of aquatic ecosystems. A very brief introduction
is also provided to the estimation of prediction uncertainty, considering demographic and
environmental stochasticity and parameter uncertainty, and of the estimation of model
parameters from observed data. Particular emphasis is on the linkage between ecological
and biogeochemical processes through elemental mass balances expressed by stoichoimetric
relationships.

It is assumed that the reader of this manuscript has a basic knowledge of physical,
chemical and biological processes in aquatic ecosystems. We concentrate on the mathemat-
ical formulation of these processes and on their integration to a model of the ecosystem that
provides insight into biogeochemical cycles and function of the ecosystem. The course is ac-
companied by a series of didactical examples of biogeochemical-ecological models of aquatic
ecosystems of increasing degree of complexity (chapter 11). These models are implemented
based on a toolbox of functions for performing stoichiometric calculations and dynamic
simulations, respectively. These tools are implemented as two packages for the freely avail-
able statistics and graphics software R (http://www.r-project.org). These packages,
stoichcalc and ecosim, are also briefly described in the appendix to this manuscript (chap-
ters 15 and 16). The implementations of all the didactical models described in chapter 11
can be downloaded from http://www.eawag.ch/forschung/siam/lehre/modaqecosys.

After a short introduction motivating the need for aquatic ecosystems models and
overviews of important processes in aquatic ecosystems and of model structures for de-
scribing aquatic populations and communities, this manuscript is divided into the following
six parts:

� Part I: Basic Concepts
Formulation of mass balance equations and transformation processes with differen-
tial equations models and possible behavior of their solutions. This type of models
is particularly relevant for describing the coupling between biogeochemical and eco-
logical models and builds the basis of a large part of the manuscript.

� Part II: Formulation of Ecosystem Processes
Based on the notation introduced in part I, this part gives short descriptions of all
processes that will be used to build the example ecosystem models. The processes
are divided into physical processes, chemical processes, and biological processes.

� Part III: Stochasticity, Uncertainty and Parameter Estimation
A brief introduction is provided into causes, description, and propagation of demo-

vii

http://www.r-project.org
http://cran.r-project.org/package=stoichcalc
http://cran.r-project.org/package=ecosim
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graphic and environmental stochasticity and uncertainty due to incomplete knowl-
edge of driving forces and structure and function of the ecosystem. This is followed
by a brief overview of techniques used to estimate model parameters and ecosystem
states from observed data.

� Part IV: Simple Models of Aquatic Ecosystems
Starting with a very simple lake phytoplankton model, lake and river ecosystem
models of increasing complexity are built-up and discussed. All the models described
in part IV are implemented in R to provide the opportunity to learn about the effects
of changes in driving forces and model parameters.

� Part V: Advanced Aquatic Ecosystem Modelling
Although the simple models discussed in part IV already reflect many important
pattern of real aquatic ecosystems, models for application in research and practice
usually need additional elements. In this part, important additional processes, refine-
ments of processes described in a simpler way in the previous part of the manuscript,
modifications to or alternative model structures are discussed. The part ends with
a brief description of some models that are frequently used in practice and research,
and with a few examples of case studies of model application.

� Part VI: Appendix
In the appendix, the notation used in the manuscript is listed, an introduction is
given to the most important univariate probability distributions, and short introduc-
tions to the R packages used for stoichiometric calculations and for dynamic model
simulations are given.

The structure of the manuscript outlined above is based on the concept of building up the
relevant constituents before combining them to an aquatic ecosystem model. This makes
it easy to find a description of the relevant structures or processes needed to build-up such
a model. While it is possible to read the manuscript in this order, it is certainly more
stimulating to organize a course based on the didactic models. For this reason, for teaching
or reading the manuscript, it is recommended to start with the introduction and read as
much of the basics chapter as required to understand the first didactic example. Then,
the didactic examples can be studied, while continuing reading the necessary sections of
the basics and process formulation chapters as required for the examples. To support this
process, at the beginning of each didactic example it is listed which sections are required
to understand the example. In parallel to studying the sections on the didactic models,
practical modelling experience can be gained by performing the calculations with the
software described in the appendix. This implementation allows the reader to check effects
of modifications to model assumptions or parameter values through numerical simulation.
After having read the didactic examples (this implies then also all basic and process
formulation sections), it should be easy to proceed to the advanced modelling elements in
part V.

We tried to do our best in presenting the topics and eliminating errors. But still
there are opportunities for improvement and there may be remaining errors. Any hints
for improving this manuscript are very welcome. Please send your error reports or sug-
gestions for improvement to nele.schuwirth@eawag.ch. We thank Anne Dietzel, Simon-
Lukas Rinderknecht, Martin Frey, Irene Wittmer, Colombe Siegenthaler - Le Drian, David

mailto://nele.schuwirth@eawag.ch
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Machac, Lorenz Ammann, Catalina Chaparro Pedraza, Emma Chollet Ramampiandra,
Chuxinyao Wang and students of our courses for their hints for improving this manuscript.

Peter Reichert and Nele Schuwirth, January 27, 2025
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Chapter 1

Introduction

We start this chapter by briefly discussing the motivation for developing models of aquatic
ecosystems in section 1.1. Then, in section 1.2, we give an overview of the most important
transformation and transport processes in lakes and rivers before providing an overview
of possible structures of the biological part of ecological models in section 1.3.

1



2 CHAPTER 1. INTRODUCTION

1.1 Motivation for Modelling Aquatic Ecosystems

There are three main objectives for constructing and using ecosystem models:

1. Improving our understanding of ecosystem function:
Comparing results of simulations of a model with measured data provides a test of
the hypotheses formulated in the model. Thus, ecosystem models are ideal tools
for quantitative testing of hypotheses about ecosystem function. Due to linking
concentrations with fluxes and transformation rates they provide a deeper insight
into ecosystem mechanisms than can be gained by data analysis without the use of
models. In addition, model setup, simulations and tests stimulate creative thinking
about important mechanisms in ecosystems.

2. Summarizing and communicating knowledge about ecosystems:
Ecosystem models are perfect communication tools for exchanging quantitatively
formulated knowledge of processes in the ecosystem. A systematic notation of trans-
formation processes that separates process stoichiometry from rates can help to give
a transparent overview of processes represented in the model and their formulation.

3. Supporting ecosystem management:
Ecosystem models can support ecosystem management by predicting the conse-
quences of suggested management alternatives. As both, our knowledge and its
representation in the models, are incomplete, a considerable effort must be made in
quantifying prediction uncertainty if the models are applied for management pur-
poses.

The ecosystem model to be used depends on the objective of the study. Models
for improving the understanding and communicating knowledge usually have
a higher structural resolution of model components and processes than models
for ecosystem management. For management purposes, getting the important mass
fluxes correct is usually more important than gaining a complete insight into the sub-
structures at all trophical levels of the food web. However, knowledge gained from more
detailed research models often stimulates the development of simpler management models.
In some cases, the same model can even be used for different application fields.
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1.2 Overview of Processes in Aquatic Ecosystems

Aquatic ecosystems can be divided into different zones: The main water body that is not
close to the sediment or the shore or river bank is called the pelagic zone. Close to
the surface of the water body, the pelagic zone is surrounded by the littoral zone that
consists of the water body close to the shore or river bank and of the adjacent periodically
inundated area. The pelagic zone is bounded below by the benthic zone that consists of
the water body above the sediment and the top sediment layers. The pore space in the
sediment below the benthic zone is called the interstitial zone which often connects to
the groundwater.

Figure 1.1 gives an overview of the most important transformation processes in a
pelagic food web. Most transformation process models of the pelagic zone of surface wa-

dissolved oxygen

herbivorous zooplankton

omnivorous zooplankton

planktivorous fish
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Figure 1.1: Overview of important processes in the food web of the pelagic zone of surface
waters. The following processes are considered: 1 = growth of algae (primary production);
2 = growth of herbivorous zooplankton (grazing); 3 = predation of omni- or carnivorous
zooplankton; 4 = predation of planktivorous fish; 5 = predation of carnivorous fish; 6 =
respiration; 7 = release of dissolved organic matter during death and sloppy feeding; 8 =
death; 9 = hydrolysis (typically mediated by microorganims); 10 = mineralization (me-
diated by microorganisms that may or may not be explicitly included); 11 = growth of
bacteria, fungi or other (heterotrophic) microorganisms. Thin arrows indicate oxygen con-
sumption or production. Note that more biological processes may be relevant, in particular
anoxic and anaerobic mineralization and nitrification (see chapter 8).

ters are based on a simplification or refinement of the process scheme shown in this figure.
By primary production, nutrients discharged into the lake are converted into phytoplank-
ton biomass. This process requires light and produces dissolved oxygen. Herbivorous
zooplankton grazes on phytoplankton as its food source. Omnivorous zooplankton grazes
on herbivorous zooplankton and phytoplankton, carnivorous zooplankton on herbivorous
zooplankton. Zooplankton serves as food for planktivorous fish which again are the food
source for carnivorous fish. All these grazing activities require dissolved oxygen and lead to
release of particulate organic material (fecal pellets and remainings from sloppy feeding),
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dissolved organic matter (released from broken cells), and nutrients. Furthermore, respi-
ration of these organisms also transforms biomass into nutrients. Death of all organisms
transfers them to particulate organic matter. Particulate organic matter is hydrolyzed to
dissolved organic substances which is mineralized into nutrients. These last two processes
are of particular importance in the sediment of the lake. In the presence of dissolved oxy-
gen, mineralization is accompanied by dissolved oxygen consumption. In deeper sediment
layers, after all dissolved oxygen diffusing into the sediment from the water column is used
up, mineralization requires reducing nitrate, manganese oxide, iron hydroxide, or sulfate.
Finally, mineralization is also possible by methanogenesis.

Figure 1.2 shows a similar diagram as Figure 1.1 for the transformation processes
in a benthic food web. Periphyton (sessile algae) grows on nutrients provided in the
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Figure 1.2: Overview of important processes in the food web of the benthic zone of surface
waters. The following processes are considered: 1 = growth of periphyton (primary pro-
duction); 2 = growth of grazers (grazing of periphyton); 3 = growth of collectors-filterers;
4 = growth of collectors-gatherers; 5 = predation; 6 = respiration; 7 = release of dissolved
organic matter during death and sloppy feeding; 8 = death/detachment; 9 = hydrolysis
(typically mediated by microorganisms); 10 = mineralization (mediated by microorgan-
isms that may or may not be explicitly included); 11 = growth of bacteria, fungi or other
(heterotrophic) microorganisms. Thin arrows indicate oxygen consumption or production.
Note that more biological processes may be relevant, in particular anoxic and anaerobic
mineralization and nitrification (see chapter 8).

water column. Grazers grow on these periphyton mats. Filterers grow on particulate
organic matter suspended in the water column, whereas gatherers grow on sedimented
particulate organic matter at the river bed. All three groups of benthic invertebrates are
predated by predators (invertebrates or fish). Similarly to the pelagic food web shown in
Figure 1.1 all classes of invertebrates and fish are subject to respiration, release of dissolved
organic matter (through broken cells), excretion, and death. Particulate organic matter
is hydrolyzed to dissolved organic matter which is subsequently mineralized to nutrients.

Despite the importance of the interaction of pelagic (Figure 1.1) with benthic (Figure
1.2) food webs in many systems (especially small or shallow lakes and large streams), for
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the didactic examples in this manuscript we use deep lakes as a model system dominated
by pelagic processes and rivers of small or intermediate size as model systems dominated
by benthic processes. We discuss in the following two paragraphs, how the transport
processes in these two systems interact with the food webs discussed above.

Figure 1.3 shows the most important transport processes in a lake. These transport
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Figure 1.3: Overview of important transport processes in a lake.

processes lead to partial spatial separation of the transformation processes discussed in
Figure 1.1. The density of the inflow to the lake is mainly determined by its temperature
and suspended solid concentration. Depending on this density and on stratification of
the lake, the inflow enters the lake in a certain depth (with some entrainment of water
from the layers above). As the outflow is not at the same level (at the surface for natural
lakes and close to the bottom for many reservoirs), this leads to vertical advection of (part
of) the water column. In addition, the water column is mixed by turbulent diffusion,
again depending on the stratification of the water column. During periods of stratification
(usually caused by warm and less dense water layers laying above colder and denser layers),
horizontal mixing is usually much faster than vertical mixing. Radiation, heat, momentum,
dissolved oxygen, carbon dioxide, and molecular nitrogen are exchanged over the lake
surface. Due to its mobility, zooplankton and some phytoplankton species move actively
through the water column. Particulate substances are deposited at the surface of the
sediment due to sedimentation. Dissolved substances are transported within the sediment
pore water and between pore water and lake water by molecular diffusion. The interaction
of transformation and transport processes discussed separately in the previous paragraphs
(Figures 1.1 and 1.3) leads to the following typical spatial separation of processes in a
lake: Primary production of phytoplankton takes place in the upper mixed layer of the
lake, the epilimnion, where sufficient light is available. This process is based on and
consumes nutrients delivered by the inflow and nutrients diffusing to the surface layer
from the depth of the lake where they are produced by mineralization of organic material.
Zooplankton can actively move through the water column. Herbivorous zooplankton feeds
on phytoplankton in the surface layer of the lake. Also fish predominantly feed in the
surface layer on plankton as the light allows them to catch their food. Particulate organic
material produced by the organisms is usually sedimenting through the water column
much quicker than mineralization takes place. For this reason a large fraction of this
material reaches the sediment where mineralization processes consume dissolved oxygen,
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nitrate and other compounds that can be used for the oxidation of organic substances.
In the sediments and often also in the hypolimnion diffusivities are small. This leads to
large gradients of dissolved oxygen, nitrate and mineralization products in the sediment
and the hypolimnion of the lake.

Figure 1.4 shows the most important transport processes in a river required to
understand benthic populations and substance turnover. The most important processes
are here sedimentation of organic material and resuspension and detachment of organic
particles and periphyton. Despite the smaller number of important transport processes
in this case compared to the example for the lake shown in Figure 1.3, it is not easier to
model such a system as particularly the resuspension and detachment processes depend
sensitively on the morphology of the river bed.

sedimentation

exchange of radiation, heat, momentum and gases

resuspension, detachment, drift

transport/mixinginflow

outflow

Figure 1.4: Overview of important transport processes in a river.

Aquatic ecosystem models have to represent the main physical, chemical and biological
processes of the most important chemical elements in the system and represent the bio-
logical communities building the ecosystem. The overview of these processes given in this
section demonstrates that building such a model is a demanding task. In this manuscript
we will start in chapter 11 with building very simple didactic ecosystem models, we will
then increase the complexity of these models and end in chapter 13 with a brief outline of
structure and application of research models of aquatic ecosystems.
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1.3 Overview of Biological Model Structures

As outlined in the previous section, ecosystem models have to represent the main physical,
chemical and biological processes in an ecosystem. Figure 1.5 shows the interactions
between the abiotic (called ‘physical’) and the biological sub-models and the interaction
across the system boundaries with the ‘rest of the world. In this section, we discuss

ecosystem / ecosystem model

"rest of the world"

"physical"
system / model

biological (organism)
system / model

system boundary

Figure 1.5: Division of an ecosystem model into an abiotic (called ‘physical’) and a biotic
model component, both of which interact across the system boundary with teh ‘rest of the
world’.

possible model structures of the biological sub-model.

Depending on the research task, we may want to describe a single population (the
organisms of a single species) or a community consisting of mutiple species. Often, instead
of modelling species, functional groups (e.g. algae, zooplankton, etc.) are modelled without
distincting the species within each functional group. Depending on the spatial resolution
required to describe the system, we may describe a single population or community or
multiple, interacting populations or communities in meta-population or meta-community
models. Fig. 1.6 gives an overview of these model types.

meta-communitiy
model

meta-population
modeldescribe only orga-

nisms of one species

consider multiple populations
and their interactions

(food web)

community
model

population
model

spatially
homogeneous

distinguish multiple
sites/subsystems

describe only orga-
nisms of one species

distinguish multiple
sites/subsystems

spatially
homogeneous

consider multiple populations
and their interactions

(food web)

Figure 1.6: Classification of biological (sub-)models into population, community, meta-
population and meta-community models and the distincting aspects between these classes.

Fig. 1.7 gives an overview of possible structures of population or community models.
As a biological community consists if individual organism that each differ from each other
and which are affected by death, birth or cell division, and food uptake processes that
can usually only be described stochastically (we cannot predict the time of death of an
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individual-based,
stochastic model

trait-structured, stochastic
discrete individual model

trait-structured, stochastic
organism density model

trait-structured, determini-
stic organism density model

stochastic, discrete 
individual model

stochastic organism
density model

deterministic organism
density model

all individuals equal
except specific trait(s)

consider differences
between individuals

limit of large number
of individuals

consider discrete nature of individuals

average over
stochasticity

consider environmental/demo-
graphic/genetic stochasticity

average over
stochasticity

individuals equal

distinguish trait(s)

individuals equal

distinguish trait(s)

individuals equal

distinguish trait(s)

limit of large number
of individuals

Figure 1.7: Possible structures of population or community models and the distincting
aspects between the different model structures.

individual organism), an individual-based, stochastic model is the most natural description
of the biological part of an ecosystem model (or of a laboratory population or community
model). Using this model structure, the state of the system is described by all individuals
with all their properties (e.g. age, life stage, mass, size, etc.). This is shown at the top level
in Fig. 1.7. When assuming all individuals are equal except specific traits (e.g. age, life
stage, mass, size), we get a trait-structured, stochastic, discree individual models. In this
model structure, the state of the system is described by the number of individuals of each
species (or functional group) for each trait value (e.g. for each age or size class). This model
structure is shown directly below the individual-based model. We can further simplify
the model structure by moving to the right in Fig. 1.7 and assuming all individuals of a
population to be equal without resolving any of their traits (stochastic, discrete individuals
model) or by moving down and assuming that we can approximate the discrete population
or community by population or community densities because there are large numbers of
individuals for each of the distinguished species or functional group and trait value (trait-
structured, stochastic organism density model). Combining both assumptions leads to
the stochastic organism density model shown in the middle of the right column of model
structures in Fig. 1.7. A final simplification is to average over stochasticity and describing
only the means of the numbers of individuals or organism densities. This leads to the model
structures in the bottom row of Fig. 1.7. In these models, the time-evolution of populations
or communities are described by deterministic difference or differential equations.

Final choices in model structure selection are the spatial and temporal resolutions of
the model. All possible choices for the combinations of these resolutions are illustrated
in Fig. 1.8. Regarding the temporal resolution, it has first to be decided whether the
model should be static or dynamic. For dynamic models a discrete or continuous time
resolution is possible. Regarding the spatial resolution, a system can either be described
by discrete spatial elements (‘mixed boxes’) or a continuous spatial description is possible.
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Figure 1.8: Possible combinations of spatial and temporal resolution of an ecosystem model.

If the spatial dimension is resolved, the dimensionality of the description has to be chosen.
It may be possible to not resolve all spatial dimensions as mixing may be quite different
across different dimensions. The choice of the spatial dimension depends on the system
and on the processes and spatial and time scales of interest. As an example, for the
description of transport in rivers over very long distances, a one-dimensional model may
be sufficient. However, for the etimation of the spread of a pollutant plume from an outlet
into the river over its depth and width, a two- or even three-dimensional description may
be required. We will provide mixing distance estimates for rivers and lakes to support the
selection of the adequate dimensionality of a model in chapter 6.

In the parts I to IV of the manuscript we will mainly focus on deterministc organism
density models (lower right model structure in Fig. 1.7) and in part IV exclusively on
zero-dimensional example models. This class of models is ideally suited to link biogeo-
chemical processes to ecological processes and it is simple enough to allow for efficient
model implementation. We will come back to other kinds of models in part V.
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Chapter 2

Principles of Modelling
Environmental Systems

This manuscript focuses on the formulation of mathematical models of aquatic ecosystems
and on their use to improve our understanding of processes characterizing the behaviour
of aquatic ecosystems. In this chapter we briefly explain how these elements are embedded
in a more general framework of model application for improving scientific knowledge and
and supporting societal decision making.

2.1 Meaning of Models

Scientific research aims at improving our understanding of the mechanisms responsible for
the observed behaviour of a system. A system is an assemblage of objects comprising a
whole with each component related to other components. An environmental system is a
part of the environment bounded by well-defined system boundaries. We use the notion
“environmental system” in a wide sense. A system denoted as “environmental system”
in this manuscript can be a part of the natural environment, but it could also be a part
of a laboratory or a technical system. The system behaves according to its internal
mechanisms and it is affected by external influence factors that are not part of the
system. Ideas about the structure and function of a system build a conceptual model
of the system. Often, such ideas are quantitatively formulated using the language of
mathematics. They form then a mathematical model. As environmental systems are
overwhelmingly complex, for building a model, choices must be made on aspects of the
system to focus on and on the level of detail of its description. For his reason, there is no
single, “true” model of an environmental system. Instead, the model to be used depends
on the planned purpose of application.

A model is constructed by a process of abstraction of observed behaviour to suggested
underlying mechanisms. Once the model is formulated mathematically, it can be used to
calculate future (model) behaviour, particularly under changed external influence factors.
This future model behaviour then represents a prediction of future system behaviour under
the specified boundary conditions. This mutual relationship between system and model is
illustrated in Figure 2.1.

13
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system

system boundary

external influence factors

model

external influence factors

abstraction

extrapolation

of behaviour

Figure 2.1: Mutual relationship between a system and its representation by a model.

2.2 Formulation of Models

The most important techniques for building mathematical models of environmental sys-
tems are the formulation of empirical relationships based on measured data and the for-
mulation of mass-balance equations. The application of both techniques is based on a
simplified representation of important structural characteristics of the system. In typical
aquatic ecosystem models, the dependence of rates of growth, death, respiration and other
conversion processes on nutrients, light, food, temperature and other influence factors is
usually formulated empirically. Once these expressions are given, mass-balance equations
are solved for organisms and compounds to build a mechanistic process model of the
system. Building such models and interpreting their behaviour is the main focus of this
manuscript.

Empirical formulation of sub-models relies on unknown coefficients, so-called model
parameters. Such parameters can have a physical, chemical or biological meaning that
makes it possible to measure them without running the model. However, many empirical
model formulations also have parameters that must be estimated by searching for values
that lead to the best fit of model results with corresponding measurements.

The development of mechanistic models usually starts with the formulation of a deter-
ministic model, i.e. a model that leads to a unique prediction for given initial conditions,
parameter values and external influence factors. To account for simplifications of the
model description, uncertainty in external influence factors, random processes, and mea-
surement error, stochastic elements are added. The simplest such error model consist of an
additive random error added to the output of the deterministic model. Stochastic models
lead to probabilistic predictions even in the case that initial conditions, parameter values
and external influence factors are specified precisely. The propagation of uncertainty in
these input variables through the model increases the uncertainty of model predictions.

2.3 Learning with Models

Once a model of an environmental system is formulated, it can be used to predict future
behaviour under modified external influence factors. Such predictions have to be tested
against measurements. The analysis of failed tests can lead to ideas for model improve-
ments. In order to thoroughly test models of environmental systems, one has usually to
rely on historical time series of changes in external influence factors and observed effects
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on the system. For laboratory or technical systems, one usually has the additional degree
of freedom to manipulate external influence factors in order to optimize the possible gain
of information. Figure 2.2 illustrates this cycle of model (re-)formulation, experiment or
measurement planning, testing the model with new data, and using the gained information
to update the model structure.

generation and revision of
hypotheses (in model form)

new theories

comparison
of model predictions
with available data
(test of the model)

planning and carrying out of
experiments or measurements

that are expected to be 
sensitive to the hypotheses

new
dataagreement

disagree-
ment

Figure 2.2: Flow diagram of the model-based learning process.

The procedure of learning about ecosystem function with the aid of models according
to Figure 2.2 requires the formulation of a stochastic model. Such a model is often an
extension of a deterministic core model. Statistical inference is then used to estimate
model parameters and their uncertainty and statistical tests are carried out to check the
fulfillment of the statistical assumptions.

2.4 Model-Based Decision Support

Decision sciences provide a general framework for rational decision making (Clemen, 1996;
Eisenführ and Weber, 1999). Building on this framework, environmental (or more gener-
ally societal) decisions can be structured into the steps shown in Fig. 2.3 (Reichert et al.,
2015). Step 7 of this procedure requires the prediction of the consequences of all decision
alternatives. This can only be done by an adequately built model of the investigated sys-
tem that considers the external influence factors characterizing the decision alternatives
and quantifies the prediction uncertainty. Such a model can be a mental model of an
expert who provides her or his knowledge, a simple statistical extrapolation model, or a
sophisitcated mechanistic model of the relevant systems.
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9. Analysis of results,
search for better alternatives

8. Ranking of alternatives
based on expected degree

of achievement of objectives

4. Quantification of preferences

1. Problem definition

2. Stakeholder analysis

5. Identification of deficits

6. Construction of alternatives

7. Prediction of consequences

3. Formulation and structuring
of objectives

Figure 2.3: Structured decision making process according to (Reichert et al., 2015).



Chapter 3

Formulation of Mass Balance
Equations

Aquatic ecosystem models are based on mass balances of substances and organisms in the
investigated system. The general idea of the mathematical formulation of mass balances
is outlined in section 3.1. This concept is then applied to get more detailed formulations
of mass balance equations for a single mixed reactor in section 3.2, for a system of mixed
reactors in section 3.3, and for a continuously described system in section 3.4.

17
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3.1 General Concept of Mass Balance Equations

The basic idea of the formulation of conservation laws or mass balances is very simple. We
formulate a set of such balances for “masses” that may have a more general meaning than
a physical mass. It could be volume, momentum, energy, etc. instead. It is a quantity for
which we want to formulate balance equations. We use the following notation:

m: Vector of “masses” (quantities of substances, physical variables or proper-
ties) in a given region for which balance equations are to be formulated
([m]).

J: Vector of total (net) input of the masses, m, to the given region per unit
of time ([m]T−1).

R: Vector of total (net) production of the masses, m, in the given region per
unit of time ([m]T−1).

For each variable, the dimensions are given in parentheses. [m] refers to the vector of
dimensions of the “masses” for which balance equations are formulated. This can be mass,
volume, momentum, energy, etc. T refers to the dimension of time. Figure 3.1 visualizes
these definitions. From the definitions given above it is evident, that the “masses” at time

m

R
J

Figure 3.1: Illustration of the notation for “masses”, m, input, J, and sources R of sub-
stances, physical variables, or other properties within a given region.

tend can be calculated from the “masses” at the earlier time tini by adding the integral of
net input plus net production over this time interval

m(tend) = m(tini) +

tend∫
tini

J(t) dt+

tend∫
tini

R(t) dt (3.1)

This is the integral form of the balance equations. If we assume that the solution
to this equation is differentiable with respect to tend we get after replacing tend by t and
doing this differentiation

dm

dt
(t) = J(t) +R(t) (3.2)

This is the differential form of the balance equations.

The equations 3.1 and 3.2 seem to be trivial. Nevertheless, depending on the expres-
sions used for J and R, these equations can have solutions with complex behaviour that
are difficult to calculate. In the next three sections, we derive applied versions of these
equations for the cases of (i) a single mixed reactor, (ii) a system of mixed rectors, and
(iii) a spatially continuous system.
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3.2 Mass Balance in a Mixed Reactor

As we can assume water to be incompressible (constant density, ρ), we can formulate
balance equations for volume instead of mass of water. If we combine water volume with
masses of dissolved or suspended substances or organisms in water and with masses of
substances or organisms attached to a surface in the reactor to a “mass” vector as defined
in the previous section, we get the following expressions for “masses”, net input, and total
production rates

m =



V

V C1

V C2

...

V Cnv

AD1

AD2

...

ADna


, J =



Qin −Qout

QinCin,1 −QoutC1 + Jint,1
QinCin,2 −QoutC2 + Jint,2

...

QinCin,nv −QoutCnv + Jint,nv

0

0
...

0


, R =



0

V rC1

V rC2

...

V rCnv

ArD1

ArD2

...

ArDna


(3.3)

Here, the variables have the following meaning:

V : Current reactor volume (L3).

A: Surface area in the reactor available for colonization or adsorption (L2).

Qin: Inflow to the reactor (L3T−1). Qin must fulfill the condition Qin ≥ 0.

Qout: Outflow of the reactor (L3T−1). Qout must fulfill the condition Qout ≥ 0.

Cj : Concentration of dissolved or suspended substance or organism j (ML−3).

Cin,j : Concentration of dissolved or suspended substance or organism j in the
inflow (ML−3).

Jint,j : Flux of dissolved or suspended substance or organism j across the interface
(MT−1).

Dj : Surface density of attached substance or organism j (ML−2).

rCj : Production rate of dissolved or suspended substance or organism j per unit
volume (ML−3T−1).

rDj : Production rate of attached substance or organism j per unit surface area
(ML−2T−1).

nv: Number of dissolved or suspended substances.

na: Number of substances attached to a surface.

Substances and organisms are assumed to be well mixed within the reactor. If we aggregate
the concentrations, interface fluxes and production rates into vectors

C =


C1

C2

...

Cnv

 , Jint =


Jint,1
Jint,2
...

Jint,nv

 , rC =


rC1

rC2

...

rCnv

 (3.4)
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and

D =


D1

D2

...

Dna

 , rD =


rD1

rD2

...

rDna

 (3.5)

and substitute these expressions first into (3.3) and then into (3.2) we get the following
differential equations

dV

dt
= Qin −Qout (3.6)

d

dt

(
VC

)
= QinCin −QoutC+ Jint + V rC (3.7)

d

dt

(
AD

)
= ArD (3.8)

The “mass” fluxes underlying this equation are visualized in Figure 3.2.

C

V

Qin, Cin

Jint
Qout, C

r
C

D r
D

A

Figure 3.2: Illustration of the notation for a single mixed reactor.

By differentiation of equation (3.7) and substitution of equation (3.6) for dV/dt, we
get a differential equation for substance or organism concentrations

dC

dt
=

Qin

V

(
Cin −C

)
+

Jint

V
+ rC (3.9)

Changes in concentration are caused by inflow, outflow, flux across the interface, and by
transformation processes. We will assume that the surface area available for colonization
and adsorption is constant. Equation (3.8) simplifies then to

dD

dt
= rD (3.10)
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3.3 Mass Balance in a Multi-Reactor System

A multi-reactor system consists of a set of linked single reactors. We label the reactors by
the upper index k and introduce links labelled with the lower index l and characterized
by

kfroml : Index of reactor at which the link l starts.

ktol : Index of reactor at which the link l ends.

Ql: Water flow of link l. This water flow leads to associated substance fluxes
of all dissolved and suspended substances.

Jl: Vector of mass fluxes of link l that are not associated with water flow.

Note that the indices kfroml and ktol determine the logical direction of the link. The direction
of water flow and substance fluxes depends on the signs of Ql and Jl, with positive values
indicating flow in the logical direction, negative values in the reverse direction. The set of
the three equations (3.6), (3.7) and (3.8) of a single mixed reactor must then be reproduced
for each reactor k and additional terms for water and substance exchange must be added.
This leads to the following set of differential equations for each reactor k in the multi-
reactor system:

dV k

dt
= Qk

in −Qk
out

−
∑

l with kfroml =k

Ql +
∑

l with ktol =k

Ql

(3.11)

d

dt

(
V kCk

)
= Qk

inC
k
in −Qk

outC
k + Jk

int + V krkC

−
∑

l with kfroml =k

(
QlC

if(Ql,k
from
l ,ktol ) + Jl

)
+

∑
l with ktol =k

(
QlC

if(Ql,k
from
l ,ktol ) + Jl

) (3.12)

d

dt

(
AkDk

)
= AkrkD (3.13)

The first row in each of these equations reproduces the corresponding equation (3.6), (3.7)
and (3.8) of the single reactor system. The subsequent rows describe exchange between
the reactors. In the above equations

if(Q, k1, k2) =

{
k1 if Q ≥ 0

k2 if Q < 0
(3.14)

returns the index from which the flow originates physically. This function is required
as the link direction is defined logically, but advective transport is determined by the
concentrations in the reactor from which the flow in the link originates physically (a
positive discharge represents a physical flow aligned with the logical direction, a negative
discharge a flow opposite to the logical link definition). The other symbols in the equations
above have the following meaning:
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V k: Current volume of reactor k (L3).

Ak: Surface area in reactor k available for colonization or adsorption (L2).

Qk
in: Inflow to reactor k across the system boundary (L3T−1). Qk

in must fulfill
the condition Qk

in ≥ 0.

Qk
out: Outflow of reactor k across the system boundary (L3T−1). Qk

out must fulfill
the condition Qk

out ≥ 0.

Ck
in: Vector of concentrations of dissolved or suspended substances or organisms

in the inflow to reactor k (ML−3).

Jk
int: Vector of fluxes of dissolved or suspended substances or organisms across

the interface to reactor k (MT−1).

Dk: Vector of surface densities of attached substances or organisms in reactor
k (ML−2).

rkC: Vector of production rates of dissolved or suspended substances or organ-
isms per unit volume in reactor k (ML−3T−1).

rkD: Vector of production rates of attached substances or organisms per unit
surface area in reactor k (ML−2T−1).

There are two special forms of substance fluxes that are of particular importance:
advective and diffusive fluxes.

For an advective flux, the mass flux is proportional to the substance concentration in
the reactor from which the flow originates physically:

Jadv
l,j = qadvl,j · C

if(qadvl,j ,kfroml ,ktol )

j (3.15)

The advective transfer coefficients of link l, qadvl,j , can be universal (apply to all dissolved
or suspended substances, this is physically advection with the water flow) or they can
be substance-specific. An example needing a substance-specific “advective” flux is a “di-
rected” transport not associated with water flow, such as sedimentation. This transport
follows also the advection equation, but the sedimentation velocity replaces the flow ve-
locity:

qadvl,j = A vsed,j (3.16)

where the reactor kfroml is assumed to lay on top of the reactor ktol , A is the horizontal
contact area of the reactors, and vsed,j is the sedimentation velocity of substance j. As such
directed transport follows the advection equation (with a substance-specific instead of a
universal transport velocity), we still call it an advective flux throughout this manuscript.

For a diffusive flux, the mass flux is proportional to the difference in substance concen-
tration between the reactors and the direction of the flux is from the higher to the lower
concentration:

Jdiff
l,j = qdiffl,j · (Ckfroml

j − C
ktol
j ) (3.17)

A typical example of a diffusive flux is a discretized description of a diffusion process. In
this case the diffusive exchange coefficients of the link, qdiffl,j are given by

qdiffl,j = A
Dj

Ldiff
(3.18)
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where A is the area across which the exchange takes place, Dj is the diffusion coefficient
of substance j, and Ldiff is a typical diffusion distance. The diffusion distance can be the
box size in exchange direction, if the boxes discretize a region of nearly uniform diffusivity,
or the thickness of a low-diffusivity interface between the two boxes. If the link represents
turbulent diffusion, the exchange coefficient is universal and applies to all dissolved or
suspended substances in the reactor. For molecular diffusion, the exchange coefficient is
substance-specific.
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3.4 Mass Balance in a Continuous System

3.4.1 One-Dimensional Case

If the substance for which balance equations should be formulated spreads continuously
in space it is meaningful to introduce densities. In a one-dimensional system, a density is
a “mass” per unit length of the system. As in section 3.1, “mass” is written in quotation
marks to indicate that it has the meaning of any quantity for which it is meaningful to write
a balance equation. In the following, we use a hat “ˆ” to distinguish the one-dimensional
densities from three-dimensional densities. We use the following notation:

ρ̂: Vector of one-dimensional densities (“mass” per unit length) of the quan-
tities for which balance equations should be formulated ([m]L−1).

ĵ: Vector of total fluxes (“mass” per unit of time) of the quantities for which
balance equations should be formulated ([m]T−1).

r̂: Vector of “mass” per unit length and time of net production of the quan-
tities for which balance equations should be formulated ([m]L−1T−1).

This notation allows us to make the terms in the equations (3.1) and (3.2) concrete. If we
look at an interval [xA,xE ] of the x-axis, as shown in Figure 3.3, we get

m(t) =

xE∫
xA

ρ̂(x, t) dx , (3.19)

J(t) = ĵ(xA, t)− ĵ(xE , t) (3.20)

and

R(t) =

xE∫
xA

r̂(x, t) dx . (3.21)

xA xE
x

m

r̂

r̂

j(xA)
^ j(xE)

^

Figure 3.3: Illustration of the notation for the derivation of the one-dimensional mass
balance equations.
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With these expressions, equation (3.1) becomes

xE∫
xA

ρ̂(x, tend) dx =

xE∫
xA

ρ̂(x, tini) dx

−
tend∫
tini

(
ĵ(xE , t)− ĵ(xA, t)

)
dt

+

tend∫
tini

xE∫
xA

r̂(x, t) dx dt

(3.22)

for all xE > xA and tend > tini. This is the integral form of the one-dimensional mass
balance equations.

If ρ̂ can be differentiated piecewise continuously with respect to t and ĵ with respect
to x, we get

ρ̂(x, tend)− ρ̂(x, tini) =

tend∫
tini

∂

∂t
ρ̂(x, t) dt (3.23)

and

ĵ(xE , t)− ĵ(xA, t) =

xE∫
xA

∂

∂x
ĵ(x, t) dx . (3.24)

Substituting equations (3.23) and (3.24) into equation (3.22) leads to

tend∫
tini

xE∫
xA

(
∂

∂t
ρ̂(x, t) +

∂

∂x
ĵ(x, t)− r̂(x, t)

)
dx dt = 0 . (3.25)

As the integral is zero for all integration domains, also the integrand must be zero:

∂ρ̂

∂t
+

∂

∂x

(
ĵ
)
= r̂ (3.26)

This is the differential form of the one-dimensional mass balance equations. Note that the
bracket around ĵ indicates that the partial derivative should be taken by formulating ĵ as
a function of x and t and not only of the explicit x-dependence, when ĵ is formulated as
a function of substance concentrations in the system.

For aquatic ecosystem models, the most important application of one-dimensional mass
balance equations are equations for cross-sectionally averaged substance transport. In this
case

ρ̂ = AC (3.27)
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where A is the cross-sectional area and C is the cross-sectionally averaged substance con-
centration. The two important contributions to fluxes are usually advective and diffusive
fluxes:

ĵ = AvC −AD
∂C

∂x
(3.28)

where A is the cross-sectional area, v is the advective velocity (either due to water flow or
due to movement of particles in the water column, such as sedimentation), and D is the
diffusion coefficient (either molecular or turbulent diffusion). Finally, the net production
rate, r̂, can be expressed as A times the volumetric production rate, r:

r̂ = Ar (3.29)

Substituting the expressions (3.27) to (3.29) into equation (3.26) yields

∂(AC)

∂t
+

∂(AvC)

∂x
=

∂

∂x

(
AD

∂C

∂x

)
+Ar (3.30)

This is the one-dimensional advection-diffusion equation that is the basis for one-dimensional
biogeochemical and ecological models of aquatic systems. If the cross-sectional area, the
advective velocity and the diffusion coefficient are constant in space and time, we get a
special case of equation (3.30) in the form

∂C

∂t
+ v

∂C

∂x
= D

∂2C

∂x2
+ r (3.31)

3.4.2 Three-Dimensional Case

The derivation of the three-dimensional mass balance equations is analogous to the deriva-
tion in the one-dimensional case discussed in the preceding section. In this section, we
use arrows to indicate vectors in the three dimensional physical space, whereas bold sym-
bols still mean vectors over different quantities for which balance equations should be
formulated. We use the following notation:

ρ: Vector of densities (“mass” per unit volume) of the quantities for which
balance equations should be formulated ([m]L−3).

j⃗: Vector of fluxes (“mass” per unit of time and cross-sectional area) of the
quantities for which balance equations should be formulated ([m]L−2T−1).

r: Vector of net production rates (“mass” per unit volume and time) of the
quantities for which balance equations should be formulated ([m]L−3T−1).

If we look at a piecewise smoothly bounded volume V in three-dimensional space we get

m(t) =

∫
V

ρ(x⃗, t) dV , (3.32)

J(t) = −
∫
A

j⃗(x⃗, t) · dA⃗ (3.33)
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and

R(t) =

∫
V

r(x⃗, t) dV . (3.34)

Here, the variables have the following meaning:

x⃗: Three dimensional location vector in space (L),

A: Surface area of the volume V (L2),

dA⃗: Surface element multiplied by a outward directed vector of unit length (L2).

These quantities are illustrated in Figure 3.4.

A

V

j
dA

Figure 3.4: Illustration of the notation for the derivation of the three-dimensional mass
balance equations.

If we substitute the equations (3.32) to (3.34) into equation (3.1) we get∫
V

ρ(x⃗, tend) dV =

∫
V

ρ(x⃗, tini) dV

−
tend∫
tini

∫
A

j⃗(x⃗, t) · dA⃗dt

+

tend∫
tini

∫
V

r(x⃗, t)dV dt

(3.35)

for all volumes V and all tend > tini. This is the integral form of the three-dimensional
mass balance equations.

If the function ρ is piecewise continuously differentiable with respect to t and j⃗ with
respect to x⃗, we get:

ρ(x⃗, tend)− ρ(x⃗, tini) =

tend∫
tini

∂

∂t
ρ(x⃗, t) dt . (3.36)

According to the theorem of Gauss we can replace the intergral of the flux across the
surface bounding a certain volume in space by the integral of the divergence of the flux
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over this volume (the divergence of a vector field v⃗, represented by div, is a scalar field
that quantifies the volume density of the outward flux of a vector field at each point in
space; in cartesian coordinates, it is given by div v⃗ = ∂vx/∂x+ ∂vy/∂y + ∂vz/∂z):∫

A

j⃗(x⃗, t) · dA⃗ =

∫
V

div j⃗(x⃗, t) dV (3.37)

Using these expressions, we can rewrite equation (3.35) in the form

tend∫
tini

∫
V

(
∂

∂t
ρ(x⃗, t) + div j⃗(x, t)− r(x⃗, t)

)
dV dt = 0 (3.38)

for all V and all tend > tini. As the integral is zero for all integration domains, also the
integrand must be zero:

∂ρ

∂t
+ div j⃗ = r (3.39a)

or in components

∂ρ

∂t
+

∂jx
∂x

+
∂jy
∂y

+
∂jz
∂z

= r (3.39b)

This is the differential form of the three-dimensional mass balance equations.

For aquatic ecosystem models, the most important application of three-dimensional
mass balance equations are equations for substance transport. In this case

ρ = C , (3.40)

where C is the substance concentration. The two important contributions to fluxes are
usually advective and diffusive fluxes. Advective fluxes are proportional to substance
concentration and advective transport velocity (either the velocity of the transporting fluid
or superimposed “directed” transport of the substance, e.g. by sedimentation) and diffusive
flux proportional to the gradient of the concentration field and in opposed direction. This
leads to the following equation for the flux vector (formulated for a single substance):

j⃗ = v⃗ C −


Dx

Dy

Dz

 ·
−−→
grad(C) =


vxC −Dx

∂C

∂x

vyC −Dy
∂C

∂y

vzC −Dz
∂C

∂z

 , (3.41)

where v⃗ is the vector of advective velocities (either due to water flow or due to movement
of particles in the water column, such as sedimentation), Dx, Dy and Dz are the diffusion

coefficients in x-, y- and z-direction (either molecular or turbulent diffusion), and
−−→
grad

represents the gradient of the concentration field (the gradient of a scalar field s is a vector
field that represents its steepest ascent direction and magnitude (slope); in cartesiann

coordinates, it is given by
−−→
grad(s) = (∂s/∂x, ∂s/∂y, ∂s/∂z)T [T transposes the row vector
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to a column vector]). Finally, we need the net production rate, r. Substituting the
expressions (3.40) and (3.41) into equation (3.39) yields

∂C

∂t
+

∂(vxC)

∂x
+

∂(vyC)

∂y
+

∂(vzC)

∂z

=
∂

∂x

(
Dx

∂C

∂x

)
+

∂

∂y

(
Dy

∂C

∂y

)
+

∂

∂z

(
Dz

∂C

∂z

)
+ r

(3.42)

This is the three-dimensional advection-diffusion equation that is the basis for three-
dimensional biogeochemical and ecological models of aquatic systems.
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Chapter 4

Formulation of Transformation
Processes

In section 4.1 we introduce a process table notation for representing the transformation
processes in the aquatic ecosystem. This process table notation is extremely convenient
for getting an overview of the system of transformation processes used in a model. This
notation is very popular in waste water engineering, but, despite its advantages, is rarely
used in ecological modelling. We will consequently use this notation for the discussion of
transformation processes in chapters 7 and 8, of didactical models in chapter 11, and of
research models in chapter 13.

In section 4.2 we discuss the typical structure and typical terms of process rates used
to quantify the effect of influence factors.

Finally, in section 4.3, we demonstrate how stoichiometric coefficients can be derived
from the elemental composition of involved substances and organisms and from additional
stoichiometric constraints.

31
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4.1 Process Table Notation

We assume that a transformation process transforms different substances with proportional
rates. These constants of proportionality are called “stoichiometric coefficients”. For this
reason, each process can be characterized by a set of such stoichiometric coefficients for all
substances involved in the process and a unique process rate. It is common practice to set
the stoichiometric coefficient of one of the substances to plus or minus unity. The process
rate is then the rate of transformation of this substance and the other stoichiometric
coefficients specify transformation rates of other substances relative to the transformation
rate of this substance.

Table 4.1 outlines the elements of the process table notation introduced for a clear and
consistent representation of a set of biogeochemical transformation processes used in an
activated sludge model (Henze et al., 1986). The table has a row for each transformation
process and a column for each of the modelled substances. An additional column contains
the formulations of the process rates as functions of substance concentrations and external
influence factors. The stoichiometric coefficients contained in each row of the main part
of the table specify relative transformation rates of different substances for the process.

Process Substances Rate

s1 s2 s3 · · · sns

p1 ν11 ν12 ν13 · · · ν1ns ρ1
p2 ν21 ν22 ν23 · · · ν2ns ρ2
...

...
...

...
. . .

...
...

pnp νnp1 νnp2 νnp3 · · · νnpns ρnp

Table 4.1: The process table summarizes process stoichiometry and process rates (see text
for explanations).

In a homogeneous environment in which all process rates are expressed in the same
units of changes, either mass per volume or mass per surface, and all concentrations are
also expressed as mass per volume or mass per surface, the total (net) transformation
rate of each substance can be calculated by a sum of the contributions of all processes as
follows

rj =

np∑
i=1

νij ρi (4.1)

In this equation, rj is the total (net) transformation rate of substance j, νij is the stoichio-
metric coefficient of process i for the substance j, ρi is the process rate of process i, and np

is the number of processes used in the model. Note that the “distribution” of rate factors
between stoichiometric coefficients and process rate is not unique. The remaining degree
of freedom is usually eliminated by setting one of the stoichiometric coefficients to plus
or minus unity. This leads to the interpretation of the process rate as the contribution of
the process to the transformation of the substance with stoichiometric coefficient equal to
plus or minus unity.

If some of the rates are expressed as rates of change of (suspended or dissolved) mass
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per volume and others as rates of change of (attached or absorbed) mass per area and
some of the substances are expressed as mass per volume and others as mass per area,
we have to include geometric conversions in addition to stoichiometric coefficients into
the rate calculation. We do this by specifying a vector of unit volumes and areas, ξp, for
all processes and a vector of inverse unit volumes and areas, ξs, for all substances and
generalizing equation (4.1) to

rj = ξs,j

np∑
i=1

νij ξp,i ρi (4.2)

The factor ξp,i converts the process rates per volume or per area into total transformation
rates within the area or volume, the factor ξs,j converts the total transformation rate of a
substance within the volume or area back into a transformation rate per unit of volume
or area.

By introducing the matrix of stoichiometric coefficients

ν =

substances s1, ..., sns︷ ︸︸ ︷
ν11 ν12 ν13 · · · ν1ns

ν21 ν22 ν23 · · · ν2ns

...
...

...
. . .

...

νnp1 νnp2 νnp3 · · · νnpns




processes

p1, ...,pnp

(4.3)

and the vector of process rates

ρ =


ρ1
ρ2
...

ρnp




processes

p1, ...,pnp

(4.4)

equation (4.1) can be transformed into matrix notation. The column vector of total (net)
transformation rates of all substances, r, is then given as

r = νT · ρ (4.5)

Similarly, equation (4.2) generalizes to

r = diag
(
ξs
)
· νT · diag

(
ξp
)
· ρ

=


ξs,1

ξs,2
. . .

ξs,ns

 · νT ·


ξp,1

ξp,1
. . .

ξp,np

 · ρ
(4.6)
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Example 4.1: Growth of Suspended and Benthic Algae

Growth of algae with phosphate as the single, rate-limiting nutrient can be described by a
simple stoichiometry in which phosphate satisfies the phosphorus need of algae.

If we denote the phosphorus content of algae by αP,ALG (gP/gDM) and measure algae as
dry mass and phosphate in phosphorus units, we get the following process table for growth
of suspended algae (ALG):

Process Substances / Organisms Rate

HPO2−
4 ALG

gP gDM

Growth of ALG −αP,ALG 1 ρgro,ALG

In this table, ρgro,ALG is the process rate given in gDM per volume and time unit. In a spa-
tially homogeneous environment, according to equation (4.1), this leads to transformation
rate contributions for phosphate and suspended algae of

rC
HPO

2−
4

= −αP,ALG · ρgro,ALG

and

rCALG
= 1 · ρgro,ALG = ρgro,ALG

respectively. If we apply the more general equation (4.2), we need the conversion factor for
the process rate from per volume to total

ξp,gro,ALG = V

and for phosphate and algae from total to per volume

ξs,{HPO2−
4 ,ALG} =


1

V
1

V


where V is a typical volume within which the process is active (the value is not relevant,
only the correct ratio of this volume to the area introduced below). This leads to the same
equations as above:

rC
HPO

2−
4

=
1

V
· (−αP,ALG) · V · ρgro,ALG = −αP,ALG · ρgro,ALG

and

rCALG
=

1

V
· 1 · V · ρgro,ALG = ρgro,ALG

Benthic algae are usually quantified as gDM per area available for colonization. Growth of
benthic algae (SALG) has the same stoichiometry as given above

Process Substances / Organisms Rate

HPO2−
4 SALG

gP gDM

Growth of SALG −αP,ALG 1 ρgro,SALG
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(we assume the phosphorus content of SALG to be the same as that of ALG). However,
as benthic algae are usually measured as surface densities, also the process rate ρgro,SALG

is typically given in gDM per surface area and time unit. To convert this rate into a total
rate we have to multiply it with the surface area

ξp,gro,SALG = A

Conversion to a rate contribution of phosphate in the water overlaying the benthic algae
needs then a division by the volume, V , whereas conversion to a rate contribution of benthic
algae requires a division by the colonized surface area, A:

ξs,{HPO2−
4 ,SALG} =


1

V
1

A


This leads to:

rC
HPO

2−
4

=
1

V
· (−αP,ALG) ·A · ρgro,SALG = − A

V
αP,ALG ρgro,SALG

and

rDALG
=

1

A
· 1 ·A · ρgro,SALG = ρgro,SALG

All possible conversion factors are thus V/V , V/A, A/V , and A/A. This demonstrates that
we only need relative volumes and areas.
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4.2 Typical Elements of Process Rates

The dependence of rates of chemical or biological processes on external influence factors is
often formulated in product form. The rate is then the product of a rate under reference
conditions of influence factors with modification factors that describe the effect of devia-
tions of influence factors from their reference value. Often there are separate modification
factors for all influence factors, but sometimes there are interactions which require the
formulation of a modification factor that accounts for multiple influence factors.

Examples of this type of rates are the formulation of the growth rate of algae on
ammonium as nitrogen source in the form

ρgro,ALG,NH+
4
= kgro,ALG,T0 · ftemp(T ) · frad(I)

· flim(CHPO2−
4
, CNH+

4
, CNO−

3
) · fNH+

4
pref (CNH+

4
, CNO−

3
) · CALG (4.7)

or the anoxic mineralization rate of organic particles in the form

ρminer,anox,POM++ = kminer,anox,POM,T0 ·ftemp(T )·finh(CO2)·flim(CNO−
3
)·CPOM . (4.8)

In these equations, kgro,ALG,T0 refers to the specific (per unit of algal biomass) growth
rate of algae under non-limited conditions with respect to light and nutrients and at the
standard temperature, T0; kminer,anox,POM,T0 refers to the specific anoxic mineralization
rate of organic particles under non-limited (with respect to nitrate) and non-inhibited
(with respect to dissolved oxygen) conditions and at the standard temperature, T0; T
refers to temperature; I refers to incoming radiation; CHPO2−

4
refers to the concentration of

soluble reactive phosphorus assumed to be orthophosphate in stoichiometric calculations;
CNH+

4
refers to the concentration of ammonium (NH+

4 ); CNO−
3
refers to the concentration

of nitrate (NO−
3 ); CO2 refers to the concentration of dissolved oxygen (O2); ftemp is the

modification factor that accounts for temperature dependence; frad is the modification
factor that describes the limiting effect of light intensity (radiation); flim are modification
factors that describe limiting effects of substances required for the process (in these cases
nutrients and dissolved oxygen); fpref is a preference factor for the nitrogen source (in this
case for NH+

4 instead of NO−
3 ), and finh is an inhibition factor of the process by a substance

(in this case of anoxic mineralization by dissolved oxygen). The modification factors, f ,
describe the relative effects of the influence factors on the process rate. They are equal
to unity at standard, non-limiting or non-inhibiting conditions. Although there are no
indices showing this in the equations (4.7) and (4.8), the modification factors, f , and/or
their parameter values may be different from process to process (e.g. the mineralization
rate may have a different temperature dependence than the growth rate of algae). We will
discuss typical formulations of such modification factors in the following subsections. The
process rates given as examples in the equations (4.7) and (4.8) will be discussed in more
detail in the sections 8.1 and 8.5.2, respectively.

Although the equations (4.7) and (4.8) are written for growth of algae and anoxic min-
eralization, the same structure of process rates is often used for other biological processes
as well. This structure applies for all process formulations discussed in this manuscript.
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4.2.1 Temperature Dependence of Process Rates

Figure 4.1 shows typical examples of temperature dependence of bacterial growth (Heitzer
et al., 1991).

Figure 4.1: Examples of phenomenological modelling of temperature dependence of bacte-
rial growth (Heitzer et al., 1991).

This kind of behaviour is typical for most biological reactions. It is characterized by
an increasing branch from a minimum to an optimal temperature of growth followed by a
decreasing branch to the maximum temperature of growth. The phenomenological model
applied in Figure 4.1 is given by the following expression for the specific growth rate, µ
(Ratkowsky et al., 1982):

µ =

 b2 (T − Tmin)
2
(
1− exp

(
c(T − Tmax

))2
for Tmin ≤ T ≤ Tmax

0 else
(4.9)

As the temperature range in natural systems is quite limited, ecological models usually
describe only the increasing branch. The most commonly used parameterization of this
increasing branch is by an exponential function

f exp
temp(T ) = exp

(
β(T − T0)

)
(4.10)

Here, T0 is the reference temperature at which the factor ftemp is unity, and β is the
coefficient of temperature dependence, as illustrated in figure 4.2. This parameterization
is reasonable, as long as the model is not applied to a water body in which the optimum
temperature for a process is approached or even exceeded.

An extensive review of potential formulations for temperature dependence terms as
well as of empirical data these models were fitted to can be found in (Kontopoulos et al.,
2024).
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Figure 4.2: Illustration of the exponential temperature dependence function according to
equation (4.10) for different parameter values (see legend).

4.2.2 Limitation of Process Rates by Substance Concentrations

The most important formulations of limitation of rates by substance concentrations are
the Monod equation

fMonod
lim (C) =

C

K + C
(4.11)

the exponential equation

f exp
lim (C) = 1− exp

(
−C

K

)
(4.12)

the Blackman equation (Dabes et al., 1973)

fBlackman
lim (C) =


C

K
for C < K

1 for C ≥ K
(4.13)

and the Monod equation with a quadratic dependence on substance concentrations

fMonodQuadratic
lim (C) =

C2

K2 + C2
(4.14)

In all of these equations, C is the substance concentration and K is a parameter with the
same units as the concentration. In the Monod (4.11) and the quadratic Monod (4.14)
equation, K is the half-saturation concentration at which the expression evaluates to 1/2.
In the exponential equation (4.12), K is the concentration, at which the limitation is
equal to 1 − e−1. Finally, in the Blackman equation (4.13), the limitation term reaches
unity at C = K. Note that the Blackman equation is similar to the so called Holling-
type I functional response, the Monod equation to the Holling-type II functional response,
and the Monod equation with quadratic dependence on substance concentrations to the
Holling-type III functional response (Holling, 1959). Figure 4.3 (a) shows the behaviour
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Figure 4.3: (a) Behaviour of limitation factors according to the equations (4.11), (4.12),
(4.13), and (4.14). (b) Illustration of the Monod limitation function according to equation
(4.11) for different parameter values (see legend).

of these limitation functions and (b) the behaviour of the Monod function for different
parameter values.

With increasing values of the concentrations, the factors asymptotically reach unity
(i.e. saturation), for small concentrations, they approach zero. The approach to zero is
linear for the Monod, the exponential and the Black equations and it is quadratic for the
Monod with quadratic dependence on substrance concentrations. The Monod expression
was originally derived by Michaelis and Menten for enzyme kinetics (Michaelis and Menten,
1913), but is here used as an empirical description of the saturation behaviour of a process
rate with respect to nutrients (Monod, 1942).

In the example of algal growth (4.7), the limiting effect is due to multiple nutrients.
This can be considered by multiplying the limiting factors or, according to “Liebig’s law
of the minimum”, to consider only the most limiting nutrient. When using the Monod
formulation (4.11) for describing limitation by a single nutrient, this leads to

fMonod,mult
lim (CHPO2−

4
, CNH+

4
, CNO−

3
) =

CHPO2−
4

KHPO2−
4

+ CHPO2−
4

·
CNH+

4
+ CNO−

3

KN + CNH+
4
+ CNO−

3

(4.15)

or

fMonod,Liebig
lim (CHPO2−

4
, CNH+

4
, CNO−

3
) = min

(
CHPO2−

4

KHPO2−
4

+ CHPO2−
4

,
CNH+

4
+ CNO−

3

KN + CNH+
4
+ CNO−

3

)
(4.16)

These expressions quantify limitation by phosphate and by inorganic nitrogen, taking into
account that nitrogen can either be taken up in the form of ammonium or nitrate.

4.2.3 Inhibition of Process Rates by Substance Concentrations

We can use the same formulations for formulating inhibitions as we used for formulating
limitations of process rates in section 4.2.2. To formulate inhibition we use unity minus



40 CHAPTER 4. FORMULATION OF TRANSFORMATION PROCESSES

the expression for limitation:

finh(C) = 1− flim(C) (4.17)

This leads to the following options for limitation factors:

fMonod
inh (C) =

K

K + C
(4.18)

f exp
inh (C) = exp

(
−C

K

)
(4.19)

fBlackman
inh (C) =

 1− C

K
for C < K

0 for C ≥ K
(4.20)

fMonodQuadratic
inh (C) =

K2

K2 + C2
(4.21)

Figure 4.4 (a) shows the behaviour of these modification factors and (b) the Monod
inhibition function for different parameter values. At small concentrations, there is no
inhibition, whereas the factors tend to zero for large concentrations.
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Figure 4.4: (a) Behaviour of inhibition factors according to the equations (4.18), (4.19),
(4.20), and (4.21). (b) Illustration of the Monod inhibition function according to equation
(4.18) for different parameter values (see legend).

In the example of anoxic mineralization (4.8), the inhibition effect is due to dissolved
oxygen and could thus be written as

fMonod
inh (CO2) =

KO2

KO2 + CO2

(4.22)
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4.2.4 Light Dependence of Primary Production

Primary production depends strongly on its energy source, light. Light dependence of the
rate of primary production is expressed as a function of global or photosynthetically active
radiation.

The three most often used light dependency functions are the Monod function (see also
subsection 4.2.2 where the use of this function for other limitations is described)

fMonod
rad (I) =

I

KI + I
, (4.23)

the Smith function (Smith, 1936)

fSmith
rad (I) =

I√
K2

I + I2
, (4.24)

and the Steele function (Steele, 1962)

fSteele
rad (I) =

I

Iopt
exp

(
1− I

Iopt

)
. (4.25)

Figure 4.5 shows the behaviour of these three light dependence functions. The first
two approaches show saturation of the production rate as a function of increasing light
intensities, the last approach leads to inhibition at high intensities. In some applications in
which inhibition at high light intensities is relevant, one may want to use an approach that
parameterizes limitation at low intensities separately from inhibition at high intensities.
This is not the case for the Steele function.
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Figure 4.5: Behaviour of the light dependence functions according to the equations (4.23),
(4.24), and (4.25).

As light penetrates a water body, it is attenuated. As long as concentration gradients of
absorbing substances are not too strong, we can assume that the light extinction coefficient,
λ, does not depend on water depth, z. Decreasing light intensity with increasing depth
then follows the Beer-Lambert law (see Figure 4.6)

I = I0 exp (−λz) , (4.26)
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Figure 4.6: Relative light intensity, I/I0 as a function of water depth, z, according to the
Beer-Lambert law (4.26).

where I0 is the light intensity at the water surface, λ is a light extinction coefficient,
and z is water depth below the surface. The light extinction coefficient depends on the
concentration of substances dissolved or suspended in the water, in particular on the
concentration of algae. This implies that the assumption underlying equation (4.26), of
a constant light extinction coefficient, will only be approximately fulfilled within a well-
mixed surface layer. Within such a surface layer, the light extinction coefficient is often
approximated by

λ = λ1 + λ2 · CALG , (4.27)

where CALG is the concentration of algae. Usually, light intensities below such a sur-
face layer are too small to sustain algal growth so that the approximation (4.26) can be
reasonable for describing algal growth.

To describe decreasing algal growth rates with depth in such a surface layer, equation
(4.26) has to be substituted into the light limitation factor of the growth rate (e.g. one
of the factors 4.23 to 4.25). If we use a simplified model that describes the surface layer
with primary production by a mixed box, we have to use depth-averaged rates. Because
the light limitation factor is the only factor in the growth rate of algae that depends on
the depth, we can use a depth-averaged light limitation factor. Note, that due to the
nonlinear dependence of this factor on the light intensity, it would be incorrect to just
use the averaged light in the limitation factor. Such an average factor, f̄rad(I0, λ, h), is
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calculated as

f̄rad(I0, λ, h) =
1

h

h∫
0

frad

(
I0 exp(−λz)

)
dz , (4.28)

where I0 is the light intensity at the water surface, λ the light extinction coefficient, and
h the thickness of the surface layer that is approximated by a mixed box.

For the factors (4.23) to (4.25), the integral (4.28) can be solved analytically leading
to

f̄Monod
rad (I0, λ, h) =

1

λh
log

(
KI + I0

KI + I0 exp(−λh)

)
, (4.29)

f̄Smith
rad (I0, λ, h) =

1

λh
log


I0
KI

+

√
1 +

(
I0
KI

)2

I0 exp(−λh)

KI
+

√
1 +

(
I0 exp(−λh)

KI

)2

 , (4.30)

and

f̄Steele
rad (I0, λ, h) =

e

λh

[
exp

(
−I0 exp(−λh)

Iopt

)
− exp

(
− I0
Iopt

)]
. (4.31)

4.2.5 Preference Among Different Food Sources

Many organisms can grow on different food sources. This is evident from the simplified
food web structures shown in Figures 1.1 and 1.2. It is important to note that the degree
to which multiple food sources occur in a model food web, depends on the aggregation
level of the model. As an example, growth of herbivorous zooplankton depends on only
one food source, if phytoplankton is aggregated to one state variable in the model. If
several groups of phytoplankton are distinguished in the model, we have to distinguish
several food sources for growth of herbivorous zooplankton.

As the stoichiometry and kinetics of growth on one food source may be different from
that on another, it is best to represent growth on different food sources by different
processes. The process rates of these processes can still have many terms in common. But
they also need a preference factor that depends on the concentrations of all food sources.
The simplest conceptually satisfying expression for such a preference factor among n food
sources with concentrations C1, ..., Cn is given as

f i
pref(C1, ..., Cn) =

piCi
n∑

j=1

pjCj

(4.32)

where pj is the preference coefficient for food source j. All preference coefficients pj
can be multiplied with the same arbitrary factor without changing the resulting value
of the expression (4.32). Therefore, such a factor can be used to either normalize the
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preference coefficients to unity,
∑

pj = 1, or to set one of the preference coefficients to
unity and choose the other preference coefficients relative to this food source. If there is
no preference between the different food sources, all preference coefficients pj are set to
unity. In this case, the consumption of the different food sources depends only on their
relative concentration.

The preference factor (4.32) should not be misinterpreted as a limitation factor. The
preference factor does not change its value if all concentrations go to zero while keep-
ing their ratios. All preference factors sum to unity. This makes them relative factors
associated with different food sources that still need combination with a limitation factor.

The simplest model would combine the preference factors with a limitation factor based
on the sum of all food concentrations: flim(C1 + ... + Cn). If all the other factors in the
rate expressions of the growth processes on the different food sources are the same, total
growth then becomes independent on the ratios of the concentrations of the different food
sources and only depends on the sum of the concentrations. However, other expressions
are required if total growth depends on the food composition regarding different sources.

4.2.6 Example of a Process Table

Example 4.2: Growth of Algae and Zooplankton

A very simple ecological model for describing the most important transformation processes
for plankton in a lake requires the three state variables phosphate (HPO2−

4 ) as a growth-
limiting nutrient, algae (ALG) as primary producers, and zooplankton (ZOO) as grazers
of algae. We consider growth and death of both plankton groups. In this simple example,
we do not consider dead organic particles and their mineralization. When denoting the
phosphorus content of algae by αP,ALG and the yield of grazing by zooplankton by YZOO,
which determines the produced zooplankton biomass per unit of consumed algal biomass,
and formulating simple process rates according to the principles described above, we get
the following process table:

Process Substances / Organisms Rate

HPO2−
4 ALG ZOO

gP gDM gDM

Growth of ALG −αP,ALG 1 kgro,ALG,max

CHPO2−
4

KHPO2−
4 ,ALG + CHPO2−

4

CALG

Death of ALG −1 kdeath,ALG CALG

Growth of ZOO − 1

YZOO
1 kgro,ZOO CALG CZOO

Death of ZOO −1 kdeath,ZOO CZOO

The process rate of algal growth considers a growth limitation by phosphate that reaches
saturation at high phosphate concentrations. The process rate of zooplankton growth is
proportional to algae as well as zooplankton concentrations. This considers the dependence
of zooplankton growth on algae as their food. Finally, death rates are described as first
order decay processes.
Note that, according to equation (4.1), the process table given above is an abbreviated
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notation for the following rate expressions for CHPO2−
4
, CALG and CZOO:

rHPO2−
4

= −αP,ALG · kgro,ALG,max

CHPO2−
4

KHPO2−
4 ,ALG + CHPO2−

4

CALG

rALG = kgro,ALG,max

CHPO2−
4

KHPO2−
4 ,ALG + CHPO2−

4

CALG − kdeath,ALG CALG

− 1

YZOO
· kgro,ZOO CALG CZOO

rZOO = kgro,ZOO CALG CZOO − kdeath,ZOO CZOO

This comparison makes it evident that the process table notation gives the much clearer
overview of which process affects which substances (rows of the matrix) and which sub-
stances are affected by which processes (columns of the matrix). In the process rate no-
tation, each process is spread to as many equations as there are affected substances. This
makes the expressions much more complicated.
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4.3 Derivation of Stoichiometry from Composition

It has been recognised since at least the 1950s that the stoichiometry of biological pro-
cesses, or the composition of organic substances which constrain the stoichiometry, have
a strong effect on biogeochemical mass fluxes and nutrient and oxygen concentrations in
the environment (Redfield, 1958; McCarty, 1975; Andersen, 1997; Lenton and Watson,
2000a; Lenton and Watson, 2000b). Elemental mass conservation makes it also evident,
that variation in nutrient content of food must have an effect on the yield and metabolism
of consumer growth if the elemental composition of the consumer is less variable than that
of the food (DeMott et al., 1998; Hessen et al., 2002; Anderson et al., 2005). This leads
to a strong link between ecological and biogeochemical properties of ecosystems. It has,
however, only recently been realized, that the stoichiometry of biological processes may
also constitute a bridge between evolutionary biology and ecosystems ecology (Elser et al.,
2000; Sterner and Elser, 2002; Kay et al., 2005; Elser, 2006). An important example for
such a link between molecular biology, elemental composition of organisms and process
kinetics is the “growth rate hypothesis” that states that rapidly growing cells have a par-
ticularly high demand for phosphorus-rich ribosomal RNA (Elser et al., 2000). Such links
led to an increasing attention to stoichiometry in ecological studies.

In section 4.1 we introduced stoichiometric coefficients as relative transformation rates
of different substances in a given process (see Table 4.1 and equation 4.1). The process i
is defined by a joint process rate, ρi, and stoichiometric coefficients, νij , that modify the
process rate to the transformation rate of substance j. The contribution of the process i to
the transformation rate of substance j is equal to νijρi. Process kinetics are formulated by
the process rate, ρi. Obviously, these relative process rates are connected to the “recipe”
according to which a substance is built of constituents or how constituents are released
when a substance is degraded or transformed or an organism grows or is decomposed. In
this section, we start from the composition of all substances and organisms and analyze
to which degree these compositions constrain the stoichiometric coefficients.

We will illustrate the concepts of stoichiometric calculations with the examples of
growth, respiration, and death of algae and zooplankton. We start by introducing the
derivation of stoichiometric coefficients from chemical substance notation in section 4.3.1.
This approach is based on a given elemental composition of all substances and organ-
isms involved. As the elemental composition may depend on the type of organisms and
the environmental conditions to which they are exposed, we extend this approach to a
parameterization of elemental mass fractions in section 4.3.2. The use of such a param-
eterization is illustrated with a very simple process model for growth and respiration of
algae and subsequently generalized to a more complex model of growth, respiration and
death of algae and zooplankton considering the elements C, H, O, N and P. This second
model demonstrates both, the conceptual flexibility and feasibility of the approach as well
as its practical limitation due to the increasing number of equations that are tedious to
solve. These equations have to be solved again whenever new processes, substances or
elements are considered in the model. This obviously calls for a general solution of this
type of stoichiometric equations. Such a procedure, based on principles of linear algebra,
is derived in section 4.3.3. This approach delivers the general solution of stoichiometric
equations for specified processes. Furthermore, for a process characterized by the involved
substances, the number of stoichiometric constraints can be derived that are required in
addition to elemental mass and charge conservation to make the process definition unique.
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This framework extends the flexibility of the parameterized mass fractions approach to
modifications in processes and consideration of elements and substances.

4.3.1 Derivation of Stoichiometry from Chemical Substance Notation
(given elemental mass fractions)

It is a straightforward concept to extend the commonly used chemical notation of molecules
to organic material. As organic material consists of many different molecules, that can-
not be separately addressed in the present context, the use of this concept requires its
application to an “average” composition of organic material. We therefore introduce a
chemical formula for a “molecule” that does not exist in this form, but represents average
composition of organic material. This is sufficient for using established techniques of mass
conservation of elements (counting atoms or moles) to derive stoichiometric coefficients as
if this formula would represent an actual molecule or mole of organic matter.

This procedure for deriving stoichiometric coefficients is illustrated in this section using
a universal composition of organic material. Different compositions of different classes
of organic material will be introduced in the more general approach of parameterized
elemental mass fractions in section 4.3.2. We will derive the stoichiometric coefficients for
growth of algae with ammonium or nitrate as nitrogen source, respiration of algae and
zooplankton, death of algae and zooplankton, and growth of zooplankton.

The five most important elements present in organic material are carbon (C), hydrogen
(H), oxygen (O), nitrogen (N), and phosphorus (P). With consideration of these elements,
primary production of algae consumes bicarbonate (HCO−

3 ) (we refer here to the species
that is most abundant at typical pH values; most algae will take up CO2 which will then be
replaced by HCO−

3 + H+ → H2O + CO2), ammonium (NH+
4 ) or nitrate (NO

−
3 ), phosphate

(HPO2−
4 ), hydrogen ions (H+) and water (H2O) to produce organic material and dissolved

oxygen (O2). We will limit our discussion to these five elements in this section as this is
sufficient to demonstrate the concept of stoichiometric calculations. The essential point
for deriving stoichiometric coefficients for primary production by algae is the (average)
composition of algal biomass. It has been shown that marine algal biomass can quite
accurately be described by a composition according to the following chemical formula

(CH2O)106(NH3)16(H3PO4)1 = C106H263O110N16P (4.33)

(Redfield, 1958; Stumm and Morgan, 1981). This expression specifies typical elemental
mass fractions of carbon, oxygen, hydrogen, nitrogen and phosphorus in organic matter,
but should not be interpreted as describing a “molecule” of organic matter. Nevertheless,
for conversion to dry mass of organic material, we need the total weight of a “mol” of the
virtual organic substance (4.33). This mass is given as

m = 106 · 12 gC
“mol”

+ 263 gH
“mol”

+ 110 · 16 gO
“mol”

+16 · 14 gN
“mol”

+ 31 gP
“mol”

= 3550 gDM
“mol”

.

(4.34)

When considering all substances and organisms involved in a process, the stoichiometric
coefficients can be derived from (i) the list of involved substances, (ii) the composition of
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these substances, (iii) additional stoichiometric constraints, such as yields, if necessary.
The derivation applies mass conservation of all elements and conservation of charge to
provide the required equations to be solved for the unknown coefficients. A stringent
discussion of how many additional constraints are required for a given process and given
composition of involved substances will be given in section 4.3.3.

As an example, we demonstrate how to derive the stoichiometric coefficients for growth
of algae with nitrate as nitrogen source. We start by writing this process in chemical
notation with unknown stoichiometric coefficients a, b, c, d, e, and f as follows:

aHCO−
3 + bNO−

3 + cHPO2−
4 + dH+ + eH2O → C106H263O110N16P + f O2 .

The six constraints of conservation of C, O, H, N, P and charge lead to six constraining
equations to determine these six parameters uniquely. First, conservation of C leads to

a · 1 = 1 · 106 → a = 106 ,

conservation of N to

b · 1 = 1 · 16 → b = 16 ,

and conservation of P to

c · 1 = 1 · 1 → c = 1 .

Using these solutions, conservation of H, O and charge lead to

106 · 1 + 1 · 1 + d · 1 + e · 2 = 1 · 263 ,

106 · 3 + 16 · 3 + 1 · 4 + e · 1 = 1 · 110 + f · 2 ,

106 · (−1) + 16 · (−1) + 1 · (−2) + d · (+1) = 0 .

The last equation then leads to

d = 124 ,

the first then to

e = 16 ,

and finally the second

f = 138 .

This then results in the following equation for growth of algae with nitrate as the nitrogen
source

106HCO−
3 + 16NO−

3 +HPO2−
4 + 124H+ + 16H2O → C106H263O110N16P + 138O2

(4.35)
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Considering the “molar mass” according to equation (4.34), this implies the following
stoichiometric coefficients for growth of algae with nitrate:

νgro,ALG,NO−
3 HCO−

3
= − 106

3550

molHCO−
3

gDM

νgro,ALG,NO−
3 NO−

3
= − 16

3550

molNO−
3

gDM

νgro,ALG,NO−
3 HPO2−

4
= − 1

3550

molHPO2−
4

gDM

νgro,ALG,NO−
3 H+ = − 124

3550

molH+

gDM

νgro,ALG,NO−
3 H2O

= − 16

3550

molH2O

gDM

νgro,ALG,NO−
3 ALG = 1

gDM

gDM

νgro,ALG,NO−
3 O2

=
138

3550

molO2

gDM
.

(4.36)

Similarly, we obtain for growth of algae with ammonium as the nitrogen source

106HCO−
3 + 16NH+

4 +HPO2−
4 + 92H+ → C106H263O110N16P + 106O2 (4.37)

This implies the following stoichiometric coefficients for growth of algae with ammonium:

νgro,ALG,NH+
4 HCO−

3
= − 106

3550

molHCO−
3

gDM

νgro,ALG,NH+
4 NH+

4
= − 16

3550

molNH+
4

gDM

νgro,ALG,NH+
4 HPO2−

4
= − 1

3550

molHPO2−
4

gDM

νgro,ALG,NH+
4 H+ = − 92

3550

molH+

gDM

νgro,ALG,NH+
4 H2O

= 0

νgro,ALG,NH+
4 ALG = 1

gDM

gDM

νgro,ALG,NH+
4 O2

=
106

3550

molO2

gDM
.

(4.38)

More details on primary production will be given in section 8.1.

Respiration is just the reverse process of this last process (4.37). This leads to the
following expression for respiration of algal biomass

C106H263O110N16P + 106O2 → 106HCO−
3 + 16NH+

4 +HPO2−
4 + 92H+ (4.39)

The stoichiometric coefficients are then the negative values of those given by equation
(4.38) for growth of algae with ammonium as the nitrogen source. The same equation
applies to respiration of zooplankton.
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As we assume in this section that all organisms and organic particles have the same
composition, the death process is trivial from a stoichiometric point of view

C106H263O110N16P → C106H263O110N16P (4.40)

In this equation, the left hand side represents living algae, the right hand side dead organic
particles (POM). The same equation applies to death of zooplankton.

We introduce two stoichiometric parameters for describing growth of zooplankton.
The yield, YZOO, defines the fraction of zooplankton dry mass built per dry mass of algae
consumed, and the parameter fe describes the fraction of dry mass of algae converted
into dead organic particles due to sloppy feeding and excretion. We assume the remaining
fraction of algal biomass fr to be respired:

fr = 1− YZOO − fe (4.41)

When combining the negative stoichiometric coefficients for growth of algae from equa-
tion (4.38) with the fraction of algal biomass that is respired, renormalize it to the units
of zooplankton by division by YZOO, and add the mass balance of zooplankton and dead
organic particles (POM) according to the stoichiometric parameters introduced above, we
get the following stoichiometric coefficients for growth of zooplankton

νgro,ZOO HCO−
3

=
fr

YZOO

106

3550

molHCO−
3

gDM

νgro,ZOO NH+
4

=
fr

YZOO

16

3550

molNH+
4

gDM

νgro,ZOO HPO2−
4

=
fr

YZOO

1

3550

molHPO2−
4

gDM

νgro,ZOO O2 = − fr
YZOO

106

3550

molO2

gDM

νgro,ZOO H+ =
fr

YZOO

92

3550

molH+

gDM

νgro,ZOO H2O = 0

νgro,ZOO ALG = − 1

YZOO

gDM

gDM

νgro,ZOO ZOO = 1
gDM

gDM

νgro,ZOO POM =
fe

YZOO

gDM

gDM
.

(4.42)

Table 4.2 summarizes the stoichiometry of all of these processes in the form of a
stoichiometric matrix that is part of the process table notation introduced in section 4.1.
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4.3.2 Derivation of Stoichiometry from Parameterized Elemental Mass
Fractions

The approach of deriving stoichiometric coefficients introduced in section 4.3.1 has the
disadvantage that it depends on a fixed composition of organic material. As the composi-
tion of organic material depends on its type and on environmental conditions, it is useful
to introduce composition parameters and derive stoichiometric coefficients as functions of
these parameters. This makes it much easier to calculate stoichiometric coefficients for
modified composition if necessary. In this section, we will derive such an approach. It is
based on using elemental mass fractions of organic matter as model parameters.

We now introduce “elementary constituents” of which all substances or organisms
are “composed”. We write the expressions “constituents” and “composed” in quotation
marks as they may represent chemical elements but, alternatively, any other conserved
quantities, such as charge or chemical oxygen demand. We denote the “mass fraction”
with which elementary constituent k contributes to the mass of substance j as αkj . As
before, the stoichiometric coefficient of process i with respect to substance j is denoted
by νij . As the process table introduced in section 4.1 (Table 4.1) already contains one
column per substance, it can easily be extended by additional rows to contain the substance
composition. This is illustrated in Table 4.3. As the stoichiometric coefficients νij can

process substances and/or organisms rate

elem. const. s1 s2 s3 · · · sns

p1 ν11 ν12 ν13 · · · ν1ns ρ1
p2 ν21 ν22 ν23 · · · ν2ns ρ2
...

...
...

...
. . .

...
...

pnp νnp1 νnp2 νnp3 · · · νnpns ρnp

e1 α11 α12 α13 · · · α1ns

e2 α21 α22 α23 · · · α2ns

...
...

...
...

. . .
...

ene αnp1 αnp2 αnp3 · · · αnens

Table 4.3: The extended process table summarizes process stoichiometry, rates, and the
composition of all substances and/or organisms. Here pi is the name of process i, sj is the
name of the substance/organism j, ek is the name of the elementary constituent k, νi,j is the
stoichiometric coefficient of process i with respect to substance j, ρi is the transformation
rate of process i, and αk,j is the “content” of elementary constituent k in substance j.

be interpreted as the relative transformation rate of substance j in process i, the product
νijαkj is the relative transformation rate of the elementary constituent k contained in
substance j. No net production or consumption of element k implies that the sum of all of
these relative transformation rates of element k of a given process must be zero. If a process
description includes all involved substances that contain the element k, mass conservation
of element k in process i can therefore be formulated by the following equation∑

j

νijαkj = 0 (4.43)
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For given elemental composition of substances, the set of these equations corresponding
to all considered elements constrains the stoichiometric coefficients of process i that are
compatible with elemental mass conservation.

In this section, we will learn how to apply equation (4.43) together with stoichiometric
parameters to determine process stoichiometry. We will do this by discussing two exam-
ples of increasing complexity. We will start with a simple process model for growth and
respiration of algae that considers mass conservation of nitrogen and phosphorus in section
4.3.2.1. We will then extend this model to the consideration of the five most important
elements C, H, O, N and P in section 4.3.2.2. This will lead to a model that is similar
to the model described in the previous section, but with parameterized composition and
different composition of different organisms and organic substances.

4.3.2.1 Growth and Respiration of Algae: Nutrient Balance

As a first example, we start with a model for growth and respiration of algae with consump-
tion and release of ammonium and phosphate. We would like to calculate the stoichiomet-
ric coefficients of these processes based on nitrogen and phosphorus conservation according
to equation (4.43). We introduce the mass fractions αN,ALG (gALG-N/gALG-DM) and
αP,ALG (gALG-P/gALG-DM) of nitrogen and phosphorus in dry mass of algae as model
parameters. Furthermore, we measure ammonium in nitrogen mass units (gNH+

4 -N) and
phosphate in phosphorus mass units (gHPO2−

4 -P). This implies that their mass fractions
of nitrogen and phosphorus are equal to unity: αN,NH+

4
= 1, αP,HPO2−

4
= 1. Obviously,

αP,NH+
4
= αN,HPO2−

4
= 0. For the growth process of algae, we set the stoichiometric coef-

ficient of algae to unity: νgro,ALG,NH+
4 ALG = 1. Applying the mass conservation equation

(4.43) to nitrogen then leads to

νgro,ALG,NH+
4 NH+

4
· 1︸ ︷︷ ︸

NH+
4

+ νgro,ALG,NH+
4 HPO2−

4
· 0︸ ︷︷ ︸

HPO2−
4

+1 · αN,ALG︸ ︷︷ ︸
ALG

= 0 .

From this equation we see that νgro,ALG,NH+
4 NH+

4
must be equal to -αN,ALG and that we

cannot learn anything about the stoichiometric coefficient of phosphate, νgro,ALG,NH+
4 HPO2−

4
.

Similarly, from phosphorus conservation, we get the equation

νgro,ALG,NH+
4 NH+

4
· 0︸ ︷︷ ︸

NH+
4

+ νgro,ALG,NH+
4 HPO2−

4
· 1︸ ︷︷ ︸

HPO2−
4

+1 · αP,ALG︸ ︷︷ ︸
ALG

= 0 .

From this equation we see that νgro,ALG,NH+
4 HPO2−

4
must be equal to -αP,ALG and that we

cannot learn anything about the stoichiometric coefficient of ammonium, νgro,ALG,NH+
4 NH+

4
.

This results in the following stoichiometric coefficients for growth of algae

νgro,ALG,NH+
4 ALG = 1

νgro,ALG,NH+
4 NH+

4
= −αN,ALG

νgro,ALG,NH+
4 HPO2−

4
= −αP,ALG

(4.44a)

when expressed as gALG-DM/gALG-DM, gNH+
4 -N/gALG-DM, and gHPO2−

4 -P/gALG-
DM. This equation states that production of one gALG-DM (dry mass of algae) consumes
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αN,ALG gNH+
4 -N and αP,ALG gHPO2−

4 -P. As this corresponds to the nitrogen and phos-
phorus content of dry mass of algae, this stoichiometry is obviously in agreement with the
conservation of nitrogen and phosphorus. When expressing the stoichiometric coefficients
in units of gALG-DM/gALG-DM, molNH+

4 /gALG-DM, and molHPO2−
4 /gALG-DM we

get the following stoichiometric coefficients

νgro,ALG,NH+
4 ALG = 1

νgro,ALG,NH+
4 NH+

4
= −

αN,ALG

14gN/mol

νgro,ALG,NH+
4 HPO2−

4
= −

αP,ALG

31gP/mol
.

(4.44b)

Respiration is the reverse process. These two processes are summarized in Table 4.4 for
mass units of nitrogen and phosphorus and in Table 4.5 for molar units.

Process Substances / Organisms

NH+
4 HPO2−

4 ALG

Element gN gP gDM

Growth of ALG,NH+
4 −αN,ALG −αP,ALG 1

Respiration of ALG αN,ALG αP,ALG −1

N gN 1 αN,ALG

P gP 1 αP,ALG

Table 4.4: Stoichiometry and composition tables of the simple growth and respiration
model of algae based on nitrogen and phosphorus conservation. This table uses nitrogen
and phosphorus mass units for nutrients; see Table 4.5 for molar units.

Process Substances / Organisms

NH+
4 HPO2−

4 ALG

Element mol mol gDM

Growth of ALG,NH+
4 −

αN,ALG

14gN/mol
−

αP,ALG

31gP/mol
1

Respiration of ALG
αN,ALG

14gN/mol

αP,ALG

31gP/mol
−1

N gN 14gN/mol αN,ALG

P gP 31gP/mol αP,ALG

Table 4.5: Stoichiometry and composition table of the simple growth and respiration model
of algae based on nitrogen and phosphorus conservation. This table uses molar units for
nutrients; see Table 4.4 for nitrogen and phosphorus mass units.
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4.3.2.2 Growth, Respiration and Death of Algae and Zooplankton: Consid-
eration of the Elements C, H, O, N and P

In this example, we extend the elemental mass fraction approach to the inclusion of all
five elements C, H, O, N and P (Reichert et al., 2001) to generalize the model shown in
Table 4.2 to the use of parameterized mass fractions of elements in organic material. For
each organic compound, j, we introduce the five mass fractions αC,j , αH,j , αO,j , αN,j , and
αP,j and assume that they sum to unity:

αC,j + αH,j + αO,j + αN,j + αP,j = 1 (4.45)

This is equivalent to a chemical formula of organic matter of type j of

CαC,j/12HαH,jOαO,j/16NαN,j/14PαP,j/31 (4.46)

which generalizes the Redfield composition given by equation (4.33). Equation (4.46)
describes one g of dry organic matter. Conversely, the Redfield composition given by
equation (4.33) can be expressed by mass fractions as follows

αRedfield
C,ALG =

106 · 12
3550

gC

gDM
≈ 0.36

gC

gDM

αRedfield
H,ALG =

263

3550

gH

gDM
≈ 0.07

gH

gDM

αRedfield
O,ALG =

110 · 16
3550

gO

gDM
≈ 0.50

gO

gDM

αRedfield
N,ALG =

16 · 14
3550

gN

gDM
≈ 0.06

gN

gDM

αRedfield
P,ALG =

1 · 31
3550

gP

gDM
≈ 0.01

gP

gDM
.

(4.47)

Note that these mass fractions are realistic for marine plankton. In freshwater, this is
often a reasonable approximation to the composition of algae and zooplankton as long as
primary production is not severely limited by phosphate. If primary production is severely
limited by phosphate, the phosphate mass fraction of algal biomass can be considerably
smaller (Hupfer et al., 1995).

Derivation of the stoichiometric coefficients can be done by accounting for the mass
fractions with the aid of equation (4.43) as it was done in section 4.3.2.1 for the elements N
and P. Equivalently, we can count atoms as described in section 4.3.1 with the difference
that the given numbers 106, 263, 110, 16 and 1 in C106H263O110N16P are replaced by
the parameterized numbers αC,j/12, αH,j , αO,j/16, αN,j/14, and αP,j/31 (which are not
integers).

We will again demonstrate the derivation for the process of growth of algae with nitrate
as the nitrogen source. The derivation follows the same steps as the derivation of equation
(4.35) on page 48. We start by writing this process in chemical notation with unknown
stoichiometric coefficients a, b, c, d, e, and f as follows:

aHCO−
3 + bNO−

3 + cHPO2−
4 + dH+ + eH2O

→ CαC,ALG/12HαH,ALGOαO,ALG/16NαN,ALG/14PαP,ALG/31 + f O2 .
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The six constraints for the conservation of C, O, H, N, P and charge lead to six constraining
equations to determine these six parameters uniquely. First, conservation of C leads to

a =
αC,ALG

12
,

conservation of N to

b =
αN,ALG

14
,

and conservation of P to

c =
αP,ALG

31
.

Using these solutions, conservation of H, O and charge lead to

αC,ALG

12
· 1 +

αP,ALG

31
· 1 + d · 1 + e · 2 = 1 · αH,ALG

αC,ALG

12
· 3 +

αN,ALG

14
· 3 +

αP,ALG

31
· 4 + e · 1 = 1 ·

αO,ALG

16
+ f · 2

αC,ALG

12
· (−1) +

αN,ALG

14
· (−1) +

αP,ALG

31
· (−2) + d · (+1) = 0 .

The last equation then leads to

d =
αC,ALG

12
+

αN,ALG

14
+

2 αP,ALG

31
,

the first then to

e =
αH,ALG

2
−

αC,ALG

12
−

αN,ALG

28
−

3 αP,ALG

62
,

and finally the second

f =
αC,ALG

12
+

αH,ALG

4
−

αO,ALG

32
+

5 αN,ALG

56
+

5 αP,ALG

124
.

This then results in

αC,ALG

12
HCO−

3 +
αN,ALG

14
NO−

3 +
αP,ALG

31
HPO2−

4

+

(
αC,ALG

12
+

αN,ALG

14
+

2αP,ALG

31

)
H+

+

(
αH,ALG

2
−

αC,ALG

12
−

αN,ALG

28
−

3αP,ALG

62

)
H2O

→ CαC,ALG/12HαH,ALGOαO,ALG/16NαN,ALG/14PαP,ALG/31

+

(
αC,ALG

12
+

αH,ALG

4
−

αO,ALG

32
+

5αN,ALG

56
+

5αP,ALG

124

)
O2

(4.48)
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This implies the following stoichiometric coefficients for algal growth with nitrate:

νgro,ALG,NO−
3 HCO−

3
= −

αC,ALG

12gC/mol

νgro,ALG,NO−
3 NO−

3
= −

αN,ALG

14gN/mol

νgro,ALG,NO−
3 HPO2−

4
= −

αP,ALG

31gP/mol

νgro,ALG,NO−
3 H+ = −

αC,ALG

12gC/mol
−

αN,ALG

14gN/mol
−

2αP,ALG

31gP/mol

νgro,ALG,NO−
3 H2O

= −
αH,ALG

2gH/mol
+

αC,ALG

12gC/mol
+

αN,ALG

28gN/mol
+

3αP,ALGi

62gP/mol

νgro,ALG,NO−
3 ALG = 1

νgro,ALG,NO−
3 O2

=
αC,ALG

12gC/mol
+

αH,ALG

4gH/mol
−

αO,ALG

32gO/mol
+

5αN,ALG

56gN/mol
+

5αP,ALG

124gP/mol

(4.49)

Similarly we get

αC,ALG

12
HCO−

3 +
αN,ALG

14
NH+

4 +
αP,ALG

31
HPO2−

4

+

(
αC,ALG

12
−

αN,ALG

14
+

2αP,ALG

31

)
H+

+

(
αH,ALG

2
−

αC,ALG

12
−

3αN,ALG

28
−

3αP,ALG

62

)
H2O

→ CαC,ALG/12HαH,ALGOαO,ALG/16NαN,ALG/14PαP,ALG/31

+

(
αC,ALG

12
+

αH,ALG

4
−

αO,ALG

32
−

3αN,ALG

56
+

5αP,ALG

124

)
O2

(4.50)

for algal growth with ammonium as the nitrogen source. This implies the following stoi-
chiometric coefficients for algal growth with ammonium:

νgro,ALG,NH+
4 HCO−

3
= −

αC,ALG

12gC/mol

νgro,ALG,NH+
4 NH+

4
= −

αN,ALG

14gN/mol

νgro,ALG,NH+
4 HPO2−

4
= −

αP,ALG

31gP/mol

νgro,ALG,NH+
4 H+ = −

αC,ALGi

12gC/mol
+

αN,ALG

14gN/mol
−

2αP,ALG

31gP/mol

νgro,ALG,NH+
4 H2O

= −
αH,ALG

2gH/mol
+

αC,ALG

12gC/mol
+

3αN,ALG

28gN/mol
+

3αP,ALG

62gP/mol

νgro,ALG,NH+
4 ALG = 1

g DM
g DM

νgro,ALG,NH+
4 O2

=
αC,ALG

12gC/mol
+

αH,ALG

4gH/mol
−

αO,ALG

32gO/mol
−

3αN,ALG

56gN/mol
+

5αP,ALG

124gP/mol
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(4.51)

These process stoichiometries are summarized in the first two rows of the Tables 4.6
and 4.7. These Tables generalize Table 4.2 to parameterized elemental mass fractions that
may be different from one organism or organic substance to the other.

Respiration is the reverse process to primary production with ammonium as the nitro-
gen source. The stoichiometries of the respiration processes of algae and zooplankton are
given in the rows 3 and 6 of the Tables 4.6 and 4.7.

The death process as formulated by equation (4.40) was very simple as we assumed
the composition of all organisms and organic particles to be the same. In this section,
we allow the composition of different organism and organic particles to be different. If
the composition of organisms is different, we could divide organic particles into classes of
particles of different composition. The death process could then still be kept simple as a
transfer of a living organism to a dead particle of the same composition. As it is often
inconvenient to have many classes of particles of different composition, we may choose to
assign an average composition to a single class of organic particles. Unfortunately, this
makes it impossible to keep all elemental mass balances correct if we transfer a living
organism to a dead particle without uptake or release of elements or compounds. Because
organic particles will finally be mineralized, it seems meaningful to introduce a “yield”,
Ydeath, for the death process that determines the fraction of the organism that becomes
a dead particle (of different composition) and to assume that the remaining part of the
organism will be mineralized. This “yield” should be chosen as large as possible without
leading to the need for uptake of nutrients or oxygen (otherwise organisms could only
die in the presence of nutrients or oxygen). This leads to stoichiometric coefficients of -1
for the organism and Ydeath for dead particles. The six stoichiometric coefficients for the
remaining compounds involved in the mineralization process (NH+

4 , HPO
2−
4 , O2, HCO

−
3 ,

H+, H2O) can then be derived from the conservation laws of C, H, O, N, P and charge as
this was demonstrated extensively for the algal growth processes on the preceding pages.
The stoichiometries of the death processes of algae and zooplankton are summarized in
the rows 4 and 7 of the Tables 4.6 and 4.7.

Finally, the growth process of zooplankton is a straightforward generalization of the
process given in Tables 4.4 and 4.5. The stoichiometry of this process is given in row 5 of
the Tables 4.6 and 4.7.

This explains the full stoichiomtric matrix shown in Tables 4.6 and 4.7. Note that we
omit the more complicated expressions for some of the stoichiometric coefficients.
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4.3.3 General Analysis and Solution of Stoichiometric Equations

The approach outlined in the previous section offers promising opportunities for a flexi-
ble description of process stoichiometry based on elemental composition of involved sub-
stances. This is particularly true, if the investigated processes and the considered sub-
stances in a model are not subject to modification. In a research context, when model
modifications may be important, this approach is troublesome to apply, as the stoichio-
metric equations must be solved again after each modification of considered substances
or elements and for new processes incorporated into the model. For this reason, it is
interesting to do one further step of abstraction and provide a theoretical framework for
generally solving stoichiometric equations. This framework allows the calculation of the
number of additional stoichiometric constraints necessary to make a process unique and to
calculate the stoichiometric coefficients for a process characterized by the set of involved
substances, their composition and the required additional stoichiometric constraints (Re-
ichert and Schuwirth, 2010).

In section 4.3.3.1 we will outline a six step procedure for the general derivation of pro-
cess stoichiometries. In section 4.3.3.2 we will analyse and mathematically formulate the
constraints on stoichiometric coefficients, before we provide the mathematical framework
for their analysis in section 4.3.3.3. In section 4.3.3.4 we demonstrate the mathematics
with the simple example discussed in section 4.3.2.1 that allows us to solve the equations
analytically. Finally, in section 4.3.3.5 we will illustrate the six step procedure outlined in
section 4.3.3.1 by numerically solving the governing equations of a more complex example.
Chapter 15 in the appendix describes the R functions used to solve this example. These
functions can be used to perform all calculations discussed in this section numerically for
a transformation process system of any size.

4.3.3.1 Overview of General Procedure

To calculate the stoichiometric coefficients for a given system consisting of different sub-
stances and/or organism groups (state variables) affected by a set of processes, we propose
the following procedure. First all substances/organisms which are required in addition to
the modelled substances/organisms to close the mass balances have to be identified and
added to the substances/organisms list. This step is often necessary as substances that are
not of primary interest are not included in the model as state variables. They still do not
have to be included as state variables, but they must be considered for applying conserva-
tion laws to derive stoichiometric coefficients. Examples for such substances are water and
potentially H+ ions that do not need to be included as state variables in aquatic systems
(H+ ions need to be included if pH is to be modelled (Reichert, 2001)) but are important
for hydrogen and oxygen mass balances, or N2 that is produced during denitrification and
is often not included as a model state variable as it escapes the system without further
interaction. Then the “elementary constituents” (e.g. chemical elements and charge) for
which conservation laws are to be be applied must be identified and the composition of
all involved substances/organisms with respect to these “elementary constituents” has to
be defined. To calculate the stoichiometric coefficients for each individual process we then
propose the following 6 step procedure (Reichert and Schuwirth, 2010):

Step 1: Select the substances/organisms involved in the process.
Not all substances/organisms are involved in all processes. Identifying those involved in the
particular process is important to more strongly constrain the stoichiometric coefficients.
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The signs of the corresponding stoichiometric coefficients should also be determined here
based on the expected consumption/production pattern of the process (see also step 6).
The selection of the involved substances/organisms and their signs must be based on
chemical and/or biological knowledge about the process.

Step 2: Determine the number of additional constraints that are required
to calculate the stoichiometric coefficients.
It is now a mathematical problem to determine how many constraints are required in
addition to these imposed by conservation laws for “elementary constituents“ to make the
stoichiometry of the process unique. Those techniques will be described in sections 4.3.3.2
and 4.3.3.3, their implementation in the appendix (chapter 15) and examples will illustrate
the application of these techniques in section 4.3.3.5. An example of such an additional
constraint is a yield coefficient that determines the fraction of organic matter increase of
a predator per unit of consumed prey.

Step 3: Define additional stoichiometric constraints if step 2 reveals that
they are needed.
Specific process knowledge is required to define such additional stoichiometric constraints.
In the example mentioned in step 2, the yield coefficient cannot be derived from conserva-
tion laws and must be specified based on empirical evidence or detailed process knowledge.

Step 4: Choose one coefficient and set it to a specific value.
As mentioned in section 4.1, the process stoichiometry is only defined up to an arbitrary
factor. The choice is thus arbitrary, but it must be considered when specifying the process
rate. Usually, one of the stoichiometric coefficients is set to plus or minus unity; the
process rate is then plus or minus the transformation rate of the corresponding substance
or organism by the process under consideration.

Step 5: Calculate the stoichiometric coefficients of the process.
Calculation of stoichiometric coefficients becomes now a purely mathematical problem
described conceptually in sections 4.3.3.2 and 4.3.3.3, its implementation in the appendix
(chapter 15) and its application to two examples in section 4.3.3.5.

Step 6: Check signs of the calculated stoichiometric coefficients.
The procedure outlined above guarantees exact fulfilment of all considered conservation
laws by the process under consideration. Nevertheless, the specification of the composi-
tions of the involved substances and of the additional stoichiometric constraints may lead
to a process stoichiometry in which consumption and production patterns of substances
do not correspond to the real process to be described by the model (see step 1). For
this reason, this check is important. If it fails, composition parameters and/or additional
stoichiometric constraints may have to be adapted (see also discussion in section 4.3.3.5).

Mathematical formulation and solution of the two steps 2 and 5 will be discussed in
the following two sections.

4.3.3.2 Constraints on Stoichiometric Conditions

General Conservation Constraints

An important way of getting information about stoichiometric coefficients is to make as-
sumptions about the composition of transformed substances and to apply conservation
laws of “elementary constituents” to constrain or even derive the stoichiometric coeffi-
cients. This can only be done if all substances affected by the process are considered (all
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substances have to be considered for deriving consistent stoichiometric coefficients; some
of these substances may still be omitted for simulation). When dealing with substance
composition, it is easiest to think of composing “elements” and their conserved “masses”,
although the formalism applies to any property for which a rigorous conservation law can
be formulated (such as chemical elements, electrical charge, or chemical oxygen demand).
This is the reason why “elementary constituents” is written in quotation marks.

For each substance, its composition can be characterized by a set of “masses” of all
“elementary constituents” contributing to a unit mass of the substance. To guarantee
consistency of the description, an “elementary constituent” must be quantified by the
same unit across different substances. However, the units for the different “elementary
constituents” can be different. Also the units of the different substances can be different.
The compositions of all substances can be summarized in the composition matrix

α =

substances s1, ..., sns︷ ︸︸ ︷
α11 α12 α13 · · · α1ns

α21 α22 α23 · · · α2ns

...
...

...
. . .

...

αne1 αne2 αne3 · · · αnens




“elementary

constituents”

e1, ..., ene

(4.52)

Here, αkj denotes the “mass” of the “elementary constituent” k contributing to a unit
mass of the substance j.

For a given process i, the stoichiometric coefficients, νij , for different substances j,
can be interpreted as relative conversion rates of different substances j by the process.
Therefore, the products νij αkj are the corresponding relative transformation rates of the
“elementary constituent” k contained in the substances j. As it is assumed that the “mass”
of the “elementary constituent” k is conserved and we assume that all substances affected
by the process are included in the list of considered substances, we get the following
constraints imposed by the conservation laws (4.43)

ns∑
j=1

νij αkj = 0 for all i (processes) and k (“elementary constituents”) (4.53)

(Gujer and Larsen, 1995; Gujer et al., 1995; Henze et al., 1995; Gujer et al., 1999; Henze
et al., 2000).

If the stoichiometric coefficients are also aggregated in a matrix (4.3)

ν =

substances s1, ..., sns︷ ︸︸ ︷
ν11 ν12 ν13 · · · ν1ns

ν21 ν22 ν23 · · · ν2ns

...
...

...
. . .

...

νnp1 νnp2 νnp3 · · · νnpns




processes

p1, ...,pnp

(4.54)

the ne · np conservation constraints (4.53) can be written as

ν ·αT = 0 (4.55)



64 CHAPTER 4. FORMULATION OF TRANSFORMATION PROCESSES

Equation (4.55) limits the degree of freedom for the choice of stoichiometric coefficients.
On the other hand, each row vector of stoichiometric coefficients that results in zero if it
is multiplied from the left to αT is a possible process stoichiometry that does not violate
conservation laws of “elementary constituents”. As each linear combination of such row
vectors again fulfils this property, the consistent process stoichiometries form a vector
space. This vector space is called the left nullspace of the matrix αT. The dimension of
this vector space determines the number of independent processes that are compatible with
conservation laws. If we have a basis of this space, each consistent process stoichiometry
can be written as a linear combination of the basis vectors, or each process as a composite
process of the corresponding basic processes.

Process-Specific Conservation Constraints

When deriving stoichiometric coefficients for a particular process, we are interested in con-
straints for the stoichiometric coefficients of this process. As the specific process typically
does not affect all substances considered for all processes, less degrees of freedom remain
for the stoichiometric coefficients. To set up the constraining equations for a particular
process i, we have to eliminate the columns of the composition matrix, α, that refer to
substances that are not affected by the process i. This results in a reduced composi-
tion matrix, α(i), relevant for process i. In analogy to equation (4.55), the constraints
applicable to stoichiometric coefficients for process i are then given by

νi ·
(
α(i)

)T
= 0 (4.56)

Here, νi is a row vector or a matrix of stoichiometries for process i that are consistent
with respect to conservation laws for “elementary constituents”. Similarly to α(i), this
row vector or matrix only contains columns referring to substances affected by the process
and have to be extended by elements with a value of zero for the other substances when
combined with the other process stoichiometries to the complete stoichiometric matrix of

all processes (4.3). If the dimension of the left nullspace of the matrix
(
α(i)

)T
is unity,

the conservation constraints define the process stoichiometry uniquely (up to an arbitrary
factor that can be determined by setting one of the stoichiometric coefficients equal to
plus or minus unity). If this dimension is larger, additional stoichiometric constraints are
required to make the process stoichiometry unique. Each additional constraint that is
independent of the other constraints reduces the dimension of the space of stoichiometries
that are compatible with conservation laws and additional constraints by one. Therefore,
the number of required additional stoichiometric constraints for process i is equal to the

dimension of the left nullspace of
(
α(i)

)T
minus one.

Additional Stoichiometric Constraints

Usually, for a given process i, additional stoichiometric constraints are linear equations in
the stoichiometric coefficients of this process and can therefore be written in the form

ns∑
j=1

νij γ(i),kj = 0 (4.57)

with coefficients γ(i),kj for constraint k of the process i. The sum extends over all considered
substances j. If we combine all additional stoichiometric constraints for a given process i



4.3. DERIVATION OF STOICHIOMETRY FROM COMPOSITION 65

in a matrix of constraints

γ(i) =

substances 1, ..., ns︷ ︸︸ ︷
γ(i),11 γ(i),12 γ(i),13 · · · γ(i),1ns

γ(i),21 γ(i),22 γ(i),23 · · · γ(i),2ns

...
...

...
. . .

...

γ(i),nc1 γ(i),nc2 γ(i),nc3 · · · γ(i),ncns




constraints

ci1, ..., c
i
ni
c

for process i

(4.58)

we can write the corresponding constraining equations (4.57) in matrix form

νi ·
(
γ(i)

)T
= 0 (4.59)

Combining Conservation and Additional Stoichiometric Constraints

Due to the mathematical similarities of the constraining equations (4.56) and (4.59), these
two equations can be combined to the equation constraining the stoichiometry of process
i by conservation laws and additional stoichiometric constraints:

νi ·

(
α(i)

γ(i)

)T

= 0 (4.60)

The matrix that is transposed in this equation appends the rows of γ(i) to the rows of
α(i). If the number of additional stoichiometric constraints is equal to the dimension of

the nullspace of the matrix
(
α(i)

)T
minus 1, and if all constraints are independent, there

is a unique solution to this equation that describes the stoichiometric coefficients up to
an arbitrary factor. This factor is usually chosen by setting one of the stoichiometric
coefficients to plus or minus unity.

4.3.3.3 Analysing and Calculating Process Stoichiometry

In this section mathematical techniques for the following tasks of stoichiometric calculation
will be formulated:

1. For a given process characterized by the set of affected substances of given composi-
tion, calculate the number of additional stoichiometric constraints required to make
the process stoichiometry unique.

2. For a given process characterized by the set of affected substances of given compo-
sition and the constraints required to make the stoichiometry unique, calculate the
stoichiometric coefficients.

As the analyses of the previous section showed, all equations (4.56), (4.59) and (4.60)
to be solved for dealing with the tasks described above require the construction of the left
nullspace of a matrix. We will first show how this can be done by using an algorithm that
constructs the singular value decomposition of the matrix. In the following subsections,
we will then develop the solutions to the individual tasks by applying this procedure to
different matrices.
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The singular value decomposition theorem of linear algebra (Golub and Loan, 1996)
states that each n×m matrix A with n ≥ m can be decomposed into a product of three
matrices U, D and VT

A = U ·D ·VT (4.61)

where the three matrices U, D and V have the following properties:

� U is an n×m matrix with orthonormal columns: UT ·U = I.

� D is an m ×m diagonal matrix with non-negative elements in its diagonal. These
values in the diagonal of D are called singular values of the matrix A.

� V is an m×m matrix with orthonormal columns: VT ·V = I.

Figure 4.7 illustrates this decomposition graphically for a a two-dimensional case. The

A

D

V U
T

Figure 4.7: Decomposition of a linear function characterized by the matrix A into a rota-
tion characterized by VT, a dilatation and/or contraction along the main coordinate axes
characterized by D, and another rotation characterized by U.

linear function represented by the matrix A can be decomposed into a rotation character-
ized by VT, a dilatation and/or contraction along the main coordinate axes characterized
by D, and another rotation characterized by U.

The matrices used in this theorem can be constructed as follows. The singular values
are equal to the square roots of the eigenvalues of ATA or AAT. The eigenvectors of
ATA build the columns of V, those of AAT build the columns of U. A constructive
implementation of this theorem can be used to get the left nullspace of the matrix A.
First, to get a complete basis of the left nullspace, we extend the n × m matrix A to
the n × n matrix Ã by columns that contain only zero elements. All matrices are then
n× n. By applying the singular value decomposition theorem (4.61) to the matrix Ã and
multiplying the decomposition equation from the left with ŨT we get

ŨT · Ã = D̃ · ṼT = R̃ . (4.62)

All singular values in D̃ that are zero lead now obviously to corresponding rows in R̃
that are zero (note that D̃ is diagonal). The equality signs in (4.62) then imply that the
corresponding rows of ŨT are elements of the nullspace of Ã and therefore of A. The
rows of ŨT that correspond to singular values that are not zero do not belong to the left
nullspace of Ã and A. As all rows of ŨT together span the n-dimensional space, the
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rows corresponding to singular values that are zero form an orthonormal basis of the left
nullspace of A.

In order to apply this theorem to solve the tasks described above, we need a construc-
tive implementation to get the rows of the matrix ŨT that correspond to singular values
that are zero. Algorithms to construct the matrices the existence of which is guaranteed
by the singular value decomposition theorem are described in the literature (Golub and
Loan, 1996). Implementations of such algorithms are available in general packages for
statistics, graphics, and computing, such as R (http://www.r-project.org) or Matlab
(http://www.mathworks.com), in libraries for computational linear algebra, such as the
Fortran 77 library LAPACK (http://www.netlib.org/lapack) or its ANSI C translation
CLAPACK (http://www.netlib.org/clapack), and implementations are also described
in the literature (Press et al., 1992b; Press et al., 1992a; Press et al., 2002). In the fol-
lowing subsections, we will apply such a constructive implementation of the singular value
decomposition theorem to solve the mathematical problems of the two tasks described
above by applying it to the matrix relevant for each task.

Calculating the Number of Required Additional Constraints

We apply the singular value decomposition theorem (4.61) in the form of equation (4.62)
to the matrices

A
(i)
2 =

(
α(i)

)T
(4.63)

(see equation 4.56). The dimension of the left nullspace of this matrix is given as the
number of zero diagonal elements of the matrix D̃ gained from the singular value decom-
position in the form of equation (4.62). The number of required constraints is then equal
to this dimension minus 1.

Calculating Stoichiometric Coefficients

We combine the constraints induced by the substance composition matrix (4.52) with the
additional constraints matrix (4.59) and delete the columns referring to substances not
affected by the process. This leads to the following matrix of constraints

A
(i)
3 =

(
α(i)

γ(i)

)T

(4.64)

(see equation 4.60) to which the singular value decomposition theorem is applied. If the
input was consistent (correct number of constraints) we get a unique row vector from ŨT

corresponding to a singular value that is zero. This row vector defines the stoichiometry
of the process up to an arbitrary multiplicative factor.

4.3.3.4 Analytical Example: Growth of Algae on Nutrients

The simple example described in section 4.3.2.1 led to the stoichiometry given in Table 4.8
together with the mass composition of all involved substances. To simplify the expressions,
throughout this section, we use αN and αP to characterize the nitrogen and phosphorus
content of algae instead of αN,ALG and αP,ALG. This model is simple enough to make
an analytical construction of the matrices in the singular value decomposition theorem
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Process Substances / Organisms

NH+
4 HPO2−

4 ALG

Element gN gP gDM

Growth of ALG,NH+
4 −αN −αP 1

Respiration of ALG αN αP −1

N gN 1 0 αN

P gP 0 1 αP

Table 4.8: Stoichiometry and composition table of the simple growth and respiration model
of algae based on nitrogen and phosphorus conservation.

possible. This is demonstrated in this section to clarify the approach. We first show that
the solution provided earlier is consistent with the formulation of the constraints in matrix
notation. Then we demonstrate that we obtain the same solution by using the singular
value decomposition theorem.

The composition matrix of ammonium, phosphate and algal biomass with respect to
nitrogen and phosphorus is given by

α =

NH+
4 HPO2−

4 ALG︷ ︸︸ ︷(
1 0 αN

0 1 αP

) }
N

P
(4.65)

According to the solution provided in Table 4.8 the processes of growth and respiration
of algae are characterized by the following stoichiometric matrix

ν =

NH+
4 HPO2−

4 ALG︷ ︸︸ ︷(
−αN −αP 1

αN αP −1

) }
Growth of ALG,NH+

4

Respiration of ALG
(4.66)

It can easily be verified that these matrices fulfil the mass conservation constraints
(4.55)

ν ·αT =

(
−αN −αP 1

αN αP −1

)
·


1 0

0 1

αN αP

 = 0 . (4.67)

To get the complete nullspace of αT we extend α by a row of zeros and transpose the
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resulting matrix. This leads to

Ã =


1 0 0

0 1 0

αN αP 0

 . (4.68)

For the construction of the matrices of the singular value decomposition theorem we must
calculate the eigenvalues and eigenvectors of the two matrices

ÃTÃ =


1 + α2

N αNαP 0

αNαP 1 + α2
P 0

0 0 0

 , ÃÃT =


1 0 αN

0 1 αP

αN αP α2
N + α2

P

 . (4.69)

The eigenvalues are given by

λ1 = 1 + α2
N + α2

P , λ2 = 1 , λ3 = 0 (4.70)

The eigenvectors of ÃTÃ are then given by

v1 =



αN√
α2
N + α2

P

αP√
α2
N + α2

P

0


, v2 =



αP√
α2
N + α2

P

−αN√
α2
N + α2

P

0


, v3 =



0

0

1


. (4.71)

those of ÃÃT by

v1 =



αN√
α2
N + α2

P ·
√

1 + α2
N + α2

P

αP√
α2
N + α2

P ·
√

1 + α2
N + α2

P√
α2
N + α2

P√
1 + α2

N + α2
P


, v2 =



αP√
α2
N + α2

P

−αN√
α2
N + α2

P

0


, v3 =



−αN√
1 + α2

N + α2
P

−αP√
1 + α2

N + α2
P

1√
1 + α2

N + α2
P


(4.72)

Using the square root of the eigenvalues as singular values, the eigenvectors of ÃTÃ as
columns of Ṽ, and those of ÃÃT as columns of Ũ leads to the construction of the solution
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of the singular value theorem

Ã︷ ︸︸ ︷

1 0 0

0 1 0

αN αP 0


=

Ũ︷ ︸︸ ︷

αN√
α2
N + α2

P ·
√
1 + α2

N + α2
P

αP√
α2
N + α2

P

−αN√
1 + α2

N + α2
P

αP√
α2
N + α2

P ·
√
1 + α2

N + α2
P

−αN√
α2
N + α2

P

−αP√
1 + α2

N + α2
P√

α2
N + α2

P√
1 + α2

N + α2
P

0
1√

1 + α2
N + α2

P



·



√
1 + α2

N + α2
P

1

0


︸ ︷︷ ︸

D̃

·



αN√
α2
N + α2

P

αP√
α2
N + α2

P

0

αP√
α2
N + α2

P

−αN√
α2
N + α2

P

0

0 0 1


︸ ︷︷ ︸

ṼT

(4.73)

The last column of Ũ now demonstrates, that the only possible stoichiometry of processes
is proportional to (−αN,−αP, 1). This corresponds to the solution given in Table 4.8.

The procedure outlined in this section seems to be a very complicated way to find
this out. However, it should be noted, that the main advantage of this procedure is to
provide general solutions for bigger process systems, where analytical solution is no longer
so straightforward.
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4.3.3.5 Numerical Example: Growth of Algae and Zooplankton

This section demonstrates how to apply the 6 step procedure to derive process stoichiome-
tries outlined in section 4.3.3.1 (Reichert and Schuwirth, 2010). We assume that we want
to build-up a lake model with the state variables ammonium (NH+

4 ), nitrate (NO
−
3 ), phos-

phate (HPO2−
4 ), dissolved oxygen (O2), phytoplankton (ALG), zooplankton (ZOO), dead

particulate organic matter (POM), and dissolved organic matter (DOM). We consider the
elements nitrogen (N), phosphorus (P), carbon (C), hydrogen (H), and oxygen(O), and
electric charge as elementary constituents and make appropriate assumptions of the com-
position of the organic components. To be able to close mass balances, for the calculation
of process stoichiometries, we add the compounds bicarbonate (HCO−

3 ), hydrogen ions
(H+), and water (H2O) (see section 4.3.3 for a general explanation of this step). Note that
we assume the P content of phytoplankton to be smaller than that of zooplankton due to
P limitation of phytoplankton growth and the P and N content of dead organic matter
to be smaller than that of zooplankton due to the higher content of carbon in the slowly
degradable part of organic matter. We then proceed with the derivation of the process
stoichiometries of phytoplankton growth on nitrate as the nitrogen source (primary pro-
duction) and of zooplankton growth on phytoplankton (consumption) according to the 6
step procedure outlined in section 4.3.3.5.

Step 1: Select the substances/organisms involved in the process.
Phytoplankton growth on nitrate as the nitrogen source should lead to the production
of phytoplankton and dissolved oxygen under consumption of nitrate, phosphate and bi-
carbonate. The signs of the stoichiometric coefficients of hydrogen ions and water are
not a priori clear. Zooplankton growth should produce zooplankton under consumption
of phytoplankton. Due to partial mineralisation of the organic material, excretion and
sloppy feeding, we expect release of ammonium, phosphate, bicarbonate and particulate
and dissolved organic matter and consumption of dissolved oxygen. Again, the signs of
the stoichiometric coefficients of hydrogen ions and water are not a priori clear. Table 4.9
shows our current knowledge of the two processes and the composition matrix in the form
of the extended process table.

process substances and organisms rate

elements NH+
4 NO−

3 HPO2−
4 HCO−

3 O2 H+ H2O ALG ZOO POM DOM

gN gN gP gC gO mol mol gDM gDM gDM g

growth ALG − − − + ? ? + ρgro,ALG

growth ZOO + + + − ? ? − + + + ρgro,ZOO

N gN 1 1 0 0 0 0 0 0.06 0.06 0.04 0.04

P gP 0 0 1 0 0 0 0 0.005 0.01 0.007 0.007

C gC 0 0 0 1 0 0 0 0.365 0.360 0.483 0.483

H gH 0.286 0 0.032 0.083 0 1 2 0.07 0.07 0.07 0.07

O gO 0 3.429 2.065 4 1 0 12 0.5 0.5 0.4 0.4

charge ch.units 0.071 0.071 -0.065 -0.083 0 1 0 0 0 0 0

Table 4.9: Extended process table of prior knowledge for growth of phytoplankton and
zooplankton.
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Step 2: Determine the number of additional constraints which are required
to calculate the stoichiometric coefficients.
Application of the function calc.stoich.basis of our R package stoichcalc (see chap-
ter 15) to the composition matrix and the list of non-zero stoichiometric coefficients but
without additional constraints leads to the result that there is exactly one possible sto-
ichiometry for phytoplankton growth but that four independent stoichiometries are still
possible for zooplankton growth. This means that no additional stoichiometric constraint
is needed for phytoplankton growth, but that three additional constraints are needed for
zooplankton growth.

Step 3: Define additional stoichiometric constraints if step 2 reveals that
they are needed.
It is clear that the yield of zooplankton growth (zooplankton biomass production per unit
of phytoplankton consumed) and the release of particulate and dissolved organic matter
due to excretion and sloppy feeding cannot be derived from mass conservation principles.
Introducing the parameters yield, YZOO, fraction of organic particles released per unit of
phytoplankton consumed, fPOM, and fraction of dissolved organic matter released per unit
of phytoplankton consumed, fDOM, we thus obtain the following three linear constraints
to the stoichiometric coefficients of zooplankton growth:

νgro,ZOO;ZOO = −YZOOνgro,ZOO;ALG (4.74a)

νgro,ZOO;POM = −fPOMνgro,ZOO;ALG (4.74b)

νgro,ZOO;DOM = −fDOMνgro,ZOO;ALG (4.74c)

Specific process knowledge is required to determine the values of these parameters. For
the numerical example, we will use YZOO = 0.2, fPOM = 0.2 and fDOM = 0.1.

Step 4: Choose one coefficient and set it to a specific value.
As we are denoting the processes “growth” (of phytoplankton and zooplankton, respec-
tively), it is convenient to formulate the process rate as the growth rate of the correspond-
ing organism. This requires setting the stoichiometric coefficient of the growing organism
to unity. Transformation rates of other substances can then be calculated by multiplying
the process rate with the stoichiometric coefficient of the substance.

Step 5: Calculate the stoichiometric coefficients of the process.
Application of the function calc.stoich.coef of our R package stoichcalc (see chapter
15) leads to the process stoichiometry shown in Table 4.10.

process substances and organisms rate

elements NH+
4 NO−

3 HPO2−
4 HCO−

3 O2 H+ H2O ALG ZOO POM DOM

gN gN gP gC gO mol mol gDM gDM gDM g

growth ALG 0 −0.06 −0.0050 −0.36 1.25 −0.026 −0.0065 1 0 0 0 ρgro,ALG

growth ZOO 0.18 0 0.0045 0.74 −1.65 0.049 0.0063 −5 1 1 0.5 ρgro,ZOO

Table 4.10: Final process table for growth of algae and zooplankton.
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Step 6: Check signs of the calculated stoichiometric coefficients.
A comparison of the signs of the stoichiometric coefficients in Tables 4.9 and 4.10 demon-
strates the correct representation of the production and consumption pattern. However,
due to the different contents of nutrients of the organic components, this step could lead
to the identification of a problem. If we e.g. would lower the phosphorus content of phyto-
plankton from 0.005 to 0.004 gP/gDM, we would see that phosphate would be consumed
instead of released during the growth of zooplankton. This could be corrected by lowering
the yield of zooplankton growth on phytoplankton. This example demonstrates the influ-
ence of food quality on the yield (DeMott et al., 1998; Omlin et al., 2001; Hessen et al.,
2002; Anderson et al., 2005).
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Chapter 5

Behaviour of Solutions of
Differential Equation Models

The goal of this chapter is to provide some understanding of the behaviour of solutions of
initial-value problems of explicit, first-order systems of ordinary differential equations, as
they often occur in the context of modelling dynamical systems (not only in ecology). For
more extensive introductions, we refer to the literature (Imboden and Koch, 2003, is an
example of an accessible introduction). “First-order” means that we deal with equations
that involve a function and its first derivative, excluding higher-order derivatives. This is
not a severe restriction as higher-order systems can be mapped to first-order systems of
higher dimension by introducing new functions for the higher derivatives. “Explicit” means
that we can resolve the equations for the derivatives. And finally, “ordinary differential
equations” means that we are only dealing with equations that involve derivatives with
respect to one variable, which, for dynamical systems, will be time, t. We omit in this
chapter systems of partial differential equations that could also involve spatial derivatives
or derivatives with respect to other continuous properties, such as age or size (see section
12.3.1 for examples of such models). This leads us to the following mathematical from of
models to investigate the behaviour of the solutions:

dy

dt
= g(y, t) (5.1)

The final restriction is on initial-value problems. We are interested in the time evolution of
a solution of equation (5.1) from a given inital state y0 = y(t0) (in contrast to boundary-
value problems in which we may want to specify given values for different components of
y at different points in time).

The first important result to mention is that under relatively weak regularity condi-
tions (Lipschitz continuity of g in y uniformly with respect to t; we will usually have
differentiable functions g that are even more regular than required), there exists a unique
solution to this initial-value problem for some interval in time (Teschl, 2012, is an example
of a book with a proof of this statement). As a solution can diverge within a finite time,
the solution cannot be guaranteed for an arbitrary large time interval.

In the remaining sections of this chapter we will briefly deal with the graphical inter-
pretation of differential equations of the form (5.1) (section 5.1), with the special case of
linear systems (section 5.2) before moving to the general case of nonlinear systems (section

75
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5.3). The chapter ends with a short outlook into elementary numerical solution techniques
(section 5.4).

5.1 Graphical Interpretation

Equation (5.1) defines the derivative of y with respect to time as a function of the current
state, y, and time, t. For each point in time, we can plot the vector field, g, as a function
of the states, y. This is illustrated in Figure 5.1 for a model that does not explicitly
depend on time. This means that this vector field, which shows direction and speed of
motion at each point in state-space, remains constant in time. Solutions can thus be drawn
by following the directions of the arrows. Two such solutions are illustrated by red and
green lines in Figure 5.1. This figure illlustrates a model with a so-called limit cycle, a
periodic solution that is asymptotically reached from starting points within a large area
of attraction.
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Figure 5.1: Examples of a vector field, g, and two solutions of a two-dimensional sys-
tem of ordinary differential equations of the form (5.1) without explicit time dependence
(autonomous model).

5.2 Systems of Linear Ordinary Differential Equations

Although nonlinear phenomena are very important, it is worth to start the analysis of
the behaviour of solutions of differential equations models with the linear case as they
determine the local behaviour around steady-state solutions of nonlinear models. A linear,



5.2. SYSTEMS OF LINEAR ORDINARY DIFFERENTIAL EQUATIONS 77

first-order differential equations system can be written in the form

dy

dt
= A(t)y + b(t) (5.2)

where the matrix A defines the so-called homogeneous part and b is the inhomogeneity.
Equation (5.2) can be solved formally, which leads to the general solution

y(t) = M(t)M(t0)
−1y(t0) +M(t)

t∫
t0

M(s)−1b(s)ds , (5.3)

where M is a fundamental matrix that is invertible and solves the homogeneous system
of linear ordinary differential equations

dM

dt
= A(t)M . (5.4)

The columns of the fundamental matrix M are linearly independent solutions of the ho-
mogeneous system

dy

dt
= A(t)y (5.5)

so that any solution of equation (5.5) can be written in the form y(t) = M(t)c with a
constant vector c or as y(t) = M(t)M(t0)

−1y(t0) (choosing c = M(t0)
−1y(t0)).

In the following paragraphs, we give an overview over the main steps for deriving the
solutions of homogeneous ordinary differential equations with a constant matrix A. The
aim is to provide insight into the key ideas and concepts. For further details or proofs, we
refer to the literature (Teschl, 2012). If A is constant, M is given by

M(t) = exp(At) (5.6)

where the matrix exponential is defined by

exp(A) =
∞∑
j=0

1

j!
Aj . (5.7)

To analyze the behaviour of the solutions of the homogeneous equation (5.5) with constant
matrix A we can profit from the transformation of A to the Jordan form. According to
a standard theorem of linear algebra, for any square matrix A there exists a unitary
transformation matrix U so that transforms A to the following standard “Jordan” form:

UAU−1 = J =

 J1

. . .

Jm

 , Ji =


λi 1

λi 1
. . .

. . .

λi 1

λi

 (5.8)

Here, λi are the eigenvalues of the matrix A. In many cases, in particular if all eigenvalues
have multiplicity 1, the “Jordan blocks”, Ji, degenerate to the 1 x 1 matrices λi and J
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becomes diagonal. Nevertheless, the general form (5.8) is very important if this is not the
case. Applying the unitary transformation to the homogeneous system (5.5) with constant
matrix A leads to

d(Uy)

dt
= UAU−1Uy or

dỹ

dt
= Jỹ with ỹ = Uy . (5.9)

This leads thus to a homogeneous system with a Jordan form matrix (for linear combi-
nations of the original components of y). The advantage of this form of the differential
equations is that it is easier to calculate the matrix exponential (5.7). First, for block
matrices, we have

exp(J) =

 exp(J1)
. . .

exp(Jm)

 , (5.10)

so that we can focus on an individual Jordan block. Here we have

exp(Ji) = exp(λi)


1 1 1

2! · · · 1
(ki−1)!

1 1 · · · 1
(ki−2)!

. . .
. . .

...

1 1

1

 , (5.11)

and for the product with time, t:

exp(Jit) = exp(λit)



1 t t2

2! · · · tki−1

(ki−1)!

1 t · · · tki−2

(ki−2)!

. . .
. . .

...

1 t

1


. (5.12)

Considering the fact that for real matrices A complex eigenvalues occur in conjugate
pairs and the structure of the (transformed) solution given by equation (5.12), we conclude
that the solutions of the homogeneous equation (5.5) are of the form of the following linear
combinations:

y(t) =

m∑
i=1

ki−1∑
j=0

aij t
j exp

(
Re(λi)t

)
cos
(
Im(λi)t+ ϕij

)
(5.13)

where λi are the eigenvalues of A, m is the number of Jordan blocks of the Jordan
transformation of A, ki is the dimension of the ith Jordan block, ϕij are phase shifts in
the oscillation term (resulting from combining the solutions of the two complex conjugate
eigenvalues), and Re and Im are extracting the real and imaginary parts of the eigenvalues.

Note that the general solution (5.13) is very easy to interpret: A single, linear, ho-
mogeneous differential equation dy/dt = λy has the solution y(t) = a exp(λt). For real



5.2. SYSTEMS OF LINEAR ORDINARY DIFFERENTIAL EQUATIONS 79

eigenvalues, this is still the core part of the solution given by equation (5.13). For the
general solution (5.13), we need three extensions: First, we have to consider multiple
eigenvalues, which leads to multiple terms of the form exp(λit). Second, we have to con-
sier that A may not be diagonizable which, as a consequence of the Jordan form, results
in additional factors of the form tj . And third, eigenvalues may be complex (in conjugate
pairs). Real and imaginary parts of the complex solutions are then real solutions. Be-
cause of the identity exp(a + ib) = exp(a)(cos(b) + i sin(b)) this leads to the final cosine
term in equation (5.13) (in addition to the exponential term that is also present for real
eigenvalues).

Figure 5.2 demonstrates the most important solution behaviours resulting from equa-
tion (5.13).Note that the solution converges to zero if the real parts of all eigenvalues λi are
negative; if there are complex eigenvalues, the solutions with components corresponding
to these eigenvalues are oscillating with decreasing amplitude. If any of the real parts of
the eigenvalues are positive, most solutions (those with non-zero contributions with these
terms) diverge, again with oscillations with increasing amplitude in case of the involve-
ment of complex eigenvalues. The factors tj in equation (5.13) do not qualitatively alter
this behaviour that results from the exponential term as divergence or convergence to zero
of the exponential factor is stronger than the powers of t.
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Figure 5.2: Examples of vector fields and two solutions each for the cases with two negative
eigenvalues (top, left), two positive eigenvalues (top, middle), one negative, and one positive
eigenvalue (top, right), one double negative eigenvalue with only one eigenvector (bottom,
left), a pair of complex eigenvalues with negative real part (bottom, middle), and a pair of
complex eigenvalues with positive real part (bottom, right).



80CHAPTER 5. BEHAVIOUROF SOLUTIONS OF DIFFERENTIAL EQUATIONMODELS

5.3 Systems of Nonlinear Ordinary Differential Equations

The geometric interpretation discussed in section 5.1 limits the options for structurally
different solutions of autonomous models (without explicit time dependence) in low di-
mensions. As the vector field defined by the right-hand side of equation (5.1) and shown
in Figure 5.1 defines a unique direction (and speed) of development at each point in the
system’s state space, crossing of solution trajectories is not possible. This limits the pos-
sible behaviour of solutions in one dimension to fixed points (steady-state solutions) and
transients towards or away from fixed points and divergent solutions. In two dimensions,
periodic solutions, in particular limit cycles, as shown in Figure 5.1 are additional possible
elements. In three dimensions, much more complicated solutions are possible as will be
discussed in section 5.3.3. The analysis of nonlinear differential equations systems starts
naturally with fixed points or steady-state solutions as discussed in the next section.

5.3.1 Fixed Points and their Stability

The behaviour of the solutions of ordinary differential equations systems is very difficult to
analyze, in particular in dimensions larger than two (see discussion above). It is, however,
straightforward to start with an analysis of fixed points or steady-state solutions. For
autonomous models (no explicit time-dependence)

dy

dt
= g(y) , (5.14)

these are given as the solutions of the implicit equation

g(yfix) = 0 . (5.15)

At these points, according to equation (5.14), dy/dt = 0 and thus the solution stays in
this state.

Once the fixed points are determined, we are interested in their stability. A fixed
point is called stable, if there exists a local neighbourhood of the fixed point for which
all solutions starting from initial values within the neighbourhood converge to the fixed
point. If we use the approximation

g(y) ≈ g(yfix) + (y − yfix)
∂g

∂yT

∣∣∣∣
y=yfix

(5.16)

we see that small deviations from the fixed point, δ = y−yfix, approximately fulfill a linear,
homogeneous differential equation (5.5) replacing A by the Jacobian matrix Jac(g) =
∂g/∂yT of the function g at the fixed point:

A = Jac(g) =
∂g

∂yT

∣∣∣∣
y=yfix

. (5.17)

If we use the notation

g(yfix) = 0 and {λi}mi=1 = eigenvalues of
∂g

∂yT

∣∣∣∣
y=yfix

(5.18)



5.3. SYSTEMS OF NONLINEAR ORDINARY DIFFERENTIAL EQUATIONS 81

and consider the discussion at the end of section 5.2, we find the following stability criteria:

if Re(λi) < 0 ∀ λi ⇒ yfix is a stable fixed point (5.19)

and

if ∃i : Re(λi) > 0 ⇒ yfix is an unstable fixed point (5.20)

Note that if no λi > 0 but there exist λi = 0, we need higher order analysis to determine
the stability of the fixed point.

Note that the linear stability analysis only applies locally and cannot be used to analyse
the domain of attraction of a stable fixed point. The domain of attraction consists of all
points from which, when chosen as initial values, the fixed point is asymptotically reached.

5.3.2 Limit Cycles

The next essential element after fixed points and transient solutions already possible in
two dimensions are limit cycles, as shown in Figure 5.1. Limit cycles are periodic solutions
that are asymptotically reached from initial values within a domain of attraction of the
structure.

Dividing the state space of a model into domains of attraction of different structures
and domains from which solutions diverge is a very important means for qualitative un-
derstanding of the behaviour of a model. Bifurcation theory deals with understanding
qualitative changes in these pattern as a function of model parameters or external driving
forces. As an example, a stable fixed point can become unstable as a function of a change
in model parameters while developing a stable limit cycle of increasing amplitude around
it (this is the so-called Hopf-bifurcation).

5.3.3 Chaos

The paper by Lorenz in 1963 about “deterministic nonperiodic flow” led to a break-through
in the insight of complex behaviour already of very simple nonlinear systems of ordinary
differential equations (Lorenz, 1963). More specifically, Lorenz studied the behaviour of
solutions of a three-dimensional model of the form (5.14) with the following function

g(y) =

 a(y2 − y1)

by1 − y2 − y1y3
y1y2 − cy3

 . (5.21)

Figure 5.3 shows the behaviour of a solution of this model.

The insight into the possible complexity of the solutions of such models and into the
sensitivity to initial conditions (solutions with very close initial conditions separate very
quickly) founded the so-called “deterministic chaos theory” which builds the bases of
the understanding for poor predictability of the behaviour even of deterministic systems.
As the initial condition can only be observed or reproduced with a limited accuracy,
a deterministic system that is sensitive to initial conditions, looses predictability very
quickly with an increasing forecast time horizon. This is the reason for the limited forecast
horizon of weather forecasts that extends only very slowly with increasing resolution of
the observation network.
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Figure 5.3: Two projections of a trajectory of the Lorenz system (5.21) in state space (top
row) and the time series of two of the components (bottom row) demonstrate the potential
complexity of solutions already possible with a simple three-dimensional model (parameter
values a = 10, b = 28, c = 8/3; initial value y = (-11.3,-13.3,28)).
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5.4 Numerical Solution of Ordinary Differential Equations

In this section we give a short description of the most elementary techniques for the
solution of systems of ordinary differential equations. This description should help to
identify numerical problems and to give support for their solution. For more efficient and
more precise techniques than those described in this chapter we refer to the literature
(Shampine, 1994; Soetaert et al., 2012).

The simplest technique for the discretization of a system of ordinary differential equa-
tions

dy

dt
= g(y, t) (5.22)

is the explicit Euler technique. In its simplest form, this technique discretizes the time
axis into equidistant points

tj = t0 + j ·∆t (5.23)

If we abbreviate the solutions at each points in time by

yj = y(tj) (5.24)

we can substitute the following approximations into the differential equations given above:

y → yj

dy

dt
→ yj+1 − yj

∆t

(5.25)

This transforms the system of differential equations into a system of difference equations:

yj+1 = yj +∆tg(yj , tj) (5.26)

As these equations can be solved explicitly for the solution at the next time point, yj+1,
this discretization scheme is is called explicit Euler scheme.

If we replace the substitution scheme (5.25) by

y → yj

dy

dt
→ yj − yj−1

∆t

(5.27)

and shift the index by one unit, we get the alternative discretization scheme

yj+1 = yj +∆tg(yj+1, tj+1) (5.28)

In this scheme, the solution at the next time point, yj+1, is present at both sides of the
equation and even as an argument of the generally nonlinear function g. For this reason,
this discretization scheme is called implicit Euler scheme. This equation must be solved
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iteratively at each time step. This makes each single integration step numerically much
more expensive compared to the explicit Euler scheme.

The advantage of the implicit technique compared to the explicit technique is that
it makes it possible to perform the integration with significantly bigger times steps if
the system of differential equations is stiff. A system of differential equations is called
“stiff”, if neighbouring solutions of the solution to be found converge much quicker to
this solution than the time scale of changes of this solution. Figure 5.4 illustrates the
behaviour of solutions of a stiff system of differential equations together with numerical
approximations by the explicit and the implicit Euler schemes. Because of the stiffness of

y y

t t
∆t ∆t

Figure 5.4: Numerical solutions of a stiff system of differential equations using an explicit
(left panel) and an implicit (right panel) Euler scheme with the same time step.

the system of differential equations the slopes of the solutions (thin lines) in the vicinity of
the solution to be found (thick line) are significantly larger than the slope of the solution
to be found. Extrapolation of this slope by the explicit Euler scheme leads to oscillations
of the numerical solution at the time step used for drawing the figure. These oscillations
could only be eliminated with this scheme by reducing the time step drastically to the
time scale of the fast, neighbouring solutions. In contrast to this numerical solution based
on the explicit Euler scheme, the solution based on the implicit scheme behaves much less
problematic. The reason is that this technique tries to find a numerical solution that has
the correct slope at the end of the time step. Due to this better behaviour, this scheme
allows much larger time steps for stiff systems of differential equations. If the stiffness
problem is severe enough, the higher expense at each time step is then overcompensated
by the smaller number of steps that have to be carried out to integrate over a given time
domain. For this reason, for stiff systems of differential equations, implicit schemes should
be used. To get a higher integration accuracy, not the simple implicit Euler scheme is used,
but this scheme is replaced by an implicit technique of higher order. These techniques
replace the approximations of the derivatives in equation (5.27) by approximations that
consider higher order terms in the Taylor series of the solutions at time tj . In addition, the
order of the scheme and the time step are adapted dynamically in order to optimally follow



5.4. NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS 85

the true solution. As the true solution is unknown, this is usually achieved by comparing
different solutions with different time step or different approximation order (Gear, 1971b;
Gear, 1971a; Gear, 1971c; Hindmarsh, 1983; Petzold, 1983; Brenan et al., 1989; Shampine,
1994; Soetaert et al., 2012).
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Part II

Formulation of Ecosystem
Processes

87





Chapter 6

Physical Processes

In this chapter, we introduce the mathematical formulation of the physical processes trans-
port and mixing (section 6.1), sedimentation (section 6.2), gas exchange (section 6.3), and
detachment or resuspension (section 6.4).

89
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6.1 Transport and Mixing

This section provides a brief overview of transport and mixing in surface waters and on
how they can be considered in aquatic ecosystem models. For a more detailed exposition,
we refer to the literature (Fischer et al., 1979, and many more).

6.1.1 Transport and Mixing in Lakes and Reservoirs

In this section, we give an overview of substance transport and mixing processes in lakes
and reservoirs. The section is structured into four subsections: In section 6.1.1.1 we
discuss density stratification in lakes and reservoirs. Then, in section 6.1.1.2 we discuss
plunging inflows as a consequence of the density difference between the inflow and upper
lake layers. Finally, in the sections 6.1.1.3 and 6.1.1.4 we discuss the underlying physics
and the mathematical description of horizontal and vertical spreading of substances in
lakes and reservoirs.

6.1.1.1 Density Stratification of Lakes and Reservoirs

Due to the dependence of the density of water on temperature and dissolved substances,
undisturbed water bodies tend to be stratified, particularly when heated from the top.
Denser (usually colder) water layers are below layers of less dense (usually warmer) water
(density stratification).

Temperature dependence of the density of water is in many cases the most important
cause of density stratification. In temperature ranges that are typical for natural water
bodies, the density of pure water can be approximated by the following function (Bührer
and Ambühl, 1975):

ρw(T ) ≈ 999.84298 kg/m3 + 10−3 kg/m3
(
0.059385 oC−3 · T 3

− 8.56272 oC−2 · T 2 + 65.4891 oC−1 · T
)

(6.1)

Between 0 and 24 oC, this equation approximates the density of water with a relative error
of less than 10−5. Figure 6.1 shows the dependence of the density of water on temperature
according to equation (6.1).

Due to incoming solar radiation and heat exchange with the atmosphere the surface
layer of the water column is heated in spring and summer. In our climate, this typically
leads to a division of the water body into three zones. Due to daily variation in temper-
ature and wind-induced turbulence, a surface layer of 1 to 5 m thickness, the epilimnion,
remains quite well mixed. Below the epilimnion, in a depth of about 5 - 20 m, there is
a strong temperature gradient. This zone is called the metalimnion. The zone below the
metalimnion, the hypolimnion, is significantly less affected by yearly changes in tempera-
ture. The strong stratification in the metalimnion leads to a strong reduction in turbulent
exchange of dissolved substances between hypolimnion and epilimnion (see section 6.1.1.4).
Figure 6.2 shows, with an example from Lake Hallwil, a typical density stratification as it
occurs in spring (Scheidegger, 1992). In the late autumn and winter, cooling of the lake
at its surface supported by wind-induced mixing often destroys the density stratification
of the lake. Besides temperature, dissolved and particulate substances can also have an
effect on density of water that is relevant for stratification.
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Figure 6.1: Density of pure water as a function of temperature.

6.1.1.2 Plunging of Inflows

Inflows into a stratified water body that have a higher density than the surface layers
plunge below the surface layers. This process is illustrated in Figure 6.3. After the
discharge into the surface layer entrainment of surrounding water into the plume leads to
a decrease in flow velocity. After sufficient deceleration, the plume starts to plunge into
deeper layers. Further entrainment of surrounding water and sedimentation of particles
further reduces the density of the plume. Finally the plume reaches a depth in which the
density of the surrounding water is the same as that of the plume. In this depth, the plume
spreads horizontally across the water body. Vertical spreading can be strongly suppressed
if the water body has a large density gradient.

Figure 6.4 shows that the difference in electrical conductivity between the River Muota
and Lake Lucerne can be used to trace the plume of the Muota close to the river mouth.

The conductivity signal clearly shows that the river plunges into a depth between 10
and 14 m. The electrical conductivity of Lake Lucerne is much smaller than that of the
River Muota because of the large fraction of its catchment dominated by cristalline rocks.
In contrast, the catchment of the river Muota is dominated by sedimentary rocks. The
situation shown in Figure 6.4 is typical for summer and autumn. During this time there
is a very strong density gradient in the metalimnion that offers all densities that occur in
the inflow. For this reason, the inflow always plunges into the metalimnion. During the
winter, the lake is well mixed with only small density differences beween top and bottom.
During this time, very cold inflows or inflows with a high sediment load can plunge down
to the lake bottom.

6.1.1.3 Horizontal Spreading of Dissolved Substances

Horizontal transport and spreading in lakes and reservoirs is caused by directed, advective
flow and turbulent diffusion. Because of the existence of much larger eddies in horizon-
tal than in vertical direction, the distinction between advective flow and diffusive eddies
depends on the spatial scale and extension of the spreading substance patch. For a small
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Figure 6.2: Temperature and density in the surface layers of Lake Hallwil in spring 1992
(Scheidegger, 1992).

substance patch, a large eddy leads to advection, whereas for a large patch, the same eddy
leads to spreading. For this reason, the strength of turbulent diffusivity increases with the
size of the substance patch which spreads across the lake.

Spreading by turbulent diffusion can be described by the following diffusion equation:

∂C

∂t
= Kxy

(
∂2C

∂x2
+

∂2C

∂y2

)
(6.2)

Here, Kxy is the coefficient of horizontal turbulent diffusion. The simplest solution of this
equation for a substance pulse of mass m, which is distributed over the depth h, is given
by

C(x, y, t) =
m

h

1

2π

1

σxy(t)2
exp

(
−(x− x0)

2 + (y − y0)
2

2σxy(t)2

)
(6.3)

with

σxy(t) =
√
2Kxyt (6.4)

The width of the substance distribution can be estimated by four standard deviations of
this distribution, the maximum concentration by a rectangular distribution with half of
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Figure 6.3: Illustration of the plunging process of an inflow into a stratified water body
(Johny Wüest, Eawag).

this width:

Lxy(t) ≈ 4σxy(t) = 4
√
2Kxyt

Cmax ≈ m

h

1

4σxy(t)2
=

m

h

1

8Kxyt

(6.5)

The coefficient of horizontal turbulent diffusion, Kxy, is within a range

Kxy ≈ 104 − 106 m2/d (6.6)

where small values apply to smaller patches and large values to large patches. When
applying this estimate, care has to be taken to advective flows due to wind, tributaries
and the lake outlet that shift the center of mass in addition to the spreading process.

Example 6.1: The following figure shows an example of horizontal tracer spreading in
18 m depth in Lake Lucerne (Peeters et al., 1996).
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Figure 6.4: Conductivity signal of the River Muota in Lake Lucerne close to the river
mouth (Wüest et al., 1988).

It is obvious that initially, when the tracer cloud is small, large eddies shift the tracer cloud
and only small eddies contribute to its enlargement. When the cloud grows, an eddy of the
same size as the one that originally shifted the whole cloud, now contributes to mixing. An
estimate of the coefficient of horizontal turbulent diffusion for the first two days according
to equation (6.5) leads to a value of about 105 m2/d. This is within the range of values
given by equation (6.6).
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6.1.1.4 Vertical Spreading of Dissolved Substances

The differential equation for vertical mixing of a horizontally distributed substance in a
lake is given by

∂C

∂t
= Kz

∂2C

∂z2
(6.7)

Here, C is the horizontally averaged substance concentration, z the vertical distance from
the lake surface, t time and Kz the coefficient of vertical turbulent diffusion. The simplest
solution of this equation for a pulse of mass m of a substance is given by

C(z, t) =
m

A

1√
2π

1

σz(t)
exp

(
−(z − z0)

2

2σz(t)2

)
(6.8)

with

σz(t) =
√
2Kzt (6.9)

Here, A is the horizontal cross-sectional area of the lake at the depth of the tracer cloud,
z0, and t time since tracer input. We can estimate the width of the tracer pulse by four
standard deviations, σz(t), of this distribution and the maximum concentration as the
concentration of a rectangular distribution with half of this width:

Lz(t) ≈ 4σz(t) = 4
√
2Kzt

Cmax ≈ m

A

1

2σz(t)
=

m

A

1

2
√
2Kzt

(6.10)

Typical values of coefficients of turbulent diffusion in epilimnion, metalimnion and
hypolimnion are in the ranges given by

Kz,epi ≈ 100 m2/d

Kz,meta ≈ 0.01− 0.1 m2/d

Kz,hypo ≈ 0.1− 10 m2/d

(6.11)

The large value in the epilimnion serves to approximate complete mixing. This value can
be used for the whole lake during winter, if the water column in the deep hypolimnion is
not stabilized chemically.

Example 6.2: The following figure shows profiles of temperature, of the coefficient of
vertical turbulent diffusion and of the concentration of an artificial tracer in Lake Cadagno
at different points in time after tracer input.
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The figure shows temperature profiles (left) at the beginning (solid line), and at the end
(dashed) of the measurement series, the coefficient of vertical turbulent diffusion (middle),
and measured (markers) and calculated (lines) tracer profiles after 3, 7, 14, 30, 38 and 56
days after tracer input (right). It is obvious that the strong stratification keeps the tracer
away from the epilimnion, whereas it diffuses much quicker down to the hypolimnion. The
values of the coefficient of turbulent vertical diffusion are within the range given by the
equation (6.11).

If a lake is approximated by a system of mixed reactors, equation (6.7) is replaced by
the system of ordinary differential equations of the form (3.12). The two most frequently
used options are a two-box model for epilimnion and hypolimnion and a multi-box model
for water layers in the lake. For the two-box model, the metalimnion could be described
by a link with fluxes of

Jepi hypo
diff = Ameta Kz,meta

Cepi −Chypo

hmeta
(6.12)

where Ameta is the cross-sectional area of the lake in the depth of the metalimnion, Kz,meta

is the turbulent diffusivity in the metalimnion, and hmeta is the thickness of the meta-
limnion. This corresponds to a diffusive flux according to equation (3.17) with an exchange
coefficient of

qepi hypodiff = Ameta
Kz,meta

hmeta
(6.13)

For a multi-box model, the fluxes between box k and box k + 1 are given by

Jk k+1
diff = Ak,k+1 Kz,k,k+1

Ck −Ck+1

hbox
(6.14)

where Ak,k+1 is the cross-sectional area of the lake between the boxes k and k+1, Kz,k,k+1

is the coefficient of turbulent diffusion between the boxes k and k+1, and hbox is the height
of the boxes. This corresponds to a diffusive exchange coefficient of

qk k+1
diff = Ak,k+1

Kz,k,k+1

hbox
(6.15)

In addition to these diffusive fluxes, we will need a sedimentation flux of settling particles
as described in section 6.2.
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6.1.2 Transport and Mixing in Rivers

In this section, we give an overview of substance transport and mixing processes in rivers.
The section is structured into four subsections: In section 6.1.2.1 we discuss the estimation
of average flow velocity and water depth under steady-state hydraulic conditions. This
is the condition under which we discuss substance transport and mixing in the following
sections. In section 6.1.2.2 we discuss vertical mixing, in section 6.1.2.3 lateral mixing,
and in section 6.1.2.4 longitudinal transport and dispersion in rivers. We only give a crude
overview as a basis for formulating simple ecological models. For more details we refer to
the literature (Fischer et al., 1979; Rutherford, 1994, and many more).

6.1.2.1 Steady-State River Hydraulics

The crucial function characterizing cross-sectionally averaged steady-state hydraulics in
rivers is the dependence of the mean velocity, v, on discharge, Q, and the geometry of the
river bed.

Flow in a river is caused by the gravitational force. Along a river reach that is not
influenced by backwater effects of hydraulic constructions or changes in river bed geometry,
the accelerating component (parallel to the river bed) of the gravitational force divided
by its component normal to the river bed is given by the slope of the river bed:

S0 = −dzb
dx

(6.16)

Here, zb is the vertical coordinate of the sole of the river (if necessary smoothed to elim-
inate variation at spatial scales that are not relevant at the spatial scale of modelling)
and x is the distance along the river. For uniform flow the accelerating component of the
gravitational force is compensated by the decelerating frictional force. Friction is caused
by surface roughness and irregularities of the river bed, by irregularities in channel geom-
etry, obstructions, vegetation and curves. All these causes affect river flow and generate
turbulence and, finally, energy dissipation. This is a very complicated process that cannot
be accounted for mechanistically in a simple, one-dimensional model. For this reason,
the friction force is parameterized as a function of cross-sectionally averaged flow quan-
titites, the geometry of the river bed, and surface roughness. Usually, the friction force
is made non-dimensional by division through the gravitational force of the fluid. The
two most frequently used formulations of this non-dimensional friction force, the so-callled
friction-slope, Sf , are

Sf =
f

8g

1

R

Q2

A2
(6.17)

(Darcy-Weisbach) and

Sf =
1

K2
st

1

R4/3

Q2

A2
= n2 1

R4/3

Q2

A2
, n =

1

Kst
(6.18)

(Manning-Strickler). In these equations f is the non-dimensional friction factor (the factor
8 was introduced for compatibility with pipe flow), g is the gravitational acceleration, Q
is the river discharge, A is the wetted cross-sectional area, Kst is the friction coefficient
according to Strickler, n is the friction coefficient according to Manning,

R =
A

P
(6.19)
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is the hydraulic radius, and P is the perimeter of the wetted cross-section of the river bed.
In the first approach (6.17) it is assumed that the friction force, Ff , for a water body

of length L along the channel is proportional to the water density, ρ, to the contact area
between the water body and the river bed, PL, and to the average flow velocity squared,
v2:

Ff ∝ ρ · PL · v2 (6.20)

Dividing this expression by the gravitational force

Fg = ρ · g ·AL (6.21)

and using the expression

v =
Q

A
(6.22)

for the average flow velocity at a given discharge, Q, we get

Sf ∝
ρ · PL · v2

ρ · g ·AL
=

1

g

P

A

Q2

A2
=

1

g

1

R

Q2

A2
(6.23)

This corresponds to equation (6.17) with a non-dimensional constant of proportionality of
f/8. The approach (6.18) corrects this formulation sightly according to empirical evidence.

The water body is accelerated by the component of the gravitational force along the
river and decelerated by the friction force that increases with flow velocity. Along a
sufficiently long prismatic river reach (no change in the cross-sectional shape of the river
bed) with constant friction coefficient, this leads to an equilibrium between gravitational
and friction forces. Using the non-dimensional forces introduced above, this equilibrium
can be formulated as

Sf = S0 (6.24)

(see Figure 6.5). This equation allows us to estimate the mean flow velocity in a prismatic
channel of known geometry and friction as a function of discharge. To get a typical
functional relationship without having to bother with complicated geometric expression,
in the following, we assume the river bed to be prismatic with a rectangular cross-section
characterized by its width, w, and to have a constant slope, S0. We further assume the
river to be much wider than the water depth, h. This leads to the following geometric
expressions:

A = wh , P = w + 2h ≈ w , R = A/P ≈ A/w ≈ h (6.25)

Substituting the friction equations (6.17) or (6.18), into equation (6.24), using R ≈ A/w
from equation (6.25), and A = Q/v from equation (6.22), we get the following dependences
of the flow velocity, v, on discharge, Q, river bed width, w, and river bed slope, S0:

v =

(
8g

f
S0

Q

w

) 1
3

(6.26)

(based on the friction approach 6.17) or

v =
(
Kst

√
S0

) 3
5

(
Q

w

) 2
5

=

(√
S0

n

) 3
5
(
Q

w

) 2
5

(6.27)
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Figure 6.5: Equilibrium of gravitational and friction forces for steady-state hydraulics in a
prismatic channel without changes in friction and slope, away from backwater influences,
and with the approximation of a small angle of the slope, α: sin(α) ≈ tan(α) = S0.

(based on the friction approach 6.18). To use these equations, we need an estimate of
the friction factor f , the friction coefficient, Kst, according to Strickler, or the friction
coefficient, n = 1/Kst according to Manning.

There are many approaches for estimating friction coefficients based on properties of
the river bed. One such approach for estimating the Manning coefficient, n, is shown in
Table 6.1. This approach distinguishes the following contributions to the production of
friction:

1. surface roughness of the river bed;

2. irregularities in the surface of the river bed;

3. irregularities in the river cross-section;

4. obstructions in the river bed;

5. vegetation;

6. effect of curves.

The total friction coefficient, n is then the sum of six terms according to

n =
6∑

i=1

ni (6.28)

Typical contributions, ni, in this sum can be estimated according to the guidelines outlined
in Table 6.1 (Cowan, 1956; French, 1985). Due to its seasonal dynamics, vegetation is a
particularly difficult contribution to estimate.

Within reaches influenced by backwater effects, e.g. due to weirs, equation (6.27) is
not valid. Here, the average velocity in the reservoir can be estimated from its volume,
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Category Property Contribution to friction

Surface material earth n1 = 0.020 s/m1/3

of the river bed fine gravel 0.024 s/m1/3

coarse gravel 0.028 s/m1/3

Irregularities smooth n2 = 0.000 s/m1/3

of the river bed minor 0.005 s/m1/3

moderate 0.010 s/m1/3

severe 0.020 s/m1/3

Variation of shape gradual n3 = 0.000 s/m1/3

of the cross-section occasional 0.005 s/m1/3

frequent 0.010 - 0.015 s/m1/3

Obstructions in negligible n4 = 0.000 s/m1/3

the river bed minor 0.010 - 0.015 s/m1/3

appreciable 0.020 - 0.030 s/m1/3

severe 0.040 - 0.060 s/m1/3

Vegetation none n5 = 0.000 s/m1/3

low 0.005 - 0.010 s/m1/3

medium 0.010 - 0.025 s/m1/3

high 0.025 - 0.050 s/m1/3

very high 0.050 - 0.100 s/m1/3

Effect of curves minor n6 = 0.000 s/m1/3

appreciable 0.15
∑5

i=1 ni

severe 0.30
∑5

i=1 ni

Table 6.1: Contributions of different causes of turbulence production in rivers to the total
friction coefficient according to (Cowan, 1956). See the original reference for a more precise
definition of the terms.

V , and length, L:

v =
QL

V
=

Q

Ā
(6.29)

Here, Ā = V/L is the average cross-sectional area of the reservoir.

From the mean flow velocity and the width of the river, the mean depth can be esti-
mated as

h =
Q

wv
(6.30)
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Example 6.3: Glatt River downstream of Bülach: the Glatt River is strongly influenced
by vegetation. This has a significant effect on its friction coefficient:

winter summer

n1 = 0.028 s/m1/3 n1 = 0.028 s/m1/3

n2 = 0.005 s/m1/3 n2 = 0.005 s/m1/3

n3 = 0.000 s/m1/3 n3 = 0.000 s/m1/3

n4 = 0.000 s/m1/3 n4 = 0.000 s/m1/3

n5 = 0.010 s/m1/3 n5 = 0.050 s/m1/3

n6 = 0.000 s/m1/3 n6 = 0.000 s/m1/3

n = 0.043 s/m1/3 n = 0.083 s/m1/3

Kst = 23 m1/3/s Kst = 12 m1/3/s

With a mean width of about 16 m, a slope of 0.34 % and a discharge of 4 m3/s we get the
following values for mean flow velocity and mean depth:

winter summer

v = 0.68 m/s v = 0.46 m/s

h = 0.36 m h = 0.54 m

This demonstrates that vegetation can have a significant effect on flow velocity and water
depth.

6.1.2.2 Vertical Mixing

To get a simple estimate of dispersal of a substance transported in a river using analytical
solutions of the transport equation, we have to make simplifying assumptions regarding
water flow. We assume the flow to have a constant velocity, v, in time and across the
river cross-section and assume a constant vertical turbulent diffusion coefficient, Kz, and
a constant lateral diffusion and dispersion coefficient, ey. The combined diffusion and
dispersion coefficient in lateral direction, ey, considers the effect of secondary currents in
addition to turbulence on lateral mixing. We have then the following transport equation:

∂C

∂t
= −v

∂C

∂x
+ ey

∂2C

∂y2
+Kz

∂2C

∂z2
(6.31)

Here, C is the concentration of the substance dissolved or suspended in the water column,
t is time, x is distance along the river, y is distance across the river, z is vertical elevation,
v is flow velocity (in x-direction), Kz is the coefficient of vertical turbulent diffusion, and
ey is the coefficient of lateral turbulent diffusion and dispersion.

If we limit our analysis of vertical mixing to a situation in which the substance enters
the river homogeneously spread over the river width, we can omit the lateral dimension
and get the following simplified steady-state equation:

v
∂C

∂x
= Kz

∂2C

∂z2
(6.32)

If the substance enters the river at the water surface (elevation z0), we get the following
analytical solution to this equation, which is valid as long as no considerable concentration
reaches the river bed:

C(x, y, z) =
J

w

1

v

2√
2π

1

σz(x)
exp

(
−(z − z0)

2

2σz(x)2

)
(6.33)
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with

σz(x) =

√
2Kz

x

v
(6.34)

Here, J is the mass flux of the substance entering the river at its surface, w is the river
width, and z0 is the z-coordinate of the river surface. For longer distances along the river,
this solution must be extended to

C(x, y, z) =
J

w

1

v

2√
2π

1

σz(x)

∞∑
n=−∞

exp

(
−(z − z0 − 2nh)2

2σz(x)2

)
(6.35)

This form considers the increase in concentration due to the no-flux boundary condition at
the river bed. Because of the quick decrease of the exponential function, in most situations
only a small number of terms must be considered in this sum.

Vertical mixing is a continuous process that approaches a uniform distribution asymp-
totically. Under such conditions there is no unique definition of a mixing distance. We
define the mixing distance as the distance, after which the standard deviation, σz(x), of
the vertical substance distribution according to equation (6.34), is equal to the depth of
the river. We then get the following expressions for the vertical mixing distance (horizon-
tal distance, after which the substance is nearly homogeneously mixed over the depth of
the river):

smix,z ≈
h2

2Kz
v (6.36)

Because of its quadratic dependence on the water depth, the mixing distance is reduced by
a factor of four if the substance enters the river at half of the depth. Figure 6.6 shows the
standard deviation of the substance distribution and corresponding substance distributions
at flow distances of 1%, 10%, 25%, 50% and 100% of smix,z according to equation (6.35).
Equation (6.35) can be used to calculate the concentration difference between top and
bottom of the river after the mixing distance according to equation (6.36). This relative
difference is smaller than 3%.

To apply the equations (6.33), (6.34), (6.35) and (6.36) we need estimates of the mean
flow velocity, v, of the mean water depth, h, and of the coefficient of vertical turbulent
diffusion, Kz. For a wide rectangular channel (6.25) and in the absence of backwater
effects, the mean velocity and the depth can be estimated with the aid of the equations
(6.27) and (6.30). To get an estimate of the coefficient of vertical turbulent diffusion, we
need an estimate of the bottom shear stress that produces turbulence. In the absence of
backwater effects, when the equilibrium (6.24) applies, we get

τ0 ≈ ρghS0 (6.37)

Here, τ0 is the bottom shear stress, ρ is the density of the flowing medium, and g is the
gravitational acceleration. In hydraulics, shear stresses are often expressed after division
by the density and taking the square root. This leads to the shear velocity

u∗ =

√
τ0
ρ

(6.38)
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Figure 6.6: Behaviour of the standard deviation, σz, of the substance distribution as a
function of distance, x, along the river (top) and substance distribution across the depth
of the river after 1%, 10%, 25%, 50% and 100% of smix,z (these positions are marked with
dashed lines in the top figure). C0 = J/Q = J/(Av) ≈ J((hwv) is the concentration after
complete mixing across the river cross-section.

In the absence of backwater effects, we then get:

u∗ ≈
√

ghS0 (6.39)

The vertical profile of the flow velocity follows approximatively the logarithmic law of
turbulent boundary layers:

v(z) = v +
u∗

κ

(
1 + log

(
z − zB

h

))
(6.40)

where κ ≈ 0.4 is the Karman constant and v without argument is the depth-averaged flow
velocity. We can now express the shear stress based on two different reasonings. Due to
the linear decrease of shear-producing overlaying mass with increasing distance from the
river bed, the shear stress decreases linearly with the distance from the river bed:

τ(z) = τ0
zB + h− z

h
= ρu∗2

zB + h− z

h
(6.41)

On the other hand, we can express the shear stress by the turbulent viscosity, νt, the
density of water, ρ, and the velocity gradient:

τ(z) = νtρ
dv(z)

dz
(6.42)

Taking the derivative of equation (6.40) and substituting it into this equation leads to

τ(z) = νtρ
u∗

κ

1

z − zB
(6.43)
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This equation can be solved for the turbulent viscosity to yield

νt =
τ(z)

ρ
u∗

κ

1

z − zB

= κu∗
1

h
(z − zB)(zB + h− z) (6.44)

where the linear shear stress profile (6.41) has been substituted into the first equation.
We finally get the turbulent mixing coefficient, Kz, by averaging the turbulent viscosity
over the depth:

Kz = ν̄t = κu∗
1

h2

zB+h∫
zB

(z − zB)(zB + h− z)dz = κu∗h

1∫
0

η(1− η)dη (6.45)

This leads to the following final expression for the coefficient of vertical turbulent diffusion:

Kz ≈
1

6
κu∗h ≈ 0.07u∗h (6.46)

Together with the equations (6.27), (6.30) and (6.39) we can get estimates of all variables
of the equations (6.33), (6.35) and (6.36).

Example 6.4: Glatt River downstream of Bülach: With the data from example 6.3 (page
101) we get:

winter summer

Kz = 0.0028 m2/s Kz = 0.0051 m2/s

smix,z = 17 m smix,z = 14 m

The vertical mixing distances do not differ significantly for the summer and winter situation
because the difference in the mixing coefficient is partially compensated by the difference
in water depth (equal to the distance across which mixing must take place): The larger
depth in summer leads to a larger shear force and therefore to stronger turbulence. This is
partially compensated by the larger distance across which mixing must take place.

6.1.2.3 Lateral Mixing

To get a simple estimate of dispersal of a substance transported in a river using analytical
solutions of the transport equation, we have to make simplifying assumptions regarding
water flow. We assume the flow to have a constant velocity, v, in time and across the
river cross-section and assume a constant vertical turbulent diffusion coefficient, Kz, and
a constant lateral diffusion and dispersion coefficient, ey. The combined diffusion and
dispersion coefficient in lateral direction, ey, considers the effect on secondary currents in
addition to turbulence on lateral mixing. We have then the following transport equation
(as in the preceding section):

∂C

∂t
= −v

∂C

∂x
+ ey

∂2C

∂y2
+Kz

∂2C

∂z2
(6.47)

If we limit our analysis to steady-state mixing of a substance across the river that enters
the river well mixed over the river depth, we can ignore the vertical dimension and time
dependence and get the following simplified equation:

v
∂C

∂x
= ey

∂2C

∂y2
(6.48)
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For a substance entering the river at its bank, we get the following solution, that is valid
as long as the substance does not reach the other bank at considerable concentration

C(x, y, z) =
J

h

1

v

2√
2π

1

σy(x)
exp

(
−(y − y0)

2

2σy(x)2

)
(6.49)

with

σy(x) =

√
2ey

x

v
(6.50)

Here, J is the mass flux of the substance entering the river at its bank, and y0 the y-
coordinate of this bank. For larger flow distances, the no-flux boundary condition at
the other bank must be taken into account which leads to the following extension of the
solution given above:

C(x, y, z) =
J

h

1

v

2√
2π

1

σy(x)

∞∑
n=−∞

exp

(
−(y − y0 − 2nw)2

2σy(x)2

)
(6.51)

Due to the fast decrease of the exponential function, in most cases only a small number
of terms must be considered in this sum. Close to the point of entrance into the river,
the lateral extension of the substance distribution can be estimated by twice the standard
deviation of the normal distribution, the maximum concentration with a rectangular dis-
tribution with half of this width. Far from the input site, the maximum concentration is
equal to the concentration after complete mixing across the cross-sectional area. This leads
to the following estimates of the width and the maximum concentration of the substance
distribution:

Ly ≈ 2σy(x) = 2

√
2ey

x

v

Cmax ≈ J

hv

1

min(σy(x), w)
=

J

hv

1

min

(√
2ey

x

v
,w

) (6.52)

Similarly to the vertical case, we define the lateral mixing distance (i.e. the distance
along the river after which the substance is approximately evenly distributed in lateral
direction) by the criterion that the standard deviation, σy(x), of the substance distribution
is equal to the river width. This leads to the following estimate for the lateral mixing
distance:

smix,y ≈ w2

2ey
v (6.53)

Because of the quadratic dependence of the mixing distance on river width, the mixing
distance is reduced to one fourth if the substance enters the river in its centre instead of
the bank. Figure 6.7 shows the dependence of the width σy(x) of the substance distribu-
tion along the river according to eqation (6.50) and typical distributions of concentration
across the river width according to equation (6.51). The relative difference in substance
concentration between the river banks is smaller than 3% after a transport distance of
smix,y according to equation (6.53).
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Figure 6.7: Dependence of the width of the substance distribution along the river (top)
and typical shapes of the substance distribution across the river after 1%, 10%, 25%,
50% and 100% of smix,y (these positions are marked with dashed lines in the top figure).
C0 = J/Q = J/(Av) ≈ J((hwv) is the concentration after complete mixing across the river
cross-section.

To apply the equations (6.49), (6.50), (6.51), (6.52) and (6.53) we need estimates of the
mean flow velocity, v, of the mean water depth, h and of the coefficient of lateral turbulent
diffusion plus dispersion, ey. As rivers are usually not thermally stratified, the coefficient
of lateral turbulent diffusion is of a similar size as that of vertical turbulent diffusion (see
section 6.1.2.2). However, due to the larger width compared to the depth, we can have
larger turbulent eddies which increase the coefficient of turbulent diffusion. Analogously
to the coefficient of vertical turbulent diffusion (6.46) we then get

Kx ≈ Ky ≈ θKu∗h (6.54)

with a somewhat larger proportionality factor

θK ≈ 0.15 . (6.55)

The coefficient of lateral diffusion plus dispersion includes additionally to turbulence the
effect of secondary currents on lateral mixing (such currents are often induced by curves).
With the same approach as above, we then get

ey ≈ θeu
∗h (6.56)

with a larger proportionality factor

θe ≈ 0.6 (6.57)

For very strongly meandering rivers, this factor can even be much larger up to values in
the order of 2.5 (Fischer et al., 1979).
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Example 6.5: Glatt River downstream of Bülach: Using the data of example 6.3 (page
101; see also example 6.4 on page 104) we get:

winter summer

ey = 0.024 m2/s ey = 0.043 m2/s

smix,y = 3600 m smix,y = 1400 m

Please note that mixing distances in a river with a width of 16 m can already be of consider-
able length. This must be considered when taking water samples downstream of tributaries
or pollutant discharge sites.

6.1.2.4 Transport and Longitudinal Dispersion

As it is clearly visible in Figure 6.8, the lateral velocity profile has a strong influence on
longitudinal dispersion. Dissolved or suspended substances are transported much slower
close to the river banks than in the centre of the river. Lateral mixing moves substance

Figure 6.8: Transport and spreading of a fluorescence dye pulse in the Rhine River at three
different points in time (Leibundgut et al., 1988).

particles or molecules between the zones of different longitudinal transport velocity. The
differences in longitudinal transport velocities are the main cause for longitudinal spreading
of a substance pulse in the river. This effect is much larger than the effect of longitudinal
turbulent diffusion. As high turbulent diffusion leads to a fast exchange between the zones
of different advective velocities, longitudinal dispersion decreases with increasing lateral
turbulence.
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To get simple estimates of longitudinal dispersion based on analytical solutions of the
transport equation for distances large compared to the lateral mixing distance, we describe
longitudinal transport by a one-dimensional advection-diffusion (or -dispersion) equation:

∂C

∂t
= −v

∂C

∂x
+ Ex

∂2C

∂x2
(6.58)

In this equation, Ex is the coefficient of longitudinal dispersion. The solution to this
equation for a pulse input of mass m is given by

C(x, t) =
m

hw

1√
2π

1

σx(t)
exp

(
−(x− vt)2

2σx(t)2

)
(6.59)

with

σx(t) =
√
2Ext (6.60)

This solution describes advective transport of the pulse with mean velocity v and spreading
of the pulse due to longitudinal dispersion quantified by the dispersion coefficient Ex.

To use the equation given above, in addition to the mean flow velocity, v, we need
an estimate of the longitudinal dispersion coefficient, Ex. Such an estimate is given by
(Fischer, 1967; Fischer et al., 1979):

Ex ≈ cf
w2v2

u∗h
(6.61)

where the non-dimensional proportionality factor can be estimated by

cf ≈ 0.011 (6.62)

Equation (6.61) shows the effect of different mechanisms that contribute to longitudinal
dispersion:

� Dispersion increases with increasing velocity differences across the river. As velocity
is (close to) zero at the river bank and the shape of the velocity profile does not
change too strongly from one river to the other, the velocity differences can be
parameterized with the mean velocity (the effect of the velocity profile influences the
value of the coefficient cf ). The increasing effect of increasing velocity differences on
dispersion is expressed by the proportionality to v2.

� Dispersion increases with increasing width of the river, because increasing width
significantly decreases lateral mixing. This leads to the proportionality with w2.

� Dispersion decreases with increasing lateral turbulent diffusivity, as this increases
mixing across the river. This leads to the proportionality with 1/(u∗h) (see equation
6.56).

The position of the pulse can be estimated with the aid of the mean flow velocity,
the length with four times the standard deviation of the substance distribution, and the
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maximum concentration with a rectangular pulse with half of this length. This leads to
the following estimates:

sx ≈ vt

Lx ≈ 4σx(t) = 4
√

2Ext

Cmax ≈ m

hw

1

2σx(t)
=

m

hw

1

2
√
2Ext

(6.63)

The second of these equations is derived from the property of the normal distribution (6.59)
that 95% of the substance mass is within a length of four times the standard deviation.
This can also be used as a rough estimate of the length of a concentration pulse that is
not normally distributed.

Example 6.6: Glatt River downstream of Bülach: With the data from example 6.3 (page
101; see also examples 6.4 and 6.5 on pages 104 and 107) we get:

winter summer

Ex = 33 m2/s Ex = 8 m2/s

The significantly stronger mixing across the width of the river (see example 6.5 on page 107)
reduces longitudinal dispersion considerably in summer compared to the winter situation.
Note that the length of the pulse (6.63) depends only on the square root of Ex.

Many simple models of rivers approximate the river by a sequence of mixed reactors.
The distance along the river is divided into sections of length ∆x. For a river with mean
width, w, mean depth, h, and discharge, Q, the description uses mixed reactors of volume

V = wh∆x (6.64)

Mixing within these boxes results in longitudinal dispersion with an equivalent dispersion
coefficient given by

Ex =
v∆x

2
=

Q∆x

2wh
(6.65)

This effect is called “numerical diffusion”.
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6.2 Sedimentation

Sedimentation is an important process as it transports organic and inorganic particles to
the sediment where heterotrophic bacteria degrade organic matter. As the bacterial den-
sity is usually much higher in the sediment than in the water column, the degradation rate
is much higher in the sediment. In lakes, slowly degradable organic particles accumulate
together with inorganic particles in the sediment. In rivers, periodic resuspension events
during floods may remobilize the sediment and transport it further downstream. However,
also in rivers, there may be zones of sediment accumulation, particularly upstream of dams
or in zones that are only slightly coupled to the main channel.

According to Stokes’ Law, the sedimentation velocity of small particles in laminar
conditions is given by

vsed = fst
g

18

ρp − ρw
µ

d2p (6.66)

The symbols in this equation have the following meaning:

g: gravitational acceleration (LT−2).

ρp: density of the particle (ML−3).

ρw: density of water (ML−3).

µ: dynamic viscosity of water (ML−1T−1).

dp: particle diameter (L).

fst: shape factor (1.0 for spheres).

Settling velocities depend strongly on particle size and are in the following ranges

vsed,ALG ≈ 0.0− 0.3 m/d

vsed,POM ≈ 0.2− 2.5 m/d

vsed,clay ≈ 0.3− 1.0 m/d

vsed,silt ≈ 3.0− 30 m/d

(6.67)

where ALG refers to algae, POM to dead organic particles, and clay (< 4µm) and silt
(4-63µm) are size fractions of inorganic suspended particles. There is experimental (Ruiz
et al., 2005) and theoretical (Bosse and Kleiser, 2005) evidence, that settling velocities
tend to increase under turbulent conditions.

Sedimentation is represented by a downward flux

Jsed,POM = Ased vsed,POM CPOM (6.68)

where Ased is the cross-sectional area of the water column and sediment and CPOM is the
concentration of particulate organic particles in the water column. The formulation of the
sediment flux for the other compounds is analogous. This flux can be used as an interface
flux between mixed boxes or in a model with continuous vertical space resolution (see
sections 3.3 and 3.4 for more details).
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6.3 Gas Exchange

Mineralization, primarily in the sediment, can lead to very strong oxygen depletion in the
water column. This is particularly the case in the deep hypolimnion of a lake or during
night in a river, when the loss is not compensated by oxygen produced by primary pro-
duction. For this reason, oxygen exchange across the water surface is extremely important
to compensate for this oxygen loss. On the other hand, oxygen transfer across the water
surface helps limiting supersaturation during strong primary production periods. Besides
dissolved oxygen, carbon dioxide is another important gas exchanged across the water sur-
face. Due to carbon dioxide uptake during periods of strong primary production, inorganic
carbon (usually dominated by bicarbonate) concentrations can be reduced significantly. If
this is not balanced by carbon dioxide uptake from the atmosphere, this can lead to very
strong pH changes, or in extreme cases, even to a carbon limitation of growth.

In equilibrium, the concentration in the water phase would be equal to the equilibrium
concentration, which, according to Henry’s law, is given by

Cw,eq(Ca) =
Ca

H
(6.69)

where Cw is the concentration in the water phase, Ca is the concentration in the air phase,
andH is the non-dimensional Henry’s law coefficient. If there is consumption or production
of the gas in one of the phases, the concentrations will no longer be in equilibrium and
a gas exchange flux will be established that tends to reestablish the equilibrium. The
simplest model of such a gas exchange process assumes two molecular boundary layers at
the water and air sides of the interface which limit the gas exchange (Whitman, 1923).
Figure 6.9 illustrates this concept. At the interface, there is an equilibrium between the

Ca

CI,a

Cw

CI,w

air

water

δa

δw

Figure 6.9: Illustration of two-film gas exchange model (see text for more explanations).

concentrations in the gas-phase and in the water-phase:

CI,w =
CI,a

H
(6.70)

where CI,w is the concentration in the water at the interface to the air, CI,a is the con-
centration in the air at the interface to the water. As there is no accumulation of the gas
at the interface, the fluxes across the two boundary layers must both be equal to the flux
across the interface:

Jgasex = ADw
CI,w − Cw

δw
= ADa

Ca − CI,a

δa
(6.71)
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where Dw is the coefficient of molecular diffusion of the substance in the water phase,
Da is the coefficient of molecular diffusion of the substance in the air phase, δw is the
thickness of the molecular boundary layer in the water phase, δa is the thickness of the
molecular boundary layer in the air phase, and A is the interface area. When substituting
the equilibrium equation (6.70) into this equation, we can solve the equality of the fluxes
through the two layers for the interface concentration in the air phase

CI,a =
δwDaCa + δaDwCw

δaDw

H
+ δwDa

(6.72)

Substituting this expression back into the flux in the air boundary layer yields

Jgasex = A vex

(
Cw,eq(Ca)− Cw

)
(6.73)

with the gas exchange velocity

vex =
DaDw

δaDw

H
+ δwDa

(6.74)

Note that equation (6.73) expresses the gas flux across the interface as a function of the
concentration in the water phase and the equilibrium concentration corresponding to the
concentration in the air phase. The concentrations at the interface are eliminated from
this final equation to estimate the flux. We can write the gas exchange velocity as

vex =
1

1

vex,a
+

1

vex,w

with vex,a = H
Da

δa
and vex,w =

Dw

δw
(6.75)

This equation demonstrates that the gas exchange resistance 1/vex is the sum of the
resistance in the air boundary layer 1/vex,a and the resistance in the water boundary layer
1/vex,w.

We will use the gas exchange formulation given by equation (6.73) with using an em-
pirical estimate for the gas exchange velocity, vex. In many practical cases, the resistance
of one boundary layer dominates over the other in equation (6.75). In this case the gas
exchange velocity is proportional to the molecular diffusion coefficient in the phase that
dominates the gas exchange resistance. This means that gas exchange velocities of differ-
ent substances, the exchange of which is limited by the boundary layer in the same phase,
are related to each other by the ratio of the molecular diffusion coefficients in that phase.
Note that other models (Higbie, 1935; Danckwerts, 1951) lead to a multiplication with the
square root of the ratio of the diffusion coefficients instead of the ratio itself.

The equilibrium concentration of dissolved oxygen in water that is in contact with the
atmosphere (with its given oxygen concentration) is of particular importance. It can be
estimated by (Mortimer, 1981):

Cw,eq,O2(T, p) = exp
(
7.7117− 1.31403 log(T/1oC+ 45.93)

)
· 1gO/m3 · p

1013.25 hPa
.

(6.76)

In this equation, T is temperature in oC and p is air pressure in hPa.
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6.4 Detachment and Resuspension

Besides respiration and death with subsequent mineralization, detachment or resuspension
are important mechanisms to diminish periphyton and sediment deposits in rivers.

We can formulate the detachment or resuspension flux of particles from the sediment
as a maximum flux that depends on the bottom shear stress and the dissipation power of
the river and a limitation term with respect to the surface density of particles. For organic
particles, POM, this leads to the following detachment flux:

Jdet,POM = Jdet,POM,max
DSPOM

KSPOM,det +DSPOM
(6.77)

We assume the maximum flux to be zero unless a certain threshold of the bottom shear
stress is exceeded. This threshold depends on the particle density and size. Under uniform
flow conditions, the bottom shear stress is given by

τ0 = ρwghS0 (6.78)

where ρw is the density of water, g the gravitational acceleration, h the water depth, and
S0 the slope of the river bed. This shear stress leads to the following force when integrated
over the surface of the particle (for simplicity assumed of quadratic shape)

Fs = ρwghS0 · d2p (6.79)

where dp is the particle diameter. This force has to be compared with the gravitational
force acting against lift forces on the particle (again for simplicity, we assume a cubic form
of the particle)

Fp = (ρp − ρw) g d3p (6.80)

where ρp is the density of the particle. The ratio of these two forces is the non-dimensional
shear force

θ =
Fs

Fp
=

h S0

ρp − ρw
ρw

dp

(6.81)

This non-dimensional shear stress allows us to formulate a universal critical shear stress,
θcr, below which there is no detachment or resuspension. This critical non-dimensional
shear stress is in the order of

θcr ≈ 0.047 (6.82)

This threshold is of particular importance when applied to the gravel particles of the
river bed. Above the threshold we can assume bed movement of gravel. This leads to
catastrophic elimination of sessile algae that are attached to the gravel surfaces.

For lighter or smaller particles that can be suspended in the water column, we assume
that a constant fraction, fentr, of the dissipation power of the river is used for particle
entrainment when the bottom shear stress is above the critical threshold. The dissipation



114 CHAPTER 6. PHYSICAL PROCESSES

power of a river with uniform flow per surface area is given by (weight per surface area
times vertical velocity):

priver = ρwgh · vS0 (6.83)

The power per surface area required to lift sediment particles by h/2 is given by (specific
weight times volume flux times elevation difference):

pentr = (ρp − ρw)g ·
Jdet,POM,max

ρp
· h
2

(6.84)

Assuming a fixed fraction, fentr, of the dissipation power to be used to resuspend sediment
particles if the non-dimensional shear stress exceeds a critical value leads to the following
expression for the maximum resuspension flux:

Jdet,POM,max =

 2 fentr v S0
ρpρw

ρp − ρw
for θ > θcr

0 for θ ≤ θcr
(6.85)



Chapter 7

Chemical Processes

The most important chemical processes for biogeochemical-ecological lake models are
chemical equilibria and sorption processes.

The consideration of chemical equilibria in the process formulation of models as used
in this manuscript is discussed in section 7.1 with the examples of the equilibria of self-
ionization of water, speciation of inorganic carbon, nitrogen and phosphorus compounds,
and calcite precipitation and dissolution.

Sorption of chemical substances to particles in the water column can play an important
role in aquatic systems. In particular, sorption of dissolved substances to sedimenting par-
ticles can increase the elimination rate of substances from the water column considerably.
However, one should be aware that resuspension or mineralization of such particles can
be accompanied by desorption and release of the adsorbed substances. Sorption is of par-
ticular interest for organic pollutants, heavy metals, and phosphate. The formulation of
adsorption and desorption processes or of adsorption/desorption equilibria are discussed
in section 7.2.

115
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7.1 Chemical Equilibria

Table 7.1 summarizes the most important chemical equilibria for modelling speciation
of inorganic carbon, nitrogen, and phosphorus compounds, precipitation and dissolution
of calcite, and pH in ecological-biogeochemical models. Under typical pH conditions of
natural waters between 7 and 9 the number of equilibria can even be reduced by neglecting
the compounds H2CO3, H3PO4, and PO3−

4 . We discuss here how these speciation processes
can be included in ecological-biogeochemical models. For a more extensive discussion of
chemical equilibria in water we refer to the literature (Stumm and Morgan, 1981; Appelo
and Postma, 2005).

Another important process for the calculation of carbonate equilibria is the dissolution
of atmospheric carbon dioxide in the water since the equilibrium concentration of dissolved
carbon species depends on the partial pressure of carbon dioxide in the atmosphere. Rapid
consumption of inorganic carbon compounds by primary production can exceed transfer
across the air-water interface. This can lead to significant deviations of dissolved carbon
dioxide concentrations from equilibrium and thus requires a dynamic calculation of the
gas-transfer process. This process is described in chapter 6.3.

From a chemical point of view, the most straightforward way of modelling the equilibria
listed in Table 7.1 would be to formulate forward and backward reactions as shown in Table
7.2 with the last two rates given by

ρCaCO3,prec =

{
kCaCO3,prec(ΩCaCO3 − 1) if ΩCaCO3 > 1

0 if ΩCaCO3 ≤ 1
(7.1)

ρCaCO3,diss =

 0 if ΩCaCO3 ≥ 1

kCaCO3,diss(1− ΩCaCO3)
DCaCO3

KCaCO3 +DCaCO3

if ΩCaCO3 < 1
(7.2)

with

ΩCaCO3 =
CCa2+CCO2−

3

KCaCO3

(7.3)

Ω is a measure for the saturation state of the solution with respect to a certain mineral
and is calculated as the ratio between the ion activity product (IAP ) and the solubility
constant (K). If Ω is > 1, the solution is oversaturated and if Ω is < 1, the solution is
undersaturated with respect to the considered mineral.

For each equilibrium, this process formulation leads to two processes with one kinetic
parameter for each process. As the equilibrium is characterized by the same forward and
backward transformation rates of all species and we used the same stoichiometric coeffi-
cients with reversed sign, the equilibrium is characterized by the condition that the process
rates of forward and backward reaction are the same (principle of detailed balancing). This
leads to the following relations between kinetic parameters (lower case “k”, see Table 7.2)
and equilibrium parameters (upper case “K”, see Table 7.1):

Kw =
kw,fw

kw,bw
(7.4)
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KCO2,H2CO3 =
kH2CO3,CO2

kCO2,H2CO3

(7.5a)

KHCO−
3 ,H2CO3

=
kH2CO3,HCO−

3

kHCO−
3 ,H2CO3

(7.5b)

KCO2−
3 ,HCO−

3
=

kHCO−
3 ,CO2−

3

kCO2−
3 ,HCO−

3

(7.5c)

KH2PO
−
4 ,H3PO4

=
kH3PO4,H2PO

−
4

kH2PO
−
4 ,H3PO4

(7.6a)

KHPO2−
4 ,H2PO

−
4
=

kH2PO
−
4 ,HPO2−

4

kHPO2−
4 ,H2PO

−
4

(7.6b)

KPO3−
4 ,HPO2−

4
=

kHPO2−
4 ,PO3−

4

kPO3−
4 ,HPO2−

4

(7.6c)

KNH3,NH+
4
=

kNH+
4 ,NH3

kNH3,NH+
4

(7.7)

An alternative formulation of the equilibria would be to use only one process for the
approach to equilibrium (Reichert et al., 2001).

When considering the constraints (7.4) to (7.7), the process formulation used in Ta-
ble 7.2 for the equilibria between dissolved compounds requires the specification of the
equilibrium parameter, K, and one of the kinetic parameters, k. As the kinetics of these
processes are very fast, inclusion of these processes leads to stiffness problems of the dif-
ferential equations to be solved for calculating the dynamic solution (see chapter 5.4).
To decrease the severity of these numerical problems, kinetics of chemical equilibria are
usually not described by realistic kinetics in ecological-biogeochemical models. Instead,
kinetic parameters are chosen to be sufficiently large that the involved compounds will be
very close to equilibrium for the given time scale of external influence factors and biolog-
ical and physical processes, but as small as possible to not increase the numerical burden
unnecessarily.
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7.2 Sorption

In this section implementation of the processes of adsorption of chemical substances to and
desorption of substances from particles in the water column or the sediment are introduced.

Analogously to the chemical equilibria described in section 7.1, reversible sorption pro-
cesses can be formulated as a forward (adsorption) and a backward (desorption) reaction.
The stoichiometries of the adsorption and desorption processes are simple, as the processes
consist of attachment of the compound to a solid surface or detachment of the compound
from the surface without transformation of the compound. Table 7.3 shows a process table
of the adsorption and desorption processes of a substance j to a solid surface.

Process Substances Rate

dissolved adsorbed

subst. j subst. j

g g

Adsorption of substance j −1 1 ρads,j
Desorption of substance j 1 −1 ρdes,j

Table 7.3: Process table of adsorption and desorption of a substance to a particle or solid
surface.

To formulate the rate expressions, ρads,j and ρdes,j , respectively, we need to quantify
the amount of dissolved and adsorbed substances. The dissolved substance is characterized
by its concentration in the water phase, i.e. the dissolved substance mass per unit volume
of water, Cj . The adsorbed substance is usually characterized by the adsorbed substance
mass per unit mass of the sorbent (the solids with the surface to which the substance
adsorbs), Sj . When describing sorption to particles that are present in small concentration
in the water (particles do not significantly contribute to the volume of the suspension),
the total concentration of dissolved and particulate substances is given by

Ctot
j = Cj + CsSj (7.8a)

where Cs is the concentration of the particles. If the particles contribute significantly to
the volume, e.g. in the sediment of an aquatic system, the total concentration (total mass
per total volume) is given as

Ctot
j = θCj + (1− θ)ρsSj (7.8b)

where θ is the porosity (fraction of the volume filled by water), and ρs is the density of
the solid material (filling the remaining fraction of 1− θ of the volume). Please note that
the conversion factors

fCs
S→C = Cs , fθ,ρs

S→C =
1− θ

θ
ρs (7.9)

must be considered in addition to the stoichiometry given in Table 7.3, when calculating
mass balances of the adsorption and desorption processes using the units of Sj and Cj .

The simplest formulation of kinetics of adsorption and desorption are linear rates given
by the following expressions:

ρads,j = kads,j · Cj (7.10)
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ρdes,j = kdes,j · Sj (7.11)

Sorption equilibrium is achieved when the process rates of adsorption and desorption
are the same (ρads,j = ρdes,j). This leads to the following relation between the kinetic
parameters k and the equilibrium constant KD:

Seq,j(Cj) =
kads,j
kdes,j

· Cj = KD,j · Cj (7.12)

If the sorption sites become limiting, equation (7.10) is no longer realistic as it does
not take into account that less free sorption sites will be available when more sites are
already filled. The simplest assumption is then to formulate the adsorption rate as being
proportional to the free sorption sites given by the total available sites (Smax) minus
the filled sites (Sj). In this case the process rate can be formulated proportional to the
saturation level:

ρads,j = kads,j · Cj · (Smax − Sj) (7.13)

In equilibrium, where ρads,j equals ρdes,j , we get the so-called Langmuir Isotherm (Appelo
and Postma, 2005):

Seq,j(Cj) =
Smax · Cj

KL + Cj
(7.14)

(as they are usually measured at constant temperature, the relationships between dissolved
and sorbed concentrations in equilibrium, such as those given by equations 7.12 and 7.14,
are called isotherms). The Langmuir isotherm shows that the sorbed concentration of
the substance j in equilibrium (Seq,j) increases linearly with the dissolved concentration
(Cj) if Cj ≪ KL. If the dissolved concentration is high (Cj ≫ KL), the surface becomes
saturated, and Sj ≈ Smax.

The rate of fast reversible sorption processes can alternatively be described by the
following equation:

ρsorb = kj · (Seq,j(Cj)− Sj) (7.15)

It describes relaxation of the actually sorbed concentration to the equilibrium concentra-
tion with a rate constant kj . If kj is set to a sufficiently large value, this model is a good
approximation to equilibrium sorption. The stoichiometry of this process is the same as
that for the desorption process shown in Table 7.3. Any other sorption isotherm can be
implemented in a similar way.
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Chapter 8

Biological Processes

In this chapter, we introduce the mathematical formulation of important biological trans-
formation processes. We discuss process formulations for primary production (section
8.1), respiration (section 8.2), death (section 8.3), consumption (section 8.4), mineraliza-
tion (section 8.5), nitrification (section 8.6), and bacterial growth (section 8.8).

All process stoichiometries formulated in this chapter approximate the composition of
organic matter as consisting of the five elements C, H, O, N and P. This is inspired by the
“Redfield-composition” introduced in section 4.3.1 and given by equation (4.33)

(CH2O)106(NH3)16(H3PO4)1 = C106H263O110N16P (8.1)

but we formulate all processes for an arbitrary composition of organic material consisting
of these five elements.

123
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8.1 Primary Production

Primary production is the production of organic material from inorganic nutrients through
photosynthesis. This process provides the food for the higher trophic levels of the ecosys-
tem foodweb (growth of nitrifiers is another autotrophic process that is important for
nitrification but not relevant for food production; see section 8.8.2). The energy source
for primary production is the photosynthetically active radiation (PAR) which consists
of radiation between wavelengths of 400 and 700 nm and corresponds to about 50% of
the global radiation (GLR) of sunlight. Photosynthesis can be parameterized either using
PAR or GLR. In deep aquatic systems, algae and some bacteria contribute to primary
production, in shallow systems plants may contribute also. Note that there is some over-
lap of this section with chapter 4 as primary production by algae was used as an example
to introduce our process notation.

We formulate the stoichiometry of primary production considering the elements C, H,
O, N and P as constituents of organic material. We distinguish two processes based on
ammonium (NH+

4 ) or nitrate (NO−
3 ) as the nitrogen source. Phosphate (HPO2−

4 ) is the
source of phosphorus. Most algae grow with carbon dioxide (CO2) as the carbon source.
However, at normal pH values, most of the carbon in water is in the form of bicarbonate
(HCO−

3 ). For this reason, considerable uptake of carbon dioxide (CO2) is only possible
because, due to the fast chemical equilibrium, carbon dioxide taken by algae is quickly
replaced by the reaction HCO−

3 + H+ → H2O + CO2 (see section 7.1 for more details). For
this reason, we get a better overview of induced pH changes, when formulating primary
production as uptake of bicarbonate (HCO−

3 ). As organic matter contains less oxygen than
these constituents, primary production is associated with release of dissolved oxygen. This
leads to the qualitative stoichiometry of primary production shown in Table 8.1. In this

Process Substances / Organisms Rate

NH+
4 NO−

3 HPO2−
4 HCO−

3 O2 H+ H2O ALG

gN gN gP gC gO mol mol gDM

Pri. prod. NH+
4 − − − + ? ? 1 ρgro,ALG,NH+

4

Pri. prod. NO−
3 − − − + ? ? 1 ρgro,ALG,NO−

3

Table 8.1: Process table of primary production with ammonium (NH+
4 ) or nitrate (NO−

3 )
as the nitrogen source.

table, “−” indicates a negative stoichiometric coefficient, “+” a positive stoichiometric
coefficient, and “?” a stoichiometric coefficient the sign of which may depend on the
composition of organic material. The six missing stoichiometric coefficients in each row
are uniquely determined by the six conservation laws for C, H, O, N, P and charge. They
can be calculated as described in section 4.3. The R package stoichcalc described in
section 15 can be used for this purpose.

Typically, the process rate of primary production by algae is formulated as a linear
function in algae concentration considering temperature, light and nutrient dependence of
the specific growth rate of algae. If these dependences are formulated using a multiplicative
approach as described in section 4.2 and using a preference factor pNH+

4 ,ALG for uptake

of ammonium relative to unity for nitrate, we end with the following process rates for
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primary production with ammonium and nitrate as the nitrogen source:

ρgro,ALG,NH+
4
= kgro,ALG,T0 · exp

(
βALG(T − T0)

)
· I

KI + I

·min

(
CHPO2−

4

KHPO2−
4 ,ALG + CHPO2−

4

,
CNH+

4
+ CNO−

3

KN,ALG + CNH+
4
+ CNO−

3

)

·
pNH+

4 ,ALGCNH+
4

pNH+
4 ,ALGCNH+

4
+ CNO−

3

· CALG (8.2)

ρgro,ALG,NO−
3
= kgro,ALG,T0 · exp

(
βALG(T − T0)

)
· I

KI + I

·min

(
CHPO2−

4

KHPO2−
4 ,ALG + CHPO2−

4

,
CNH+

4
+ CNO−

3

KN,ALG + CNH+
4
+ CNO−

3

)

·
CNO−

3

pNH+
4 ,ALGCNH+

4
+ CNO−

3

· CALG (8.3)

Note that we could use alternative formulations for temperature, nutrient and light depen-
dence as described in section 4.2. As outlined in section 4.2.4, when approximating a lake
layer by a well mixed box of height h and we assume constant light extinction coefficient
λ, we have to apply the following depth-averaged rates

ρgro,ALG,NH+
4
= kgro,ALG,T0 · exp

(
βALG(T − T0)

)
· 1

λh
log

(
KI + I0

KI + I0 exp(−λh)

)

·min

(
CHPO2−

4

KHPO2−
4 ,ALG + CHPO2−

4

,
CNH+

4
+ CNO−

3

KN,ALG + CNH+
4
+ CNO−

3

)

·
pNH+

4 ,ALGCNH+
4

pNH+
4 ,ALGCNH+

4
+ CNO−

3

· CALG (8.4)

ρgro,ALG,NO−
3
= kgro,ALG,T0 · exp

(
βALG(T − T0)

)
· 1

λh
log

(
KI + I0

KI + I0 exp(−λh)

)

·min

(
CHPO2−

4

KHPO2−
4 ,ALG + CHPO2−

4

,
CNH+

4
+ CNO−

3

KN + CNH+
4
+ CNO−

3

)

·
CNO−

3

pNH+
4 ,ALGCNH+

4
+ CNO−

3

· CALG (8.5)

These rates depend on the light intensity I0 at the water surface instead of the in-situ
light intensity I = I0 exp(−λz). This is the form that must be applied in box models.
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8.2 Respiration

Respiration is the inverse process of photosynthesis (see primary production in section 8.1).
It is a metabolic process by which organic substances are broken down to simpler products
with the release of energy (Lucas, 1996). It is an important process for the survival of
organisms as it frees energy for life maintenance processes (including locomotion activity
and reproduction) (Clarke, 1987). As a first approximation, the process of respiration can
be simplified to the transformation of organism biomass to nutrients, being aware of the
fact that this is a combination of different steps of reactions including the mineralization
of dissolved organic material to nutrients. We concentrate on oxic respiration.

Table 8.2 shows the stoichiometry of respiration. The stoichiometric coefficients of this

Process Substances / Organisms Rate

NH+
4 HPO2−

4 HCO−
3 O2 H+ H2O ALG

gN gP gC gO mol mol gDM

Respiration + + + − ? ? −1 ρresp,ALG

Table 8.2: Process table of respiration of algae. Respiration of other organisms is formu-
lated analogously.

process are the same as those for primary production with ammonium as the nitrogen
source but with reversed signs (see Table 8.1 in section 8.1).

As (oxic) respiration requires dissolved oxygen, we need a limitation term with respect
to dissolved oxygen. Furthermore it seems natural to use a temperature dependence to
account for different activity levels at different temperatures. This leads to the following
process rate for respiration:

ρresp,ALG = kresp,ALG,T0 · exp
(
βALG(T − T0)

)
· CO2

KO2,ALG + CO2

· CALG (8.6)
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8.3 Death

Death transfers living organisms into dead organic particles. The accumulation of dead
particles due to death, sloppy feeding and excretion (see section 8.4) leads, due to oxygen
consumption of mineralization processes, to anoxic and anaerobic environments. Natural
organic particles have a wide spectrum of biodegradability. In models of ecological systems,
this is often represented by a (quickly) degradable and an inert fraction of organic matter.
In this context “inert” means that there is no significant degradation within the time
frame of investigation; it is not “truly” inert.

If the composition of dead particles is the same as that of the living organisms, death
has a simple stoichiometry with a single stoichiometric parameter, fI, specifying which
fraction of dying organisms ends in inert organic particles (1 − fI will be converted into
degradable organic particles). As different organisms often have different composition (e.g.
algae and bacteria) this would require to introduce state variables for dead organisms of any
type. This could lead to a large number of state variables. For this reason, we are looking
for a description of the death process that can transfer organisms into dead particles of
different composition without violating elemental mass conservation. A possible solution
to this problem is to assume some mineralization during the death process. This may
not be very realistic, but it is in accordance with biogeochemical cycles, as the dominant
fraction of organic particles will be mineralized also. For this reason, we introduce a
“yield” coefficient for death, YALG,death (here formulated for death of algae), that specifies
the fraction of dying organisms that end in dead organic particles whereas the rest of
the organic material will be respired. This leads to the process table shown in Table
8.3 (POMD represents degradable particulate organic matter, POMI inert particulate
organic matter). In this table, stoichiometric coefficients indicated by “0/+” should not

Process Substances / Organisms Rate

NH+
4 HPO2−

4 HCO−
3 O2 H+ H2O ALG POMD POMI

gN gP gC gO mol mol gDM gDM gDM

Death 0/+ 0/+ 0/+ 0/+ ? ? −1 (1− fI) fI ρdeath,ALG

·YALG,death ·YALG,death

Table 8.3: Process table of death of algae. Death of other organisms is formulated analo-
gously.

be negative, because otherwise the death process would require ammonium, phosphate,
bicarbonate or dissolved oxygen. This process contains 9 stoichiometric coefficients. One is
given by normalization. We are then left with 8 unknowns which are uniquely determined
by six conservation laws for the elements C, H, O, N, P and charge and the two constraints
parameterized by the “yield” coefficient and by the fraction of inert particles produced by
the process. These two constraints can be formulated as

νdeath,ALG ALG · YALG,death + νdeath,ALG POMD + νdeath,ALG POMI = 0 (8.7)

and

fI (νdeath,ALG POMD + νdeath,ALG POMI) = νdeath,ALG POMI (8.8)

or

fI νdeath,ALG POMD − (1− fI)νdeath,ALG POMI = 0 (8.9)
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The constraints (8.7) and (8.9) are of the required form (4.57) or (4.59) and can easily
be integrated in software using the R package stoichcalc described in section 15. These
equations have a meaningful solution as long as the composition differences are not too
large and dead organic particles have a lower oxygen content than the organisms (this
increases the fraction of organic matter that can be respired to get rid of excess nutrients
without leading to the consumption of dissolved oxygen). For very large composition
differences between different organisms it may be better to introduce more fractions of
organic particles with different composition.

Usually, a very simple process rate

ρdeath,ALG = kdeath,ALG · CALG (8.10)

is used for death. The specific death rate, kdeath,ALG, will in many cases depend on
external influence factors, such as zooplankton for algae or fish for zooplankton if these
other organisms are not internalized to the model.
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8.4 Consumption

Consumption of one type of organisms by another is a very important ecological process
that is the basis of all food webs extending primary production. We discuss the formulation
of predation processes with the example of zooplankton feeding on algae.

The yield, YZOO, which determines the produced zooplankton biomass per unit of
consumed algal biomass is an obvious stoichiometric parameter associated with any pre-
dation process. Predation is accompanied by the production of dead organic particles due
to sloppy feeding and excretion. We introduce the fraction of consumed algal biomass that
becomes dead organic particles due to sloppy feeding and excretion, fe, as a stoichiomet-
ric parameter. As for the death process (see section 8.3) we distinguish the production of
degradable (POMD) and inert (POMI) dead organic particles. Also similarly to the death
process, we introduce the parameter fI as describing the fraction of the produced particles
that is inert. These three constraints can be formulated as

νgro,ZOO ZOO + νgro,ZOO ALGYZOO = 0 (8.11)

νgro,ZOO POMD + νgro,ZOO POMI + νgro,ZOO ALGfe = 0 (8.12)

νgro,ZOO POMDfI − νgro,ZOO POMI(1− fI) = 0 (8.13)

This leads to the process stoichiometry shown in Table 8.4 The unknown stoichiometric

Process Substances / Organisms Rate

NH+
4 HPO2−

4 HCO−
3 O2 H+ H2O ALG ZOO POMD POMI

gN gP gC gO mol mol gDM gDM gDM gDM

Growth
ZOO

+ + + − ? ?
−1

YZOO
1

(1− fI)fe

YZOO

fIfe

YZOO
ρgro,ZOO

Table 8.4: Process table of a consumption process for the example of predation of zoo-
plankton on algae.

coefficients can easily be calculated using the constraints given above and the conservation
laws for C, H, O, N, P and charge as outlined in section 4.3.

It is natural to assume the rate to be proportional to the concentration of predators.
The process rate obviously needs a limitation with respect to decreasing oxygen levels and
a dependence on food availability. This is fulfilled by the following process rate:

ρgro,ZOO = kgro,ZOO,T0 ·exp
(
βZOO(T−T0)

)
· CO2

KO2,ZOO + CO2

· CALG

KALG,ZOO + CALG
·CZOO

(8.14)

In many applications, we will remain in the linear branch of the limitation term with
respect to algae. In this case, the parameterization

ρgro,ZOO = k′gro,ZOO,T0
· exp

(
βZOO(T − T0)

)
· CO2

KO2,ZOO + CO2

· CALG · CZOO (8.15)
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without explicit consideration of saturation with respect to algae is more convenient.
However, the rate constant k′gro,ZOO,T0

has then more complicated units.

Process rates for growth of omnivorous or carnivorous zooplankton and of predators
can be formulated analogously. However, if multiple food sources are available, additional
preference factors as described in section 4.2.5 will be required.
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8.5 Mineralization

Oxic mineralization transforms organic matter to dissolved nutrients and carbon diox-
ide under consumption of oxygen. In the absence of dissolved oxygen (primarily in the
sediment), mineralization can use nitrate, manganese oxide, iron hydroxide or sulphate
for oxidizing organic matter. Finally, methanogenesis can convert organic matter to nu-
trients, carbon dioxide and methane. In this section, we describe the stoichiometry and
possible process kinetics of mineralization as it can be used in aquatic ecosystem models.
The bacterially mediated mechanisms of mineralization are only taken into account in this
section by an appropriate choice of the mineralization rate coefficient. See section 8.8.1
for a description of growth of heterotrophic bacteria on organic substrate under oxic or
anoxic conditions to get a more detailed description of mineralization mechanisms. As
mineralization is caused by bacteria and bacterial concentrations vary considerably from
one (part of the) system to another, mineralization rate coefficients vary over many orders
of magnitude from one system to another.

8.5.1 Oxic Mineralization

Table 8.5 shows the process table for oxic mineralization when considering the elements
C, H, O, N and P as constituents of organic matter. Unknown stoichiometric coefficients

Process Substances / Organisms Rate

NH+
4 HPO2−

4 HCO−
3 O2 H+ H2O POM

gN gP gC gO mol mol gDM

Oxic mineralization + + + − ? ? −1 ρminer,ox,POM

Table 8.5: Process table of oxic mineralization.

for which it is evident that they are positive are indicated by “+”, negative ones by “−”,
and coefficients the sign of which is not clear or depends on the composition of organic
material are indicated by “?”. As we have 6 unknown stoichiometric coefficients and 6
conservation laws (C, H, O, N, P and charge) there is no need for additional stoichiometric
parameters and the unknown coefficients can easily be calculated as described in section
4.3. The R package stoichcalc described in section 15 can be used for this purpose.

The stoichiometric coefficient of oxic mineralization with respect to dissolved oxygen
determines the “chemical oxygen demand” (COD) of an organic compound. If the def-
inition of “chemical oxygen demand” is extended to inorganic compounds, generalized
oxygen budgets can be formulated. This built the basis of process formulations in acti-
vated sludge models (Henze et al., 1986; Gujer and Henze, 1991; Henze et al., 1995; Gujer
et al., 1995; Gujer and Larsen, 1995; Henze et al., 1999; Gujer et al., 1999; Henze et al.,
2000). When using COD, one has to be aware, that the definition of COD is based on
oxidation of organic material with release of ammonium and not nitrate. Nitrification of
ammonium to nitrate will require additional oxygen (see section 8.6). For this reason,
COD is sometimes called “carbonaceous” oxygen demand, to which the “nitrogenous”
oxygen demand required for nitrification must be added to get the total oxygen demand.

As oxic mineralization consumes dissolved oxygen, we need a rate limitation by dis-
solved oxygen. Considering in addition a temperature dependence of the transformation
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rate and assuming simple, first order kinetics with respect to organic material, we get the
following mineralization rate

ρminer,ox,POM = kminer,ox,POM,T0 · exp
(
βBAC(T − T0)

)
· CO2

KO2,miner + CO2

· CPOM (8.16)

8.5.2 Anoxic Mineralization

Table 8.6 shows the process table for anoxic mineralization when considering the elements
C, H, O, N and P as constituents of organic matter. In contrast to oxic mineralization
as shown in Table 8.5, the required oxygen for mineralization is gained by reduction of
nitrate to molecular nitrogen instead of using dissolved oxygen. We have now 7 unknown

Process Substances / Organisms Rate

NH+
4 NO−

3 N2 HPO2−
4 HCO−

3 H+ H2O POM

gN gN gN gP gC mol mol gDM

Anoxic miner. + − + + + ? ? −1 ρminer,anox,POM

Table 8.6: Process table of anoxic mineralization.

stoichiometric coefficients and 6 conservation laws (C, H, O, N, P and charge). This means
that we need one additional constraint. This constraint is given by the assumption that
nitrate is reduced to molecular nitrogen and none of it to ammonium. This is expressed
by the constraint

νminer,anox NO3 + νminer,anox N2 = 0 (8.17)

With this additional constraint the unknown coefficients can easily be calculated as de-
scribed in section 4.3. The R package stoichcalc described in section 15 can be used for
this purpose.

As anoxic mineralization requires nitrate, we need a limitation of this process rate
by nitrate. Because oxic mineralization requires less energy, it is preferred to anoxic
mineralization if dissolved oxygen is available. This can be considered by using an oxygen
inhibition term(

1− CO2

KO2,miner + CO2

)
=

KO2,miner

KO2,miner + CO2

(8.18)

This factor switches off anoxic mineralization if dissolved oxygen is available. Note that
parallel to this, oxic mineralization is switched on by the rate expression (8.16). Again
considering temperature dependence and assuming a first-order process with respect to
organic matter, we get the following rate

ρminer,anox,POM = kminer,anox,POM,T0 · exp
(
βBAC(T − T0)

)
·

KO2,miner

KO2,miner + CO2

·
CNO−

3

KNO−
3 ,miner + CNO−

3

· CPOM (8.19)
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8.5.3 Anaerobic Mineralization

Table 8.7 shows the process table for oxic, anoxic and anaerobic mineralization when con-
sidering the elements C, H, O, N and P as constituents of organic matter. In addition
to (1) oxic (in the presence of dissolved oxygen) and (2) anoxic mineralization (in the
absence of dissolved oxygen but presence of nitrate), we introduce (3) mineralization by
manganese oxide reduction (under release of Mn2+), (4) mineralization by iron hydroxide
reduction (under release of Fe2+), (5) mineralization by sulphate reduction (under release
of HS−), and (6) methanogenesis (with production of CH4). The anaerobic mineralization
processes are of particular importance in the sediment where the diffusion limitation of
transport of dissolved oxygen and nitrate leads to anaerobic conditions. The reduced sub-
stances Mn2+, Fe2+ and HS− are diffusing to higher sediment layers and into the water
column where they consume dissolved oxygen when being oxidized. As already discussed
in sections 8.5.1 and 8.5.2, there are 6 unknown stoichiometric coefficients for the first min-
eralization process and 6 conservation laws (C, H, O, N, P and charge). Therefore, there is
no need for additional stoichiometric parameters. The anoxic mineralization process needs
an additional constraint that is given by assuming all nitrate being converted to molecular
nitrogen. The anaerobic mineralization processes (3), (4) and (5) have 7 unknown stoi-
chiometric coefficients. However, in addition to the conservation laws mentioned above for
these processes there is one additional conservation law for manganese, iron, or sulphur,
respectively. The sixth mineralization process has again 6 unknown coefficients for the
same 6 conservation laws as used for the first process. For this reason, there is no need
for additional stoichiometric constraints in any of the anaerobic mineralization processes.

Similar kinetic expressions can be given for anaerobic mineralization as those for oxic
(8.16) and anoxic mineralization (8.19). This requires the introduction of additional limi-
tation and inhibition factors.
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8.6 Nitrification

Nitrification is the biologically mediated oxidation of ammonium over nitrite to nitrate.
Under aerobic conditions ammonium has potential energy relative to the more oxidized
forms nitrite and nitrate. Some chemoautotrophic bacteria are able to use this stored
potential energy to allow for carbon fixation by the process of nitrification (Dodds, 2002).
It can either be modelled as a one step process combining the two sub-steps or the model
can represent these two oxidation steps separately. Both formulations are discussed in the
following two subsections. See section 8.8.2 for a more detailed description of the growth
of autotrophic nitrifying bacteria due to this process.

8.6.1 Nitrification as a One Step Process

Table 8.8 shows the stoichiometry of the one-step nitrification process.

Process Substances / Organisms Rate

NH+
4 NO−

3 O2 H+ H2O

gN gN gO mol mol

Nitrification −1 + − ? ? ρnitri

Table 8.8: Process table of nitrification modelled as a one step oxidation process from
ammonium to nitrate.

This stoichiometry has the obvious unique solution

NH+
4 + 2O2 → NO−

3 + 2H+ +H2O (8.20)

The process rate needs a limitation by dissolved oxygen and ammonium concentrations
and a temperature dependence:

ρnitri = knitri,T0 ·exp
(
βBAC(T−T0)

)
·min

(
CNH+

4

KNH+
4 ,nitri + CNH+

4

,
CO2

KO2,nitri + CO2

)
(8.21)

8.6.2 Nitrification as a Two Step Process

Table 8.9 shows the stoichiometries of the two steps of the two-step nitrification process.
These stoichiometries have the obvious unique solution

Process Substances / Organisms Rate

NH+
4 NO−

2 NO−
3 O2 H+ H2O

gN gN gN gO mol mol

Ammonium oxidation −1 + − ? ? ρnitri1
Nitrite oxidation −1 + − ? ? ρnitri2

Table 8.9: Process table of nitrification modelled as a two step process from ammonium to
nitrite and from nitrite to nitrate.

NH+
4 +

3

2
O2 → NO−

2 + 2H+ +H2O (8.22)
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NO−
2 +

1

2
O2 → NO−

3 (8.23)

The process rates need a limitation by dissolved oxygen and ammonium concentrations
and by dissolved oxygen and nitrite concentrations, respectively. Adding an exponential
temperature dependence leads to

ρnitri1 = knitri1,T0 ·exp
(
βN1(T−T0)

)
·min

(
CNH+

4

KNH+
4 ,nitri + CNH+

4

,
CO2

KO2,nitri + CO2

)
(8.24)

ρnitri2 = knitri2,T0 ·exp
(
βN2(T−T0)

)
·min

(
CNO−

2

KNO−
2 ,nitri + CNO−

2

,
CO2

KO2,nitri + CO2

)
(8.25)
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8.7 Hydrolysis

Particulate organic substances cannot directly be consumed or degraded by microorgan-
isms. Heterotrophic microorganisms, mainly bacteria, need dissolved organic substrate
for their growth. In section 8.5, the mineralization process is described as degradation
of organic particles. This is a simplified, aggregated description of a more complicated
sequence of steps involving transformation of particulate organic matter to the dissolved
phase, uptake of dissolved organic substrate by heterotrophic microorganisms, growth of
these microorganisms with partial mineralization of organic material, and subsequent res-
piration and death. The dead microorganisms lead to a partial feedback to this sequence
of processes of “mineralization” of particulate organic material.

A reaction in which a water molecule (or hydroxide ion) substitutes for another atom
or group of atoms in an organic molecule is called a hydrolysis reaction (Schwarzenbach
et al., 2003). Through this hydrolysis reaction, large organic molecules are broken down
into smaller molecules that are often easier to degrade biologically. In simple ecosystem
and sewage treatment process models, the transformation of hardly degradable organic
particles into quickly degradable dissolved organic matter is called “hydrolysis” although
there is not a unique relationship between the properties of organic material of being
particulate or dissolved and being hardly or quickly degradable. Despite the imprecise use
of the term, we will use the term “hydrolysis” here also as denoting the transformation
process from the model components of degradable particulate organic material to dissolved
organic material that can serve as a substrate for heterotrophic microorganisms. Table 8.10
shows the stoichiometry of this process. Similarly to the death process described in section
8.3, we introduce a “yield” that makes it possible to account for differences in composition
of particulate and dissolved organic material by mineralizing a part of the organic material.
This makes it possible to limit the number of modelled compounds. Again, the symbol

Process Substances / Organisms Rate

NH+
4 HPO2−

4 HCO−
3 O2 H+ H2O POM DOM

gN gP gC gO mol mol gDM g

Hydrolysis 0/+ 0/+ 0/+ 0/+ ? ? −1 Yhyd ρhyd,POM

Table 8.10: Process table of hydrolysis.

“0/+” in Table 8.10 indicates a stoichiometric coefficient that should not be negative. If it
is not possible to find a reasonable composition and reasonable stoichiometric parameters
to achieve fulfilment of these non-negativity conditions, different fractions of dissolved
organic material must be introduced, as it may also be necessary for particulate organic
material (see section 8.3 for a similar discussion). The six conservation equations for the
elements C, H, O, N and P and for charge together with the constraint for the “yield”

νhyd DOM + νhyd POMYhyd = 0 (8.26)

lead to the seven constraining equations that are required to calculate the seven unknown
stoichiometric coefficients in Table 8.10 according to the techniques described in section
4.3. The R package stoichcalc described in section 15 can be used for this purpose.
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As our “hydrolysis” process is an aggregate process of much more complicated processes
in reality, it is difficult to parameterize. We use a simple first order rate expression

ρhyd,POM = khyd,POM,T0 · exp
(
βhyd(T − T0)

)
· CPOM (8.27)

and shift the difficulty to the reasonable choice of the coefficient khyd,POM,T0 .
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8.8 Bacterial Growth

Many biogeochemical processes in ecosystems, such as mineralization (see section 8.5) and
nitrification (see section 8.6), are performed by bacteria or other microorganisms. This
implies that their rates depend not only on the concentrations of substances transformed
by the processes and external influence factors, but also on the density of bacteria present
at a given location in the ecosystem. This leads to a large range of rates that can be
observed in ecosystems and, consequently, to a lack of universality of model parameters.

If there is a significant temporal change of the bacterial community in the investigated
system or if the model should be made more universal by using specific growth and death
rates of bacteria instead of overall rate coefficients, the bacterial community or their dom-
inant functional group(s) must be explicitly considered in the model. We can learn how
to do this from models for activated sludge sewage treatment plants (Henze et al., 1986;
Gujer and Henze, 1991; Henze et al., 1995; Gujer et al., 1995; Henze et al., 1999; Gujer
et al., 1999; Henze et al., 2000).

Bacteria (and other organisms) can be classified according to the energy source and the
metabolism of their growth process. The reductive process of biomass formation requires a
substance that is oxidised, the electron donor. Table 8.11 shows the classification of growth
processes according to the energy source, electron donor, and carbon source (Lampert and
Sommer, 1997). This classification determines which substances have to be included when

energy source electron donor carbon source

light: photo- organic comp.: organo- organic comp.: hetero-

redox process: chemo- inorganic comp.: litho- inorganic comp.: auto-

Table 8.11: Classification of growth processes according to the energy source, electron
donor, and carbon source. The type consists of one or several of the keywords listed above
(at most one per column) extended by the word -trophic.

deriving the stoichiometry of the growth process. Note that algae and macrophytes (see
section 8.1) are of the photolithoautotrophic type, heterotrophic bacteria as described in
section 8.8.1 would more precisely be called chemoorganoheterotrophic organisms, and
nitrifiers (see section 8.8.2) are of the chemolithoautotrophic type.

8.8.1 Growth of Heterotrophic Bacteria

Heterotrophic organisms, such as bacteria and fungi are responsible for the decomposition
of organic material. This process can be modelled as “hydrolysis” of particulate organic
material to the dissolved form as described in section 8.7 and subsequent growth of het-
erotrophic microorganisms on dissolved substrate. Table 8.12 shows the stoichiometry of
this process. We distinguish oxic growth of heterotrophic microorganisms using ammo-
nium or nitrate as the nitrogen source (if the food does not contain enough nitrogen) and
anoxic growth of heterotrophic microorganisms. For all of these processes the yield leads
to the constraining equations

νgro,HET,ox,NH+
4 HET + νgro,HET,ox,NH+

4 DOMYHET = 0 (8.28)
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Process Substances / Organisms Rate

NH+
4 NO−

3 N2 HPO2−
4 HCO−

3 O2 H+ H2O DOM HET

gN gN gN gP gC gO mol mol g gDM

Oxic gro. HET NH+
4 ? ? + − ? ? − 1

YHET
1 ρ

gro,HET,ox,NH+
4

Oxic gro. HET NO−
3 ? ? + − ? ? − 1

YHET
1 ρ

gro,HET,ox,NO−
3

Anox. gro. HET − + ? + ? ? − 1

YHET
1 ρgro,HET,anox

Table 8.12: Process oxic and anoxic growth of heterotrophic microorganisms.

νgro,HET,ox,NO−
3 HET + νgro,HET,ox,NO−

3 DOMYHET = 0 (8.29)

νgro,HET,anox,NH+
4 HET + νgro,HET,anox,NH+

4 DOMYHET = 0 (8.30)

Note that for a steady-state bacterial population, the corresponding mineralization pro-
cesses described in the sections 8.5.1 and 8.5.2 consist of these growth processes together
with respiration of these microorganisms, death and succeeding mineralization of the
dead organisms (which again consists of hydrolysis, heterotrophic growth, respiration,
and death).

Process rates for growth of heterotrophic microorganisms must take into account limi-
tations by organic substrate and dissolved oxygen (oxic growth) or nitrate (anoxic growth).
Depending on the signs of the stoichiometric coefficients, additional limitations with re-
spect to nitrogen and phosphorus may be required.

ρgro,HET,ox,NH+
4
= kgro,HET,ox,T0 · exp

(
βBAC(T − T0)

)[
·

pNH+
4 ,HETCNH+

4

pNH+
4 ,HETCNH+

4
+ CNO−

3

]

·min

(
CDOM

KDOM,HET + CDOM
,

CO2

KO2,HET + CO2

,[
CHPO2−

4

KHPO2−
4 ,HET + CHPO2−

4

]
,

[
CNH+

4
+ CNO−

3

KN,HET + CNH+
4
+ CNO−

3

])
· CHET (8.31)

ρgro,HET,ox,NO−
3
= kgro,HET,ox,T0 · exp

(
βBAC(T − T0)

)[
·

CNO−
3

pNH+
4 ,HETCNH+

4
+ CNO−

3

]

·min

(
CDOM

KDOM,HET + CDOM
,

CO2

KO2,HET + CO2

,[
CHPO2−

4

KHPO2−
4 ,HET + CHPO2−

4

]
,

[
CNH+

4
+ CNO−

3

KN,HET + CNH+
4
+ CNO−

3

])
· CHET (8.32)
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ρgro,HET,anox = kgro,HET,anox,T0 · exp
(
βBAC(T − T0)

)
·

KO2,HET

KO2,HET + CO2

·min

(
CDOM

KDOM,HET + CDOM
,

CNO−
3

KNO−
3 ,HET + CNO−

3

,

[
CHPO2−

4

KHPO2−
4 ,HET + CHPO2−

4

])
·CHET

(8.33)

In these equations, the terms in square brackets only apply, if the corresponding stoichio-
metric coefficients are negative.

8.8.2 Growth of Nitrifiers

To model nitrification activities, populations of nitrifying bacteria must be modelled.
There are different organisms responsible for the first step of nitrification from ammo-
nium to nitrite (e.g. Nitrosomonas) (see section 8.6) than for the second step from nitrite
to nitrate (e.g. Nitrobacter) (see section 8.6) (Dodds, 2002). We denote these two classes
of nitrifying bacteria by “N1” (for the fist step) and “N2” (for the second step). Table
8.13 shows the stoichiometry of these two nitrification processes. Note that nitrifiers are

Process Substances / Organisms Rate

NH+
4 NO−

2 NO−
3 HPO2−

4 HCO−
3 O2 H+ H2O N1 N2

gN gN gN gP gC gO mol mol gDM gDM

Growth of N1 − 1

YN1
+ − − − ? ? 1 ρgro,N1

Growth of N2 − 1

YN2
+ − − − ? ? 1 ρgro,N2

Table 8.13: Growth of first and second stage nitrifiers.

autotrophic bacteria that use the energy obtained through oxidation of ammonium or ni-
trite, or nitrite to nitrate for the synthesis of organic material. There is one stoichiometric
constraint for each of the two processes: The “yields” YN1 and YN2 specify, how many g
NH+

4 -N and how many g NO−
2 -N are consumed per unit of produced dry biomass unit of

nitrifiers. Note that this is considerably more than the nitrogen fraction of the biomass,
as the oxidation of the inorganic nitrogen compounds is the energy source for growth.

The process rates must account for the limitations by ammonium or nitrite and dis-
solved oxygen:

ρgro,N1 = kgro,N1,T0 · exp
(
βN1(T − T0)

)
·min

(
CNH+

4

KNH+
4 ,nitri + CNH+

4

,
CO2

KO2,nitri + CO2

,
CHPO2−

4

KHPO2−
4 ,nitri + CHPO2−

4

)
· CN1 (8.34)

ρgro,N2 = kgro,N2,T0 · exp
(
βN2(T − T0)

)
·min

(
CNO−

2

KNO−
2 ,nitri + CNO−

2

,
CO2

KO2,nitri + CO2

,
CHPO2−

4

KHPO2−
4 ,nitri + CHPO2−

4

)
· CN2 (8.35)
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8.9 Colonization

Colonization can be an important process to accelerate the increase of biological popu-
lations after a catastrophic event. In addition, colonization protects the solution of the
model from reaching extremely low concentrations from which it would take a very long
time to recover by a process the rate of which is linear in the organism concentration.

Colonization is a transfer process of organisms from either one compartment of the
system to the other or from the part of the world outside of the system boundaries into
the system. Consequently, it is described by flux

Jcol,i (8.36)

across the system boundaries. This flux can often be assumed to be constant, but it can
also have a seasonal dependence, or, if between compartments described by the model, the
net colonization rate could be made dependent on the difference of the concentrations of
the organism in both compartments. Usually, the colonization flux would be selected to
be so small that it does not lead directly to a significant change of biomass. Its main effect
is to stimulate the growth process which then takes place within the system boundaries
and relies on internal resources of the system. A small colonization rate is sufficient to
protect the solution from reaching extremely small concentrations and thus significantly
increases growth in the initial phase after a near extinction.
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Stochasticity, Uncertainty and
Parameter Estimation
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Chapter 9

Consideration of Stochasticity and
Uncertainty

9.1 Causes of Stochasticity and Uncertainty

9.1.1 Stochasticity of Dynamics

So far, we described the dynamics of densities of functional groups of organisms by deter-
ministic differential equations. This means that no randomness is involved in the dynamics
so that the same initial conditions and driving forces always lead to the same results. There
are three main reasons, why this is only an approximate description of reality even if the
structure and function of the ecosystem would be perfectly known.

First, genetic stochasticity leads to non-deterministic changes in the genetic compo-
sition of a population and in related properties of the individuals even in the absence of se-
lective forces. As a consequence, this leads to non-deterministic population or community
dynamics. Together with selection processes, such genetic changes leads to evolutionary
processes.

Second, populations and communities consist of individual organisms, the fate of which
can only be described by probabilistic processes. This is in particular true for birth and
death processes (we can formulate a survival probability, but will never know, when exactly
an individual organism will die), but applies also to food uptake followed by respiration
and growth. These stochastic processes at the individual level introduce random elements
into population or community dynamics, so-called demographic stochasticity. This
is particularly important to consider for populations or communities that consist of a
small number of organisms, in particular when calculating probabilities of extinction.
On the other hand, the relative variability of population and community dynamics due
to demographic stochasticity becomes smaller with an increasing number of organisms
in the population. For this reason, the equations as discussed in the previous chapters
can be interpreted as descriptions for the limiting case of very large populations where
demographic stochasticity can be neglected.

A third reason for non-deterministic dynamics is that environmental conditions were
described very simplistically in our models so far (e.g. seasonal and smooth variation
of light and temperature in a homogeneous environment). Short-term variability and
heterogeneity of inputs that are not resolved by the available data, effects of influence

145
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factors that are not considered by the model, etc. lead to regular and irregular deviations
from the behaviour of the deterministic models described so far. The irregular component
of these deviations is called environmental stochasticity and is also relevant for large
populations and communities.

All three elements of stochasticity in ecosystem dynamics discussed above lead to un-
certainty about the behaviour of the system even if structure and function of the ecosys-
tem would be perfectly known. For this reason, when considering any of these sources of
stochasticity, model predictions for given initial conditions and parameters will no longer
be certain outcomes and their uncertainty may have to be considered.

9.1.2 Uncertainty of Model Structure, Input and Parameters

Due to our incomplete knowledge of driving forces and ecosystem structure and function,
model predictions would be uncertain even in cases in which stochasticity of ecosystem
dynamics could be neglected (see previous sections for sources of stochasticity). Input
uncertainty can usually be estimated based on the uncertainty of sampling procedures
and measurement devices. However, despite choosing a spatial domain to be modelled
with well-defined boundaries, fluxes across these boundaries are often difficult to quantify
due to their spatial dimension and the heterogeneity of the fluxes. Model parameters
that have a direct mechanistic meaning can sometimes be estimated from experiments
in the laboratory (e.g. from observed growth rates of species as a function of driving
conditions) or from data that are independent of the biological processes in the model
(e.g. temperature profiles provide information on the intensity of mixing processes in a lake
which also affect plankton dynamics). However, even parameters that have a conceptual
meaning can often not be estimated independently of the model due to the aggregated
description by the model (e.g. growth rate parameters of a community of many different
species, hydrological parameters that represent processes averaged over a heterogeneous
landscape). Uncertainty of model structure is even more difficult to consider than input
and parameter uncertainty. Ideally, several conceptually different models should be used
for calibration and prediction to make it possible to at least roughly estimate the effect
of structural uncertainty. However, due to limited resources, this is often not possible in
practice.

9.2 Probabilistic Framework

We use random variables to describe stochasticity in the dynamics of ecological systems
as well as uncertainty due to incomplete knowledge about the structure and function of
these systems. Random variables describe random events or uncertain knowledge and
are characterized by their probability distributions. In the following three subsections, we
briefly describe some basic terms of probability theory that we will apply to the description
of ecological systems in the next section.

9.2.1 Univariate Random Variables and Distributions

A scalar random variable can be characterized by its probability distribution. Figure 9.1
illustrates discrete and continuous probability distributions for a one-dimensional random
variable Z. For continuous random variables, probabilities of the outcome being in an
interval can be calculated as the integral of the density, f , over this interval (as an example,



9.2. PROBABILISTIC FRAMEWORK 147

the grey area in the right panel of Fig. 9.1 represents the probability that the outcome
is in the interval [z1, z2]). Figure 9.2 shows the cumulative probabilities of the outcome
being smaller than or equal to the value at the x-axis for the two cases shown in Fig. 9.1.

PZ fZ
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z
n zz

r
z
l

Figure 9.1: Examples of discrete probabilities of a probability distribution of a discrete
random variable (left) and a probability density of a continuous random variable (right).
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Figure 9.2: Examples of distribution functions of a discrete (left) and a continuous random
variable (right).

9.2.2 Multivariate Random Variables and Distributions

Multivariate distributions are characterized by their joint probability distribution. For
continuous multivariate random variables, the joint propability density, f , describes the
probability of an outcome per unit of all of its components. Consequently, analogously to
the univariate case, the probability of an outcome in any part of the outcome space, A, is
equal to the integral of the joint density over this space (in this section, we illustrate all
equations and figures for the two-dimensional case):

P (A) =

∫
A

f(x, y) dx dy . (9.1)

When we are interested in the associated probability distribution of some of the com-
ponents of a multivariate random variable, it is important to distinguish the marginal
and the conditional distributions. The marginal distribution of x is the distribution of x
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when no knowledge about y (besides that induced by the joint distribution) is available.
Consequently, we have to integrate the joint distribution over y:

f(x) =

∫
f(x, y) dy . (9.2)

In contrast, the conditional distribution represents the knowledge about x when we know
that y has a given value of y0. Thus, we have to keep y fixed at y0 and renormalize the
resulting distribution:

f(x | y0) =
f(x, y0)

f(y0)
=

f(x, y0)∫
f(x′, y0) dx′

. (9.3)

Figure 9.3 illustrates the concepts of joint, marginal and conditional distributions with a
two-dimensional example. We will come back to these important concepts when dealing
with Bayesian inference in section 10.3.

x

y
joint f(x,y)

marginal f(x)

marginal f(y)
y0

conditional f(x|y0)

x0

conditional f(y|x0)

x

y
joint f(x,y)

marginal f(x)

marginal f(y)
y0

conditional f(x|y0)

x0

conditional f(y|x0)

Figure 9.3: Examples of bivariate random variables with (left) and without dependence
(right) between the two components. The figures show the bivariate probability density
by isolines as well as marginal and conditional density functions of the two components.
Note that for a joint distribution of independent random variables ( f(x, y) = f(x)f(y) ),
the conditional and marginal distributions are the same.

9.2.3 Stochastic Processes

A stochastic process in time is a set of random variables, one for each point in time.
When using a stochastic process to describe a parameter that is influenced by stochastic
external driving forces, it is often convenient to define this stochastic process as a solution
of a stochastic differential equation. The simplest stochastic differential equation that does
not lead to an ever increasing variance is the equation for the mean-reverting Ornstein–
Uhlenbeck process given by

dΘt =
1

τ
(µ−Θt) dt+

√
2

τ
σ dWt . (9.4)
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Here, Θt, is the time-dependent variable (as a random process, i.e. a set of random vari-
ables for all points of time, t), µ is its mean, σ its asymptotic standard deviation, τ the
correlation time of the mean-reverting process, and Wt is a continuous-time random walk
process (also called Brownian motion or Wiener process). The first term (so-called drift
term) on the right hand side of this stochastic differential equation describes a relaxation
of the parameter Θt back to its mean, µ, with a correlation time τ , the second term
(so-called diffusion term) describes the effect of noise. The long-term behaviour of this
process leads to continuous random walks around the mean, µ, with a standard deviation
σ. Figure 9.4 shows some examples of realizations of Ornstein-Uhlenbeck processes.

0 50 100 150 200 250 300 350

0
5

10
15

20

Realizations of Ornstein−Uhlenbeck Processes

t

θ

Figure 9.4: Examples of realizations of Ornstein-Uhlenbeck processes. Top: µ = 16, σ =
0.5, τ = 50. Middle: µ = 10, σ = 1, τ = 5. Bottom: exp of realizations of an Ornstein-
Uhlenbeck process with τ = 10; mean, m, and standard deviation, s, of the underlying
Ornstein-Uhlenbeck process (log of the plotted time series) are chosen such that that µ =
1 and σ = 1 on the plotted scale (see section 14.3, equations 14.27 to 14.30 for the required
transformations between (µ, σ) and (m, s)). The asymptotic densities (for t ≫ τ) of the
processes are shown in the right margin of the plot.

The stochastic differential equation (9.4) can be solved analytically and leads to a
Normal distribution at any value of the time, t, with the expected value, variance and
covariance given by

E[Θt | Θt0 = θ0] = µ+ (θ0 − µ) exp

(
− t− t0

τ

)
, (9.5)

Var[Θt | Θt0 = θ0] = σ2

[
1− exp

(
−2

t− t0
τ

)]
, (9.6)
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Cov[Θt,Θs | Θt0 = θ0] = σ2

[
exp

(
−| t− s |

τ

)
− exp

(
− t+ s− 2t0

τ

)]
. (9.7)

This analytical solution demonstrates that when the time t − t0 is large compared to τ ,
the process will vary around its mean with an approximate standard deviation of σ. The
closer to the time t0, the smaller the variance and the closer the mean to the value at t0.
It is easy to draw discretized realizations of the process given by the equations (9.5) and
(9.6).

9.3 Stochasticity and Uncertainty in Ecological Models

If we summarize all model output variables at time points and locations of interest in a
model output vector, yout, the deterministic models used in the previous chapters can be
represented by the (vector-valued) function

yout(x,θ) , (9.8)

where x are the inputs and θ the model parameters.

9.3.1 Genetic or Demographic Stochasticity

Considering genetic or demographic stochasticity leads to a probabilistic rather than a
deterministic description of population or community dynamics. This leads to probability
distributions of outcomes instead of precise results even for given inputs and model pa-
rameters. Formally, considering this kind of stochasticity, requires the replacement of the
deterministic model function (9.8) by a vector of random variables

Yout(x,θ) . (9.9)

In this case, the vector of random variables, Yout, is characterized by a joint probability
distribution

pout(yout | x,θ) (9.10)

for the variables yout conditional on inputs, x, and model parameters, θ. For continu-
ous random variables, p describes a joint probability density and is usually denoted, f ;
for discrete random variables, it describes a joint discrete probability distribution and is
typically denoted P .

Demographic stochasticity can be described by discrete indviduals or individual-based
models. The dynamics of a discrete individuals population of community model can
be described by a so-called master equation, a differential equation describing how the
probability of the system being in a given state changes over time (Black and McKane,
2012). In the simplest case, the state of a population or community is described by
the number of organisms of a specific species or the numbers of different species in the
community. The master equation is then the differential equation that describes the
dynamics of the probability distribution of the number of species or of a vector of the
numbers of different species of organisms (see section 12.3.2 for an example of how such
a differential equation can be constructed). More complex individual-based models even
model each organism separately, differentiating properties of different organisms of the
same species (see section 12.3.3).
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9.3.2 Environmental Stochasticity

Through the dependence of inputs, mass fluxes and process rates on environmental con-
ditions, environmental stochasticity leads to associated fluctuations in mass fluxes and
process rates. The most straightforward way of considering the effet of these fluctua-
tions on the behaviour of the ecosystem is to make inputs or model parameters stochastic
processes in time. This results in replacing the given inputs, x, and/or the given model
parameters, θ, by stochastic processes, X, and/or Θ as shown in Figure 9.4. Dependent
on whether there is no additional intrinsic stochasticity or there is additional intrinsic
stochasticity, we then get the model description

yout(X,Θ) (9.11)

or

Yout(X,Θ) . (9.12)

9.3.3 Uncertainty due to Incomplete Knowledge

In addition to uncertainty induced in the predictions due to genetic, demographic, and en-
vironmental stochasticity, we have uncertainty due to incomplete knowledge about input,
mechanisms, parameterizations and parameter values. In contrast to uncertainty due to
stochasticity, for the description of which probability calculus provides the obvious math-
ematical framework, it is less clear, which is the best mathematical framework to describe
incomplete knowledge. There are the following reasons, why probabilities are also a good
framework to describe uncertainty due to incomplete knowledge (Howson and Urbach,
1989; Gillies, 1991; Reichert et al., 2015):

First, to describe incomplete knowledge, probabilities are interpreted as degrees of
belief of an individual or a group (so-called subjective or intersubjective probabilities),
rather than as limits of observed frequencies for a large number of observations as they
are interpreted for the description of stochasticity. It can be shown, that if such degrees
of belief are operationalized by indifference statements between lotteries and if the person
stating his or her beliefs wants to avoid the possibility of sure loss when someone chooses
between the lotteries he or she is indifferent, these degrees of belief must follow the laws
of probability (Ramsey - De Finetty theorem) (Howson and Urbach, 1989).

Another argument in favour of using probabilities is the need to be able to consistently
express conditional beliefs (how would the system develop under certain management
measures or environmental conditions). This is also best possible when using probabilities
(Cox, 1946).

Finally, there is another very important argument for using probabilities to describe
scientific knowledge that is rarely discussed in the literature (Reichert et al., 2015). Un-
certainty of the outcome of a perfectly known system that is affected by randomness can
be characterized by objective probabilities. Once the random event has been realized, but
the outcome has not yet been observed, uncertainty becomes uncertainty due to lack of
knowledge. Here, the underlying objective probability serves as the natural, characteriza-
tion of the uncertainty of the outcome due to incomplete knowledge. Such a transfer of
objective probabilities to intersubjective degrees of belief is only consistently possible in a
framework that also uses probabilities to describe these beliefs.
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When using probabilities to describe and quantify scientific knowledge, it is important
to acquire the information in an intersubjective way. Subjective probabilities are useful
to characterize individual beliefs and are required to understand individual behaviour.
However, the “current state of scientific knowledge” can only be described by “defendable”
probability distributions constructed from empirical evidence extracted from the literature
or by intersubjective probabilities aggregated from individual scientists or elicited from
groups of scientists. Note that this procedure is in accordance with the scientific standard
of quality control by peer review.

In conclusion, we will formulate the uncertainty of input, model parameterization or
model parameters in the form of a joint probability distribution of inputs and model
parameters. The model is then again described by the equations (9.11) or (9.12) but the
bold symbols mean here vectors of random variables rather than random processes. If there
is environmental stochasticity, the uncertaint random variables become the parameters of
the stochastic processes that describe the fluctuating inputs or parameters.

In many practical cases the joint distribution of inputs and parameters will be the
product of independent marginals. Three particularly important univariate probability
distributions used for such marginals are the Uniform, the Normal and the Lognormal
distributions. These distributions are described in Appendix 14.

9.4 Numerical Approximation by Monte Carlo Simulation

The model functions (9.10), (9.11) and (9.12) require the calculation of probability dis-
tributions of model output resulting from intrinsic stochasticity (equation 9.10), from
the propagation of random variables or random processes through a deterministic model
(equation 9.11), or the evaluation of a stochastic model for random model parameters
(equation 9.12). With the exception of a very small category of (mostly linear) models,
this cannot be done analytically.

The most universal numerical technique to propagate uncertainties while accounting for
model nonlinearities is Monte Carlo simulation. To do so, a random sample is drawn from
the parameter, input or intrinsic variable distribution, the model results are calculated
for all of these parameter sets and the empirical frequency distribution of these model
results is then used as an approximation to the probability density of the results. Figure
9.5 illustrates this procedure for a deterministic model y(θ).

If the model is stochastic, this Monte Carlo approach is extended by also drawing a
realization from the probability distribution of model results for each realization of the
model parameters. If model stochasticity is formulated by the use of stochastic, time-
dependent parameters as described in section 9.3, this consists of drawing a realization of
the Ornstein-Uhlenbeck processes for each time-dependent parameter as shown in Fig. 9.4
and then evaluating the model (e.g. by numerically integrating the differential equations).
This will be illustrated in section 11.7.
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Figure 9.5: Illustration of the idea underlying the propagation of a probability distribution
of parameters to model results by Monte Carlo simulation.
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Chapter 10

Parameter Estimation

Chapter 9 was devoted to the consideration of stochasticity and uncertainty in model input,
structure and parameters for calculating probabilistic model predictions. In this chapter,
we are interested in the reverse problem, to learn from observational data about model
parameters. As parameter estimation or ‘statistical inference’ is based on observations, in
section 10.1 the model representations introduced in chapter 9 are extended to consider
observation error. In the two subsequent sections 10.2 and 10.3 the concepts underly-
ing the two most important general inference techniques, maximum likelihood parameter
estimation and Bayesian inference, respectively, are briefly introduced.

10.1 Observation Error and Likelihood Function

In chapter 9 we were interested in describing our knowledge about the ‘true’ system state
by model output. To learn from observations, we first need an extension of these models
to describe observation error. The simplest way to do that, is to formulate an additive
observation error term, Eobs, to either the deterministic, yout, or the stochastic, Yout,
model output:

Yobs(x,θ) = yout(x,θ) +Eobs(x,θ) (10.1)

or

Yobs(x,θ) = Yout(x,θ) +Eobs(x,θ) . (10.2)

Note that, due to the observation error, Yobs is always a vector of random variables, even
in case of a deterministic model and is defined by the joint probability distribution of all
observations yobs given inputs x and parameters θ:

pobs(yobs | x,θ) . (10.3)

When substituting the actual observations for yobs and the actual inputs into equation
(10.3), the resulting function of the model parameters, θ, is called the likelihood function
of the model (given the data). The term ‘likelihood’ was chosen as this function is not
a probability distribution of θ (it is derived as a probability distribution of yobs), but it
seems reasonable to assume that parameters with a large value of pobs are more ‘likely’
than parameters with smaller values of pobs (for given input and observations) because
these parameter values make the observations probable. This is the basis of the simplest
universal parameter estimation technique as outlined in the next subsection.

155
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10.2 Maximum Likelihood Parameter Estimation

In frequentist statistics, statistical inference is about finding good approximations to the
unique, true parameter values. In this interpretation of statistics, only quantities that can
repeatedly be observed, are random variables characterized by probability distributions.
Unless model parameters can directly be measured with a random observation error, this
is not true for model parameters. In contrast to that interpretation, in section 9.3.3
we adopted a Bayesian approach in which we describe our knowledge about parameter
values by probabilitiy distributions. Still, in the absence of prior knowledge, we can get a
point estimate of parameter values, θ̂, by maximizing the likelihood function introduced
in section 10.1:

θ̂ML = argmaxθ
[
pobs(yobs | x,θ)

]
. (10.4)

Unless we calculate frequentist confidence regions, this just provides us with a point es-
timate but can still be useful for an initial analysis without prior knowledge. The more
typical approach of doing Bayesian inference is described in the next subsection.

10.3 Bayesian Inference

The strength of Bayesian inference is to combine prior knowledge about parameter values
with information from data using a model. In the environmental sciences this is extremely
useful as there is often a lot of defendable, prior information about model parameters avail-
able from investigations of similar systems and there may not be sufficient data available
from the modeled system to infer all parameters without relying partly on prior knowledge.
Under some circumstances, the strength may be a weakness, as it introduces a “bias” from
prior knowledge into the analysis. In such cases, frequentist statistics may be the better
choice.

To introduce Bayesian inference, we need two important equations from probability
theory. Note that we again use the letter P for probabilities of discrete random variables
and f for probability densities of continuous random variables. First, marginal probabil-
ities can be gained from joint probabilities by summing or integrating over the variables
we are not interested in:

P (a) =
∑
b

P (a, b) , f(a) =

∫
f(a, b) db . (10.5)

Second, conditional probabilities are defined as the quotient of the joint probability and
the marginal on which to condition:

P (a | b) = P (a, b)

P (b)
, f(a | b) = f(a, b)

f(b)
. (10.6)

In these equations, P (a, b) and f(a, b) are joint, discrete probabilities and probability
densities, respectively. Combining the two equations, we get

P (a | b) = P (a, b)

P (b)
=

P (b | a) P (a)∑
a′ P (b | a′) P (a′)

, f(a | b) = f(a, b)

f(b)
=

f(b | a) f(a)∫
a′ f(b | a′) f(a′) da′

(10.7)
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These equations are the basis of Bayesian inference.

When replacing a by the model parameters, θ, and b by the observations, yobs, in
equation (10.7), adding conditioning on the inputs, x, and adding labels to the probability
densities, we get the following equation for updating prior to posterior information about
the model parameters:

fpost(θ | x,yobs) =
fpri(θ) fobs(yobs | x,θ)∫

fpri(θ
′) fobs(yobs | x,θ′) dθ′ ∝ fpri(θ) fobs(yobs | x,θ) . (10.8)

In this equation, fpost is the probability density characterizing the posterior knowledge
on model parameters combining prior knowledge with information from data using the
model, fpri describes the prior knowledge on model parameters, and fobs(yobs | x,θ′) is
the likelihood function of the model (the probability density of modelled observations
given parameters and input as introduced by the equations 10.1 and 10.3 with actual
observations and input substituted for yobs and x.

Unless there is conflicting information between prior knowledge and data, equation
(10.8) typically leads to narrowing prior information about model parameters to posterior
information. The more data is available and the smaller the observation uncertainty, the
more information from data influences the posterior. In contrast, few and inaccurate data
lead only to minor changes in prior information. Similarly to the maximum likelihood
estimate (10.4), the maximum posterior provides a point estimate

θ̂MP = argmaxθ
[
ppri(θ)pobs(yobs | x,θ)

]
(10.9)

of the model parameters that may be useful for initial analyses or for initiating numerical
algorithms for sampling from the posterior as explained in the next subsection.

Figure 10.1 shows a very simple example of sequential Bayesian inference for a param-
eter that is directly observable.

Updating prior information with data to posterior knowledge by Bayesian inference is
illustrated in the first row of plots. The second row shows how the posterior from the first
step can be used as a prior for new data that was collected independently of the first data
set. The posterior that combines this new prior with the new data is exactly the same
as if the original prior would have been updated with all data in one step. This property
makes Bayesian inference a consistent learning algorithm.
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Figure 10.1: Illustration of Bayesian inference. Top left panel: prior, data and true value
(which will not be known in a real application). Top right panel: the posterior is a
compromise between prior information and information from the data. Bottom left panel:
additional data becomes available (data 2). Bottom right panel: the posterior becomes
now the prior for the new data and leads to a new posterior that is closer to the data.
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10.4 Markov Chain Monte Carlo for Posterior Sampling

There are only very few probability distributions and models for which Bayesian inference
can be done analytically. For this reason, numerical techniques for Bayesian inference
are very important. Most of these are based on Monte Carlo simulation. However, there
is an additional difficulty to forward Monte Carlo simulation as discussed in section 9.4.
Equation (10.8) only specifies the posterior probability distribution up to a proportionality
constant. This makes it difficult to sample from the posterior and specific techniques have
been developed to resolve this issue. The most important of these is Markov chain Monte
Carlo sampling. In the following, we deal with continuous parameters and thus replace the
symbol for a general probability distributions, p, by the symbol for probability densities,
f .

A Markov Chain is a special type of a random process. It consists of a sequence of
random variables with the property that the probability density of each random variable
in the chain conditional on the immediate predecessor is independent of any other random
variable of the chain. We are thus able to characterize a Markov chain by its “transition
probability density”, ftrans(θ

new | θold), which is the conditional probability density for
reaching a new state, θnew, given the previous one, θold. We will assume our Markov
chains to be homogeneous in time. This means that the transition probability density is
the same for the whole chain.

Homogeneous Markov chains may have a stationary distribution, fstat, that is in-
variant under executing a step:∫

fstat(θ
′) ftrans(θ | θ′) dθ′ = fstat(θ) ∀ θ . (10.10)

The stationary distribution may also be referred to as invariant distribution or equi-
librium distribution.

A sufficient, although not necessary, condition that a Markov chain has a stationary
distribution is the condition of detailed balance:

fstat(θ) ftrans(θ
′ | θ) = fstat(θ

′) ftrans(θ | θ′) ∀θ,θ′ . (10.11)

This condition represents reversibility in the sense that for every pair of parameter states,
θ,θ′, the probabilities of being in one state and transitioning to the other are equal.

If a Markov chain has a stationary distribution and it is aperiodic and recurrent (i.e.
ergodic), then the Markov chain will converge to its (in this case unique) stationary dis-
tribution. It has been shown that most of the chains used in Markov Chain Monte Carlo
simulation fulfill this property (Tierney, 1994; Gamerman, 1997) and can thus be used as
samples from the stationary distribution.

The idea underlying Markov Chain Monte Carlo simulation for Bayesian inference is to
design a Markov chain that has the posterior as its stationary distribution. We can then
calculate a sample of this Markov Chain and use it to calculate approximate characteristics
of the posterior (Tierney, 1994; Gelman et al., 1995; Gamerman, 1997).

Some Markov Chain Monte Carlo procedures decompose the transition density, ftrans(θ
′ |

θ), into a proposal density, fprop(θ
′ | θ), and an acceptance probability, Paccept(θ

′ | θ).
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Denoting the probability of staying at the same point by

Pstay(θ) = 1−
∫

fprop(θ
′ | θ) Paccept(θ

′ | θ) dθ′ , (10.12)

the transition density is then formulated as

ftrans(θ
′ | θ) = fprop(θ

′ | θ) Paccept(θ
′ | θ) + Pstay(θ) δ(θ − θ′) . (10.13)

Given a proposal density, the condition of detailed balance (10.11) leads to a condition
that has to be fulfilled by the acceptance probability:

Paccept(θ
′ | θ) = fstat(θ

′)

fstat(θ)

fprop(θ | θ′)

fprop(θ
′ | θ)

Paccept(θ | θ′) for θ ̸= θ′ . (10.14)

It can easily be verified that the transition density (10.13) leads to the fulfillment of the
stationarity condition (10.10) if the acceptance probability fulfills the condition (10.14):∫

fstat(θ
′) ftrans(θ | θ′) dθ′ =

∫
fstat(θ

′) fprop(θ | θ′) Paccept(θ | θ′) dθ′+fstat(θ) Pstay(θ)

= fstat(θ)

(∫
fprop(θ

′ | θ) Paccept(θ
′ | θ) dθ′ + Pstay(θ)

)
= fstat(θ) . (10.15)

Here, for the first equal sign we used (10.13), for the second (10.14), and for the third
(10.12). Thus, any proposal distribution that leads to a recurrent transition distribution
and which is associated with an acceptance probability that fulfills the condition (10.14)
leads to a Markov chain that can be used to sample from the given stationary distribution.
As we only need the ratio of the stationary density at different points in equation (10.14),
we can develop such a numerical scheme for a given distribution even if we know its density
only up to an unknown normalization factor. This is a crucial property for Bayesian
inference, as we usually do not know the normalization factor of the posterior. The
procedures discussed in the next two subsections are two slightly different implementations
of this more general procedure.

The simplest sampling scheme based on the equations (10.12) to (10.14) assumes a
symmetric proposal density (fprop(θ

′ | θ) = fprop(θ | θ′) ∀ θ,θ′). As the factor fprop(θ |
θ′)/fprop(θ

′ | θ) then cancels from the condition for the acceptance probability (10.14),
the acceptance probability

Paccept(θ
′ | θ) = min

(
fstat(θ

′)

fstat(θ)
, 1

)
(10.16)

fulfills equation (10.14).

This leads to the following sampling scheme (Metropolis et al., 1953; Gelman et al.,
1995; Gamerman, 1997):

1. Select a starting value θ(0).

2. Based on the current point, θ(i), draw a random point, θ∗, from the proposal distri-
bution, fprop

(
θ∗ | θ(i)

)
.
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3. Calculate the ratio

r =
f
(
θ∗)

f
(
θ(i)
) (10.17)

of the densities at the suggested point and at the previous point of the chain.

4. Set

θ(i+1) =

{
θ∗ with probability min(r, 1)

θ(i) with probability 1−min(r, 1)
(10.18)

and proceed with step 2.

This can easily be applied to posterior sampling, as the unknown normalization factor of
the posterior density cancels when calculating the ratio (10.17). Figure 10.2 illustrates the
first steps of the procedure outlined above.
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Figure 10.2: The algorithm starts with an initial point (top, left). It then proposes a
new point, of which the acceptance probability can be calculated according to equation
(10.17). In this case, it is rejected, indicated in red (top, center). The next proposal is
again rejected (top, right). The next two proposals are accepted and indicated in green
(middle, left and center). Then, again a proposal is rejected and indicated in red (middle,
right). This process continues as shown in the bottom plots and at the end, the points
marked in green constitute the sample from the distribution (note that, due to rejected
proposals, most of the green points are multiple samples).

The general Metropolis scheme still leaves a lot of freedom in choosing the proposal
distribution, fprop(θ

′ | θ). A simple choice is the use of a Normal distribution for an
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individual step of a random walk

fprop(θ
′ | θ) ∼ N(θ,Σ) (10.19)

where the variance-covariance matrix, Σ, must be carefully chosen in order to achieve a
good efficiency of the procedure.

The choice of the initial point and the proposal distribution affects the convergence
of the Markov Chain to the posterior distribution considerably. It is recommendable to
start the Markov Chain close to the maximum of the posterior calculated by a numerical
optimization routine. This avoids a long “burn-in” phase of the Markov Chain. The accep-
tance frequency can be influenced by the shape (correlation structure) and size (standard
deviations) of the proposal distribution. It should be in the range of 25 to 45 % with lower
values for higher dimensions (Gelman et al., 1995). An iterative procedure of adapting the
correlation structure of the proposal distribution to that of the posterior (estimated from
the previous Markov Chain) and adjusting the step size to achieve a reasonable acceptance
probability, is recommended for getting a good Markov Chain.

Figures 10.3 and 10.4 illustrate common convergence problems of Markov chains for
the example of a Metropolis algorithm with a Normal proposal distribution.

Please note that, due to the much higher dimensionality and the absence of an ana-
lytical form of the posterior, the analyst will typically only have Figure 10.4 available for
diagnostic purposes.

The six cases shown in these figures can be interpreted as follows.

The top left case shows a poor coverage of the distribution due to a too small step size
of the algorithm. The analyst can identify this problems (i) by the too low rejection fre-
quency of 0.04 and by the slow coverage of the range of parameter θ1 by the chain in the
top left panel of Figure 10.4 (the chain should oscillate much more frequently within the
range of the distribution).

The top right case shows poor convergence due to a too large step size of the algorithm.
This is identifiable through the too high rejection rate of 0.97 and the long constant values
in the Markov chain shown in Figure 10.4. Note that the coverage of the distribution in
this case is much better than in the case of the too small step size in the top left panel.

The middle left panel shows a Markov chain with a reasonable step size. This results in
a rejection frequency of 0.52 and the chain oscillates much more strongly than it does in
the cases shown in the top row. Still, a longer chain would be required to achieve good
convergence.

The middle right panel shows the problem of a burn-in period. Due to a poor initial con-
dition, the first 100 points of the chain are required for an approach to parameter regions
with high probability density. It is very important to cut such burn-in periods before using
the sample for inference, as the sample very much overestimates the probability in these
regions. Burn-in problems can be avoided if empirical maximization of the posterior is
used prior to starting the Markov chain algorithm and the algorithm is then started close
to the maximum.

The bottom left case demonstrates that a poor correlation structure of the proposal dis-
tribution can deteriorate convergence. This phenomenon is indicated by a reasonable
rejection rate, but still a poor coverage of the parameter range in the bottom left panel
in Figure 10.4. An analysis of this figure would lead to the recommendation of increasing
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the step size. But significant increases in step size are difficult due to the inadequate
correlation structure of the proposal distribution. It is recommendable to calculate the
correlation structure of the preliminary sample to achieve iteratively a better correlation
structure of the proposal distribution that then finally allows to increase the step size.

The bottom right panel finally shows a Markov chain with a proposal distribution with
an adequate correlation structure. This adequate correlation structure allows the analyst
to increase the step size. Obviously, convergence is much faster than in the case shown
in the middle left panel that has also an adequate step size, but does not account for the
correlation structure of the distribution.

This discussion demonstrates the importance of analyzing the Markov chains graph-
ically for hints of how to improve the transition probability distribution for accelerated
convergence. In the simple case of a Metropolis algorithm with a Normal proposal distri-
bution this is done by adjusting the correlation structure of the proposal distribution to
the preliminary correlation structure of the posterior from the last run, and by scaling the
standard deviations of the proposal distribution proportional to those of the posterior in
order to achieve a reasonable rejection rate. In addition, several chains should be started
with different initial values to verify (or corroborate) the convergence to the same limit-
ing distribution. In addition to such a visual assessment, statistical techniques have been
developed to support Markov Chain Monte Carlo diagnostics (Cowles and Carlin, 1996;
Brooks and Roberts, 1998).
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Figure 10.3: Markov chains of length 1000 for a bivariate normal distribution illustrated
by its highest probability region boundaries with content of 0.05, 0.5 and 0.95 probabil-
ity centered at (5,5). The distribution centered at (0,0) represents the normal proposal
distribution. See Figure 10.4 for the chains for component θ1).
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Figure 10.4: Component θ1 of the Markov chains shown in Figure 10.3.
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Ecosystems

167





Chapter 11

Simple Models of Aquatic
Ecosystems

In this chapter we formulate a series of aquatic ecosystem models of increasing complexity
and analyse their behaviour. It is recommended that readers switch to this chapter as
soon as possible. The examples and applications introduced here can guide learning how
aquatic ecosystem models are built and how we can learn about ecosystem function by
working with models. To support this procedure, at the start of each section, we list the
chapters and sections required for the understanding of the introduced didactic ecosystem
model. Reading this manuscript can be guided by this chapter. Going through all the
sections of this chapter and reading the required sections of the previous part before
starting to read the didactic example can be an excellent strategy to learn the material of
this manuscript. This would have to be complemented by reading chapter 13 that extend
the basic knowledge acquired with the didactic models to an overview of models and
simulation programs currently in use for research and management support. The content
of this chapter can be deepened by implementing the models with the software described
in chapters 15 and 16 in the appendix and practice their application and analysis.

This chapter starts with the introduction of a very simple lake phosphorus and phyto-
plankton model in section 11.1. In section 11.2 this lake phytoplankton model is extended
by zooplankton grazing on phytoplankton. The next important extension is to distinguish
the epilimnion and hypolimnion of the lake and describing mineralization of organic parti-
cles in the sediment. This is done in section 11.3. Section 11.4 provides a further extension
of this model to the nitrogen cycle. Section 11.5 introduces a model for the oxygen, phos-
phorus and nitrogen household in a river for a given density of benthic organisms. This is
followed in section 11.6 by a model for the benthic population in rivers. Finally, in section
11.7, the lake plankton model described in section 11.2 is extended to the consideration
of environmental stochasticity and uncertainty as described in chapter 9.

169
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11.1 Lake Phytoplankton Model

This model is based on the chapters and sections 1, 2, 3.1, 3.2, 4.1, 4.2, 8.1, and 8.3. It
provides the opportunity to deepen the basic concepts of ecosystem model formulation with
a very simple model for soluble reactive phosphorus and phytoplankton in the epilimnion
of a lake. Despite its simplicity, this model is already able to demonstrate some important
behavioural properties of such a system that will remain features of more complicated
models. The model will be made more realistic by adding more elements in the following
sections.

A very simple model of ecological processes in a lake consists of mass balances for
the limiting nutrient soluble reactive phosphorus (for stoichiometric purposes assumed to
be phosphate, HPO2−

4 ) and phytoplankton, in the following referred to as algae (ALG),
growing on this nutrient through the process of primary production. This model considers
the two transformation processes growth (by primary production, see section 8.1) and
death (see section 8.3) of algae. In this simple example, we do not consider zooplankton
and dead organic particles and their mineralization. These processes will be added later
(sections 11.2 and 11.3). When denoting the phosphorus content of algae by αP,ALG and
formulating simple process rates according to the principles described in section 4.2, we
get the process table shown as Table 11.1.

Process Substances / Organisms Rate

HPO2−
4 ALG

gP gDM

Growth of algae −αP,ALG 1 ρgro,ALG

Death of algae −1 ρdeath,ALG

Table 11.1: Process table of a simple lake phytoplankton model.

In a first version of the model, we assume the dependences of process rates on current
concentrations of phosphate and algae shown in Table 11.2. The process rate of algal

Rate Rate expression

ρgro,ALG kgro,ALG

CHPO2−
4

KHPO2−
4 ,ALG + CHPO2−

4

CALG

ρdeath,ALG kdeath,ALG CALG

Table 11.2: Process rates of the first version of the simple lake phytoplankton model.

growth considers a growth limitation by phosphate that reaches saturation at high phos-
phate concentrations according to equation (4.11). Combining the process stoichiometry
given in Table 11.1 with the transformation rates given in Table 11.2, we get the following
transformation rates of CHPO2−

4
and CALG:

rHPO2−
4

= −αP,ALG · kgro,ALG

CHPO2−
4

KHPO2−
4 ,ALG + CHPO2−

4

CALG , (11.1)
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rALG = kgro,ALG

CHPO2−
4

KHPO2−
4 ,ALG + CHPO2−

4

CALG − kdeath,ALGCALG . (11.2)

In order to extend this transformation model to an ecosystem model, we need a descrip-
tion of the physical environment in which these transformations take place. We choose
the simplest option of describing the epilimnion of a lake by a mixed reactor of constant
volume. This leads to the differential equations (3.9)

dC

dt
=

Qin

V

(
Cin −C

)
+

Jint

V
+ r . (11.3)

for the substance vector

C =

(
CHPO2−

4

CALG

)
(11.4)

If we assume an inflow concentration of Cin,HPO2−
4

for phosphate and neglect algae in the

inflow we get the input concentration vector

Cin =

(
Cin,HPO2−

4

0

)
(11.5)

and we end up with the following differential equations for concentrations of phosphate,
CHPO2−

4
, and algae, CALG:

dCHPO2−
4

dt
=

Qin

V

(
Cin,HPO2−

4
− CHPO2−

4

)
+ rHPO2−

4
, (11.6)

dCALG

dt
= −Qin

V
CALG + rALG . (11.7)

Combining these equations with the rate expressions given above leads to

dCHPO2−
4

dt
=

Qin

V

(
Cin,HPO2−

4
− CHPO2−

4

)
− αP,ALG · kgro,ALG

CHPO2−
4

KHPO2−
4 ,ALG + CHPO2−

4

CALG , (11.8)

dCALG

dt
= −Qin

V
CALG

+ kgro,ALG

CHPO2−
4

KHPO2−
4 ,ALG + CHPO2−

4

CALG − kdeath,ALGCALG . (11.9)

Note that we wrote all these equations for this first ecosystem model to clarify our notation.
For the other ecosystem models we will only show the process table (in this case Table
11.1) and the equations for the process rates (in this case Table 11.2), provide a description
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of the physical environment, and define the inputs. This is sufficient to uniquely define
the model.

As discussed in section 5.3 such a two-dimensional system could only develop solutions
that asymptotically converge to fixed points, that converge to limit cycles, or that diverge.
To explore the potential behaviour analytically, as described in section 5.3.1, we naturally
start with identifying steady-state solutions (fixed points) and determine their stability.
The most straigtforward fixed point solution (when setting the right-hand side of the
equations 11.8 and 11.9 to zero is

Cfix,1

HPO2−
4

= Cin,HPO2−
4

, (11.10)

Cfix,1
ALG = 0 . (11.11)

as the second equation sets the right hand side of (11.9) to zero and subsequently, the
first (11.8). As we did not have to make any assumptions on the model parameters, this
solution exists for arbitrary values of the model parameters (only nonnegative values make
sense). This obviously the solution we would get in the absence of any algae. Let us find
out later, whether this solution is also relevant under other cricumstances. To find other
solutions, we assume CALG > 0, divide the right-hand side of equation (11.9) by CALG,
then set it to zero and resolve for CHPO2−

4
. Then we substitute this value into equation

11.8, set the right-hand side to zero and resolve for CALG. This leads to

Cfix,2

HPO2−
4

=
KHPO2−

4 ,ALG

kgro,ALG

kdeath,ALG + Qin
V

− 1

, (11.12)

Cfix,2
ALG =

1

αP,ALG

Qin
V

kdeath,ALG + Qin
V

Cin,HPO2−
4

−
KHPO2−

4 ,ALG

kgro,ALG

kdeath,ALG + Qin
V

− 1

 . (11.13)

As phosphate and algae concentrations need to be positive, this solution exists only if both
of the two following conditions are fulfilled:

kgro,ALG > kdeath,ALG +
Qin

V
and Cin,HPO2−

4
>

KHPO2−
4 ,ALG

kgro,ALG

kdeath,ALG + Qin
V

− 1

. (11.14)

These conditions are easy to understand, at least qualitiatively. The first condition clarifies
that positive algae concentrations are only possible if the maximum specific growth rate
exceed death and dilution of algae in the reactor. The second condition sets a lower bound
on the phosphate inflow concentration to allow net growth under the actual specific growth
rate (which, in steady-state, will be equal to the death rate plus the dilution rate).

Next, we are interested in the stability of these steady-state solutions. According
to section 5.3.1, we have to calculate the Jacobian matrix of our system of differential
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equations (11.8) and (11.9). This is given by

Jac(g) = −Qin
V
− αP,ALGkgro,ALGCALG

K
HPO

2−
4 ,ALG(

K
HPO

2−
4 ,ALG

+C
HPO

2−
4

)2 −αP,ALGkgro,ALG

C
HPO

2−
4

K
HPO

2−
4 ,ALG

+C
HPO

2−
4

kgro,ALGCALG

K
HPO

2−
4 ,ALG(

K
HPO

2−
4 ,ALG

+C
HPO

2−
4

)2 kgro,ALG

C
HPO

2−
4

K
HPO

2−
4 ,ALG

+C
HPO

2−
4

− Qin
V
− kdeath,ALG


(11.15)

Substituting the fixed point 1 (equations 11.10 and 11.11) into the Jacobian (11.15) and
solving for the eigenvalues, we get:

λfix,1
1 = −Qin

V
, λfix,1

2 = kgro,ALG

Cin,HPO2−
4

KHPO2−
4 ,ALG + Cin,HPO2−

4

− Qin

V
− kdeath,ALG

(11.16)

This means that fixed point 1 is stable if

kgro,ALG < kdeath,ALG +
Qin

V
or Cin,HPO2−

4
<

KHPO2−
4 ,ALG

kgro,ALG

kdeath,ALG + Qin
V

− 1

(11.17)

Note that, according to equation (11.14), when both of these conditions are violated, the
fixed point 2 starts to exist. The stability of the fixed point 2 can be accessed similarly,
but it leads to more complicated expressions. The result is that this fixed point is stable
whenever it exists and the eigenvalues can be real or complex.

From the fixed points and the stability analysis outlined above, and when choosing
Cin,HPO2−

4
as a driving variable, we can derive the bifurcation diagrams shown if Figure

11.1.

It is interesting to realize that for the steady-state solution (11.12) and (11.13) the
concentration of phosphate is determined by kinetic parameters of the model and dilution
and not by the input concentration of phosphate to the lake. This is because the steady-
state dynamics is flux-driven and not concentration-driven. Irrespective of the input (as
long as the conditions 11.14 are fulfilled), in the steady-state all phosphate feeding the lake
is consumed by phytoplankton. The phosphate concentration in the lake then just repre-
sents a dynamic equilibrium that is the lower, the lower the half-saturation concentration
of the algae with respect to phosphate is. On the other hand, the input concentration of
phosphate has a significant influence on the concentration of algae.

The constant driving forces considered so far may be a reasonable approximation for
the description of the ecosystem over weeks or a few months. However, to describe the
behaviour over significant fractions of a year or even several years, we have to consider
seasonal variation in environmental conditions. A simple way of doing this is by adding
temperature and light dependence factors to the growth rate of phytoplankton as it was
described by the equations (4.10) and (4.29). This leads to the modified process rates
shown in Table 11.3. We can then use seasonally varying functions for temperature, T ,
and for the light intensity at the lake surface, I0. A linear dependence of the light extinction
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Figure 11.1: Bifurcation diagrams of the fixed points of the model defined by the equations
11.8 and 11.9 as a function of the inflow concentration of phosphate, Cin,HPO2−

4
. Solid lines

indicate stable fixed points, dashed lines unstable fixed points. The left set of plots shows
the situation for kgro,ALG < kdeath,ALG + Qin

V where only the fixed point 1 exists and stays

stable. The right set of plots is for kgro,ALG > kdeath,ALG+ Qin

V where at a sufficiently high
inflow concentration the fixed point 2 starts to exist and becomes stable.

coefficient on algae concentration

λ = λ1 + λ2 · CALG (11.18)

considers basic extinction of water as well as the (self-)shading effect of algae. This leads to
an interference between internally generated population dynamics with external periodicity
in driving forces and can lead to complicated, irregular behaviour of the solutions (Huppert
et al., 2005).

In chapter 16 we show how simple aquatic ecosystem models can be implemented in
the graphics and statistics software R (http://www.r-project.org) with the aid of the
R package ecosim.

Figure 11.2 shows a dynamic simulation of the model defined by the processes given
in Table 11.1 with rate formulations according to Table 11.2 in a mixed reactor as de-
fined by equation (11.3) with constant values for inflow, inflow concentration, light and
temperature. The figure shows a relaxation of algae and phosphate concentrations to the
steady-state solution given by the equations (11.12) and (11.13).

Figure 11.3 shows results of the extended model using the growth rates given in Table
11.3 with periodic input for temperature and light according to
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Rate Rate expression

ρgro,ALG kgro,ALG,T0
· exp

(
βALG(T − T0)

)
· 1

λh
log

(
KI + I0

KI + I0 exp(−λh)

)
·

CHPO2−
4

KHPO2−
4 ,ALG + CHPO2−

4

· CALG

ρdeath,ALG kdeath,ALG CALG

Table 11.3: Process rates of the extended version of the simple lake phytoplankton model.
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Figure 11.2: Results of a simulation of the phytoplankton model with constant driving
forces and environmental conditions. Phosphate concentrations are in gP/m3, algae con-
centrations in gDM/m3, and time in days.

T (t) =
Tmax + Tmin

2
+

Tmax − Tmin

2
cos

(
2π

t− tmax

tper

)
(11.19)

and

I0(t) =
I0,max + I0,min

2
+

I0,max − I0,min

2
cos

(
2π

t− tmax

tper

)
. (11.20)

In these equations Tmax and Tmin are maximum and minimum temperature, I0,max and
I0,min are maximum and minimum light intensity at the lake surface, tmax is the point in
time at which temperature and light intensity are at their maxima, and tper is the period,
in this case one year. The results shown in Figure 11.3 demonstrate that the steady-
state solution reached under constant driving forces shown in Figure 11.2 are replaced
by seasonal variation in phosphate and algae. During summer, when temperature and
light intensity is high, phosphate concentration is very low, as the incoming phosphate is
consumed to the degree depending on the half-saturation concentration, KHPO2−

4 ,ALG, of

algae with respect to phosphate. During winter, when algae growth is reduced, phosphate
concentrations increase.

As a next step towards a lake ecosystem model, we will extend this model by zooplank-
ton. This will be done in the next section.
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Figure 11.3: Results of a simulation of the phytoplankton model with periodic environmen-
tal conditions for temperature and light. Phosphate concentrations are in gP/m3, algae
concentrations in gDM/m3, and time in days.
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11.2 Lake Phyto- and Zooplankton Model

This model is based on the chapters and sections 1, 2, 3.1, 3.2, 4.1, 4.2, 8.1, 8.3, 8.4, and
11.1. It extends the lake phytoplankton model discussed in section 11.1 by zooplankton.

A simple ecological model for describing the most important transformation processes
for phyto- and zooplankton in a lake requires the three state variables soluble reactive
phosphorus (for stoichiometric purposes assumed to be phosphate, HPO2−

4 ) as a growth-
limiting nutrient, algae (ALG) as primary producers, and zooplankton (ZOO) as secondary
producers. We consider growth (see sections 8.1 and 8.4) and death (see section 8.3) of
both plankton groups. When denoting the phosphorus content of algae by αP,ALG and the
yield of grazing by zooplankton by YZOO, we get the process table shown as Table 11.4.

Process Substances / Organisms Rate

HPO2−
4 ALG ZOO

gP gDM gDM

Growth of algae −αP,ALG 1 ρgro,ALG

Death of algae −1 ρdeath,ALG

Growth of zooplankton − 1

YZOO
1 ρgro,ZOO

Death of zooplankton −1 ρdeath,ZOO

Table 11.4: Process table of a simple lake plankton model.

Similarly to the model described in section 11.1, we set up a first model version only
considering nutrient limitation for the growth of algae and limitation of zooplankton
growth by the available algae. This leads to the transformation rates shown in Table
11.5. The process rate of algal growth considers a growth limitation by phosphate that

Rate Rate expression

ρgro,ALG kgro,ALG

CHPO2−
4

KHPO2−
4 ,ALG + CHPO2−

4

CALG

ρdeath,ALG kdeath,ALG CALG

ρgro,ZOO kgro,ZOO CALG CZOO

ρdeath,ZOO kdeath,ZOO CZOO

Table 11.5: Process rates of the first version of the simple lake phyto- and zooplankton
model.

reaches saturation at high phosphate concentrations according to equation (4.11). The
process rate of zooplankton growth is proportional to algae as well as zooplankton con-
centrations. This considers the dependence of zooplankton growth on algae as their food.
Note that this process model is exactly the same as the one discussed in example 4.2.

As in section 11.1, we apply this transformation process model in a completely mixed
reactor describing the epilimnion of the lake. We assume the input concentration of
phosphate to be given by Cin,HPO2−

4
and no input for algae and zooplankton. Other

transfer processes across interfaces are neglected.
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When driving the model described above with constant inflow and inflow concentra-
tions, there is a stronger tendency than in the model dicussed in the previous section
for periodic behaviour. For the latter solutions, the cycle starts with the development of
algae. The population of zooplankton increases with some delay due to increasing food
resources by increasing algae concentrations. Once the zooplankton population becomes
too large, the phytoplankton population breaks down. Due to starvation, the zooplankton
population also breaks down and allows the algae to start their development again. There
is no seasonality in this behaviour.

A simple way to introduce seasonality is to consider temperature and light dependence
of the phytoplankton growth rate according to (4.10) and (4.29) (see also Table 11.3) and
temperature dependence of the zooplankton growth rate. This leads to the process rates
shown in Table 11.6. We can then use seasonally varying functions for temperature, T ,

Rate Rate expression

ρgro,ALG kgro,ALG,T0
· exp

(
βALG(T − T0)

)
· 1

λh
log

(
KI + I0

KI + I0 exp(−λh)

)
·

CHPO2−
4

KHPO2−
4 ,ALG + CHPO2−

4

· CALG

ρdeath,ALG kdeath,ALG CALG

ρgro,ZOO kgro,ZOO,T0 · exp
(
βZOO(T − T0)

)
· CALG CZOO

ρdeath,ZOO kdeath,ZOO CZOO

Table 11.6: Process rates of the extended version of the simple lake phyto- and zooplankton
model.

and for the light intensity at the lake surface, I0. This leads to an interference between in-
ternally generated periodicity of population behaviour with external periodicity in driving
forces and can lead to complicated, irregular behaviour of the solutions (Huppert et al.,
2005).

Figure 11.4 shows a dynamic simulation of the model defined by the processes given in
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Figure 11.4: Results of a simulation of the phytoplankton-zooplankton lake model with
constant driving forces and environmental conditions. Phosphate concentrations are in
gP/m3, algae and zooplankton concentrations in gDM/m3, and time in days.
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Table 11.4 with rate formulations given in Table 11.5 and in a mixed reactor as defined by
equation (11.3) with constant values for inflow and inflow concentrations. These solutions
were calculated using the graphics and statistics software R (http://www.r-project.org)
with the aid of the R package ecosim.

Figure 11.5 shows results of the extended model with the growth rates given in Table
11.5 replaced by those given in Table 11.6 and with periodic input for temperature and
light according to the equations (11.19) and (11.20). The results demonstrate that the
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Figure 11.5: Results of a simulation of the phytoplankton-zooplankton model with peri-
odic environmental conditions for temperature and light. Phosphate concentrations are in
gP/m3, algae and zooplankton concentrations in gDM/m3, and time in days.

interference of the external with the internal periodicity leads to a yearly succession of
several cycles of algae and zooplankton peaks. During summer when light intensity and
temperature are high, growth can take place and oscillations of algae, zooplankton and
phosphate occur. During winter the growth rates of algae and zooplankton are very low due
to the low light intensity and temperature. During algal blooms, phosphate concentration
is very low, between blooms and in winter, when algal growth is significantly reduced,
phosphate concentration is high.

The model discussed in this section is nice to discuss the basic features of how to
build-up an ecosystem model for an aquatic system and to start training of model im-
plementation. However, it has severe deficits. The major deficit is the assumption of
zero fluxes across the interfaces of the epilimnion. Dead plankton, fecal pellets and other
organic particles are sedimenting out of the epilimnion down to the sediment of the lake.
These particles are mineralized and release nutrients that diffuse back through the water
column to the epilimnion. This leads to significant feedback mechanisms and retardation
of the reaction of concentrations in the lake to changes in phosphate input. In addition, the
mineralization processes consume dissolved oxygen or, in the absence of oxygen, nitrate.
This leads to effects on the concentrations of these substances in the water column. In
the next two sections, we will further extend this model to a more realistic model of a lake
ecosystem that considers these processes. Even more realistic, but also more complicated
lake ecosystem models will be discussed in chapter 13.
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11.3 Two Box Oxygen and Phosphorus Lake Model

The lake model provided in section 11.2 demonstrated the succession of phyto- and zoo-
plankton in the epilimnion of a lake. In this section we extend the phosphorus cycle of this
model, improve the spatial resolution of the water column, and add dissolved oxygen as
an additional compound considered in the model. In addition to the chapters and sections
1, 2, 3.1, 3.2, 4.1, 4.2, 8.1, 8.3, 8.4, and 11.1 required for the previous model and to the
section 11.2 in which the previous model is defined, this model requires knowledge of the
sections 3.3, 4.3, 6.1.1, 6.2, 6.3, 8.2, and 8.5.

To make the lake ecosystem model described in section 11.2 more realistic we make
the following changes:

� We add dissolved oxygen (O2), suspended particulate organic matter (POM), and
sedimented particulate organic matter (SPOM) as additional substances to be mod-
elled as state variables.

� We divide the water column into two mixed reactors describing epilimnion and hy-
polimnion and introduce gas exchange at the lake surface, turbulent diffusion through
the metalimnion, and sedimentation from the epilimnion to the hypolimnion as ad-
ditional transport processes.

� We add sedimented organic particles (SPOM) as an additional model component to
get a very simple “flat” sediment model and add sedimentation of suspended organic
particles from the hypolimnion to the sediment as an additional process.

� We add respiration of algae and zooplankton, mineralization of suspended and sed-
imented particulate organic compounds as additional processes.

This leads to a much more realistic description of the dissolved oxygen and phosphorus
balance in the lake.

Table 11.7 shows the process table of this model. In this table, YZOO is the yield of
zooplankton growth (see section 8.4 for details), fe is the fraction of particle production
by grazing zooplankton due to excretion and sloppy feeding (see section 8.4 for details),
YALG,death and YZOO,death are the yields of algae and zooplankton death (see section 8.3 for
details), and the remaining stoichiometric coefficients can be calculated by applying the
techniques outlined in section 4.3. Note that we need the additional substances HCO−

3 ,
H+ and H2O to derive the correct stoichiometry for dissolved oxygen although we do not
include these substances in the model. Negative signs “−” in Table 11.7 indicate negative
stoichiometric coefficients, positive signs “+” positive coefficients and, “0/+” indicate
coefficients that should be made non-negative by an appropriate choice of compositional
parameters.

The process rates in this model are given in Table 11.8. These are quite straightforward,
with the exception of the last one which is a transfer and not a transformation process.
Because of the simple “flat” sediment model and our concept of distinguishing dissolved
and suspended substances in a mixed rector from those attached to a surface, the transfer
from suspended to attached must be formulated as a transformation process. This is done
by the last equation in Table (11.8) which only applies in the hypolimnion.
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Process Substances / Organisms Rate

HPO2−
4 O2 ALG ZOO POM SPOM

gP gO gDM gDM gDM gDM

Growth of algae − + 1 ρgro,ALG

Respiration of algae + − −1 ρresp,ALG

Death of algae 0/+ 0/+ −1 YALG,death ρdeath,ALG

Growth of zooplankton 0/+ − −1

YZOO
1

fe
YZOO

ρgro,ZOO

Respiration of zoopl. + − −1 ρresp,ZOO

Death of zooplankton 0/+ 0/+ −1 YZOO,death ρdeath,ZOO

Mineral. of org. part. + − −1 ρminer,POM

Min. of org. part. in sed. + − −1 ρminer,SPOM

Sed. of org. particles −1 1 ρsed,POM

Table 11.7: Process table of the oxygen-phosphorus lake model.

In addition to the transformation processes we have to describe oxygen exchange with
the atmosphere as an interface flux to the epilimnion

Jepi
int,O2

= vex,O2 A (CO2,sat − CO2) (11.21)

where vex,O2 is the gas exchange velocity of oxygen, A is the surface area of the lake, and
CO2,sat is the saturation concentration of dissolved oxygen in the epilimnion. See section
6.3 for more details on this process. Furthermore we need a diffusive exchange describ-
ing turbulent mixing between epilimnion and hypolimnion that applies to all substances.
According to the equations (3.17) and (6.12) this exchange flux is given by

Jepimeta = Ameta
Kz,meta

hmeta
(Cepi −Chypo) (11.22)

where Ameta is the cross-sectional area of the metalimnion, Kz,meta the coefficient of turbu-
lent diffusivity in the metalimnion, and hmeta is the thickness of the metalimnion. Finally,
we need a sedimentation flux for suspended organic particles from the epilimnion to the
metalimnion. This flux is given by

Jepimeta
POM = Ameta vsed,POM Cepi

POM (11.23)

where vsed,POM is the sedimentation velocity of suspended organic particles.

Figure 11.6 shows examples of results for this model for a simulation of one year. During
the stratification period (about days 150 to 350) algal growth leads to a significant decrease
in phosphate concentrations in the epilimnion whereas the hypolimnion concentrations
increase due to mineralisation of organic material in the sediment. Dissolved oxygen
shows supersaturation in the epilimnion during strong production peaks and a decrease
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Rate Rate expression

ρgro,ALG kgro,ALG,T0
· exp

(
βALG(T − T0)

)
· 1

λh
log

(
KI + I0

KI + I0 exp(−λh)

)
·

CHPO2−
4

KHPO2−
4 ,ALG + CHPO2−

4

· CALG

ρresp,ALG kresp,ALG,T0 · exp
(
βALG(T − T0)

)
· CO2

KO2,ALG + CO2

· CALG

ρdeath,ALG kdeath,ALG · CALG

ρgro,ZOO kgro,ZOO,T0
· exp

(
βZOO(T − T0)

)
· CO2

KO2,ZOO + CO2

· CALG · CZOO

ρresp,ZOO kresp,ZOO,T0
· exp

(
βZOO(T − T0)

)
· CO2

KO2,ZOO + CO2

· CZOO

ρdeath,ZOO kdeath,ZOO · CZOO

ρminer,POM kminer,POM,T0 · exp
(
βBAC(T − T0)

)
· CO2

KO2,miner + CO2

· CPOM

ρminer,SPOM kminer,SPOM,T0 · exp
(
βBAC(T − T0)

)
· CO2

KO2,miner + CO2

· DSPOM

KSPOM,miner,sed +DSPOM

ρsed,POM
vsed,POM

hhypo
· CPOM

Table 11.8: Process rates of the oxygen-phosphorus lake model.

in the hypolimnion due to mineralisation of organic material in the sediment. Algae
and zooplankton show similar oscillations as in the model shown in section 11.2 with a
different period due to different parameter values. Concentrations of particulate organic
matter in the epilimnion follow the pattern of algae and zooplankton due to death, sloppy
feeding and excretion, the concentrations in the hypolimnion follow the same pattern due
to sedimentation. Finally, the surface densities in the sediment follow the pattern with a
damped amplitude due to accumulation and mineralization. During winter mixing takes
place. Combined with lower light intensities and temperatures this leads to a decrease in
plankton growth and concentrations.
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Figure 11.6: Results of a simulation of the two box oxygen and phosphorus lake model.
Phosphate concentrations are in gP/m3, oxygen concentrations in gO/m3, algae, zooplank-
ton and suspended particulate organic matter concentrations in gDM/m3, sedimented par-
ticulate organic matter in gDM/m2, and time in days.
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11.4 Model of Biogeochemical Cycles in a Lake

The lake models discussed in sections 11.2 and 11.3 demonstrated succession of phyto-
and zooplankton and major elements of the phosphorus and oxygen household of a lake.
The model described in this section further improves the oxygen and phosphorus cycle of
this model and it adds the nitrogen cycle. In addition to the chapters and sections 1, 2,
3.1, 3.2, 3.3, 4.1, 4.2, 4.3. 6.1.1, 6.2, 6.3, 8.1, 8.3, 8.4, 8.2, 8.5, and 11.1 required for the
previous model and to the section 11.3 in which the previous model is defined, this model
requires knowledge of the section 8.6.

To make the lake ecosystem model described in section 11.3 more complete and more
realistic we make the following changes.

� We divide suspended and sedimented particulate organic matter (POM, SPOM) into
degradable (POMD, SPOMD) and inert (POMI, SPOMI) fractions to account for
the wide spectrum of degradability of these compounds.

� We add ammonium (NH+
4 ) and nitrate (NO−

3 ), distinguish primary production into
a process that consumes ammonium and a process that consumes nitrate to satisfy
the nitrogen need, and we consider the nitrogen content of all organic fractions.

� We add anoxic mineralization in the sediment as an additional process leading to
denitrification.

Table 11.9 shows the process table of this model. The new stoichiometric parameter
fI quantifies the fraction of inert organic particles produced due to death, excretion and
sloppy feeding. The stoichiometric coefficients that are not specified quantitatively in Ta-
ble 11.9 can be calculated by applying the techniques outlined in section 4.3. Note that
we need the additional substances N2, HCO

−
3 , H

+ and H2O to derive the correct stoichio-
metric coefficients although we do not include these substances in the model. Negative
signs “−” in Table 11.9 indicate negative stoichiometric coefficients, positive signs “+”
positive coefficients, and “0/+” indicate coefficients that should be made non-negative by
an appropriate choice of compositional parameters.

The process rates in this model are shown in Table 11.10.
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The stoichiometry (Table 11.9) and rates (Table 11.10) of primary production using
ammonium or nitrate are discussed in section 8.1 (Table 8.1 and equations 8.4 and 8.5).
The stoichiometry (Table 11.9) and process rate (Table 11.10) of respiration of algae are
discussed in section 8.2 (Table 8.2 and equation 8.6). The respiration process of zooplank-
ton (Tables 11.9 and 11.10) is formulated analogously. The stoichiometry (Table 11.9)
and process rate (Table 11.10) of death of algae are discussed in section 8.3 (Table 8.3 and
equation 8.10). The death process of zooplankton (Tables 11.9 and 11.10) is formulated
analogously. The stoichiometry (Table 11.9) and process rate (Table 11.10) of growth of
zooplankton is discussed in a more general context of consumption in section 8.4 (Table
8.4 and equation 8.15). The stoichiometry (Table 11.9) and process rate (Table 11.10) of
nitrification is discussed in section 8.6 (Table 8.8 and equation 8.21). The stoichiometry
(Table 11.9) and process rate (Table 11.10) of oxic mineralization is discussed in section
8.5.1 (Table 8.5 and equation 8.16).

The stoichiometry of oxic mineralization in the sediment is the same (Table 11.9) as in
the water column. However, to account for our simple “flat” sediment model which does
not account for dissolved substance concentrations within the sediment, we do not use the
process rate recommended in section 8.5.1. This rate was based on oxygen concentration
at the place where mineralization takes place. In our simplified approach, we have to
formulate oxic mineralization as a function of dissolved oxygen concentration in the water
column. Oxic mineralization of sedimented organic particles will be limited by diffusion of
dissolved oxygen into the sediment. In a thin sediment layer, where we have no diffusion
limitation, we could use the description used in the free water column (Table 11.10).
However, with increasing depth of the sediment layer proportionality with organic particles
cannot longer be maintained as dissolved oxygen will only be available in the top layer.
Thus, we need a process formulation which is proportional to particle density at small
densities but reaches a constant saturation value when the particle density increases.
This is done with a Monod-term in the surface density of sedimented degradable organic
particles (Table 11.10). The half-saturation concentration in this term must correspond
to a sediment density at which diffusion limitation becomes relevant.

The stoichiometry of anoxic mineralization in the sediment (Table 11.9) is discussed
in section 8.5.2 (Table 8.6). The process rate would usually be formulated with an in-
hibition term with respect to dissolved oxygen and a limitation by nitrate as shown by
equation (8.19). This formulation cannot be used in our simple sediment model that is
based on concentrations of dissolved substances in the water column (rather than in-situ
concentrations varying with the depth of the sediment). In a real sediment we would have
a depletion of dissolved oxygen in the top layer and then depletion of nitrate in a layer
below. This means that in a thin sediment layer, we would only have oxic mineralization.
In a thicker sediment layer we would in addition (in deeper layers) have anoxic mineral-
ization. With further increasing sediment thickness, both rates would become constant as
additional thickness only leads to sediment layers that are depleted of dissolved oxygen
and nitrate. A very simple description of this behaviour can be achieved by a quadratic
Monod-term as shown in equation (Table 11.10). This term leads to the dominance of oxic
mineralization at small sediment thickness followed by a slower approach to saturation of
anoxic mineralization as compared to oxic mineralization.

The last two transformation rates in Table 11.10 describe sedimentation of degradable
and inert organic particles as a process transforming suspended to sedimented substances
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of the same condition. This process is mathematically formulated as a transformation
process, because we distinguish these two types of state variables in a mixed reactor;
physically, this is a transfer process. This process would also in our model become a
transfer process, if we would model sediment layers by individual mixed boxes.

Similarly to the previous model described in section 11.3 we have transfer fluxes be-
tween the epilimnion and hypolimnion boxes and two compartments not described by the
model. Oxygen exchange with the atmosphere is described as an interface flux to the
epilimnion

Jepi
int,O2

= vex,O2 A (CO2,sat − CO2) (11.24)

where vex,O2 is the gas exchange velocity of oxygen, A is the surface area of the lake, and
CO2,sat is the saturation concentration of dissolved oxygen in the epilimnion. See section
6.3 for more details on this process.

Furthermore we need a diffusive exchange describing turbulent mixing between epil-
imnion and hypolimnion that applies to all substances. According to the equations (3.17)
and (6.12) this exchange flux is given by

Jepi hypo = Ameta
Kz,meta

hmeta
(Cepi −Chypo) (11.25)

where Ameta is the cross-sectional area of the metalimnion, Kz,meta the coefficient of tur-
bulent diffusivity in the metalimnion, and hmeta is the thickness of the metalimnion. Note
that the turbulent diffusivity will have a strong seasonal variation, being small during the
stratification period in spring and summer and large during the overturn period in winter.
Finally, we need sedimentation fluxes of suspended degradable and inert organic particles
from the epilimnion to the metalimnion. These fluxes are given by

Jepi hypo
POMD = Ameta vsed,POM Cepi

POMD (11.26)

Jepi hypo
POMI = Ameta vsed,POM Cepi

POMI (11.27)

where vsed,POM is the (common) sedimentation velocity of suspended organic particles.

Figure 11.7 shows an example of a two year run of this model. Algae and zooplankton
still qualitatively reflect the succession behaviour we have seen in the simple didactical
model in section 11.2. This leads to corresponding depletion of nitrate and phosphate
during the stratification and (simultaneously) production period. Note that phosphate
shows a stronger relative depletion and, therefore, becomes limiting before ammonium
and nitrate. Due to sedimenting dead degradable organic particles and their mineraliza-
tion in the sediment, nitrate and phosphate released by mineralization accumulate in the
hypolimnion during the stratified period. At the same time, also due to mineralization,
dissolved oxygen is depleted. The time courses of organic particles just reflect their pro-
duction as they are transported relatively quickly to the sediment. Degradable organic
particles are accumulated in the sediment during production periods, but are quickly
degraded when production is small, whereas inert organic particles accumulate in the sed-
iment from year to year. Note that this distinction of organic particles into degradable
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and inert is a very simple approximation of a wide spectrum of degradation rates for dif-
ferent organic constituents. Due to mixing and lower light intensities and temperatures in
winter this oscillation is interrupted. As in the previous examples growth rates are very
low during the mixing period in winter.

The time courses of concentrations of all relevant compounds in the lake shown in
Figure 11.7 can be used to calculate the corresponding mass fluxes. Table 11.11 shows
the average phosphorus and nitrogen mass fluxes of the simulations shown in Figure 11.7.
Since we did not include molecular nitrogen as a state variable in the model, the amount
of molecular nitrogen that is produced by the dentirification of nitrate appears as a gap in
the mass balance. For phosphorus the mass balance is closed. There might appear just a
very small gap due to the numerical inaccuracy of the numerical simulation of the model.

Flux Substances Phosphorus (t/a) Nitrogen (t/a)

Input HPO2−
4 , NO−

3 12.6 158

Output HPO2−
4 , NO−

3 , NH
+
4 9.3 127

ALG, ZOO, POMD, POMI 1.2 11.5

Accumulation HPO2−
4 , NO−

3 , NH
+
4 1.2 -7.4

ALG, ZOO, POMD, POMI 0.0 0.0

SPOMD 0.0 0.2

SPOMI 1.0 8.6

Loss Denitrification of NO−
3 0.0 17.9

Table 11.11: Average mass fluxes, accumulation and loss rates over the simulation period
shown in Figure 11.7.
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Figure 11.7: Results of a simulation of the two box model for biogeochemical cycles in a lake.
Ammonium and nitrate concentrations are in gN/m3, phosphate concentrations in gP/m3,
oxygen concentrations in gO/m3, algae, zooplankton and suspended particulate organic
matter concentrations in gDM/m3, sedimented particulate organic matter in gDM/m2,
and time in days.
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11.5 Oxygen and Nutrient Household Model of a River

In this section we construct a simple model for the oxygen and nutrient household in a
river as it results from conversion processes of benthic organisms. We will extend this
model to describe these benthic organisms in section 11.6.

The model discussed in this section is based on the conceptual development discussed
in sections 1, 2, 3.1, 3.2, 3.3, 4.1, 4.2, and 4.3. Furthermore, we need knowledge of the
processes discussed in sections 6.1.2, 6.3, 8.1, 8.2, 8.5, and 8.6.

Table 11.12 shows the process table of the model. Growth of benthic algae consumes

Process Substances / Organisms Rate

HPO2−
4 NH+

4 NO−
2 NO−

3 O2 SALG SPOM

gP gN gN gN gO gDM gDM

Growth of algae NH+
4 − − + 1 ρ

gro,SALG,NH+
4

Growth of algae NO−
3 − − + 1 ρ

gro,SALG,NO−
3

Respiration of algae + + − −1 ρresp,SALG

First step of nitrification −1 + − ρnitri1

Second step of nitrification −1 + − ρnitri2

Mineralization + + − −1 ρminer,SPOM

Table 11.12: Process table of a model for oxygen and nutrient dynamics in a river.

phosphate and ammonium or nitrate from the water column and produces dissolved oxy-
gen. Respiration of benthic algae requires consumption of dissolved oxygen from the water
column and leads to release of phosphate and ammonium. Nitrification oxydizes ammo-
nium to nitrite and nitrite to nitrate. Finally, mineralization transforms organic particles
deposited in the sediment under consumption of dissolved oxygen to dissolved nutrients.
By adding HCO−

3 , H
+ and H2O to the substance list, we have 6 unknown stoichiometric

coefficients to determine for each process. This can uniquely be done without additional
constraints or stoichiometric parameters by applying the techniques described in section
4.3. The routines from the R package stoichcalc described in section 15 can be used for
this purpose.

The process rates of the model are given in Table 11.13. For algae growth we use the
rates given by the equations (8.2) and (8.3) given in section 8.1 with using the in-situ light
intensity

I = I0 exp(−λh) (11.28)

at the river bed below a water column of height h. Note that we do not have to average
the production rate over the water column as we did it for the lake models, as we model
benthic algae here. However, we consider self-shading of algae in the benthic biofilm by
a limitation term in the algae area density with a parameter Ksha,SALG that represents
the algae area density at which the growth rate is reduced to 50% due to self-shading.
Respiration of benthic algae is formulated analogously to that of suspended algae given by
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Rate Rate expression

ρgro,ALG,NH+
4

kgro,SALG,T0
· exp

(
βALG(T − T0)

)
· I0 exp(−λh)

KI + I0 exp(−λh)

·min

(
CHPO2−

4

KHPO2−
4 ,ALG + CHPO2−

4

,
CNH+

4
+ CNO−

3

KN,ALG + CNH+
4
+ CNO−

3

)
·

pNH+
4
CNH+

4

pNH+
4
CNH+

4
+ CNO−

3

Ksha,SALG

Ksha,SALG +DSALG
·DSALG

ρgro,ALG,NO−
3

kgro,SALG,T0 · exp
(
βALG(T − T0)

)
· I0 exp(−λh)

KI + I0 exp(−λh)

·min

(
CHPO2−

4

KHPO2−
4 ,ALG + CHPO2−

4

,
CNH+

4
+ CNO−

3

KN,ALG + CNH+
4
+ CNO−

3

)
·

CNO−
3

pNH+
4
CNH+

4
+ CNO−

3

Ksha,SALG

Ksha,SALG +DSALG
·DSALG

ρresp,ALG kresp,SALG,T0
· exp

(
βALG(T − T0)

)
· CO2

KO2,ALG + CO2

·DSALG

ρnitri1 knitri1,T0
· exp

(
βnitri1(T − T0)

)
·min

(
CNH+

4

KNH+
4 ,nitri + CNH+

4

,
CO2

KO2,nitri + CO2

)

ρnitri2 knitri2,T0
· exp

(
βnitri2(T − T0)

)
·min

(
CNO−

2

KNO−
2 ,nitri + CNO−

2

,
CO2

KO2,nitri + CO2

)
ρminer,SPOM kminer,SPOM,T0 · exp

(
βBAC(T − T0)

)
· CO2

KO2,miner + CO2

·DSPOM

Table 11.13: Process rates of the model for oxygen and nutrient dynamics in a river.

equation 8.6 in section 8.2. The process rates of nitrification are given by the equations
(8.24) and (8.25) in section 8.6. Finally, the process rate of mineralization is given by
applying equation (8.16) from section 8.5 to sedimented particulate organic material.

This model is applied to a river section modelled by three reaches, R1-R3, represented
by mixed reactors in sequence. The volume of each of these reactors is calculated as the
product of the mean river width, the mean depth and the length of the reach

VRi = LRi · wRi · hRi (11.29)

All dissolved substances are transported with the water from one reactor to the next

JRi Ri+1 = Q CRi (11.30)

where Q is the river discharge. In addition, there is dissolved oxygen exchange across the
water surface in each reactor as described in section 6.3

JRi
int,O2

= K2 VRi (CO2,sat − CRi
O2

) (11.31)

where K2 is the oxygen exchange coefficient.

Figure 11.8 shows results of a simulation of the model described in this section for 3
days.

For this simulation, the model was operated with constant values of benthic biomass
(SALG) and of sedimented organic particles (SPOM). The figure clearly shows that the
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Figure 11.8: Time series of ammonium (gNH+
4 -N/m3), nitrite (gNO−

2 -N/m3), nitrate
(gNO−

3 -N/m3), phosphate (gHPO2−
4 -P/m3), and dissolved oxygen (gO2/m

3) in all three
river reaches.

light and temperature dependent primary production leads to strong diurnal variations in
ammonium, phosphate and dissolved oxygen. The temperature dependence of respiration,
nitrification and mineralization leads to additional diurnal variations in the concentration
of ammonium, phosphate and dissolved oxygen. As ammonium is oxidized to nitrite
and nitrate, the variation in ammonium leads to similar variation in nitrite. Nitrate is
much less affected as the concentration is much larger than that of ammonium or nitrite.
Mineralization and respiration lead to release of ammonium and phosphate. As ammonium
is nitrified and ammonium and phosphate are consumed by primary production during the
day, this results only in an increase of phosphate concentrations during the night. Oxygen
is consumed by the processes of respiration of algae, nitrification, and mineralization of
organic particles. Oxygen concentration depends furthermore on the gas exchange with
the atmosphere. For this reason, it is necessary to know the oxygen exchange coefficient
to estimate parameters of primary production and mineralization with the help of oxygen
concentrations in the water column. The differences in substance concentrations in the
three different reaches of the river occur due to the differences in the input concentrations
of each reach. In reach R1 the input concentrations are explicitly given. In reach R2 and
R3 the input concentrations are calculated as the output concentrations of the previous
reach R1 and R2, respectively.
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11.6 Benthic Population Model of a River

In this section, the simple model for the oxygen and nutrient household in a river intro-
duced in section 11.5 is extended to describe the benthic organisms causing the transfor-
mation processes.

The model discussed in this section is based on the model described in section 11.5.
We need the conceptual development discussed in the sections 1, 2, 3.1, 3.2, 3.3, 4.1, 4.2,
and 4.3. Furthermore, we need knowledge of the processes discussed in the sections 6.1.2,
6.3, 8.1, 8.2, 8.3, 8.7, and 8.8.

Table 11.14 shows the process table of the model. We distinguish four groups of or-
ganisms: Benthic algae (SALG), benthic heterotrophic bacteria (SHET), benthic bacteria
that perform the first nitrification step (SN1), and benthic bacteria that perform the sec-
ond nitrification step (SN2). For all four groups of organisms, we distinguish growth,
death and respiration processes. Growth is described in section 8.1 for algae, in section
8.8.1 for heterotrophic bacteria, and in section 8.8.2 for nitrifiers. We complement these
rate expressions with limitation terms due to self-shading of algae (see section 11.5) and
another, similar limitation term to empirically describe the limitaton of bacterial growth
due to diffusion limitation of nutrients and oxygen into the biofilm. Respiration is de-
scribed in section 8.2 and death in section 8.3. As a last process, hydrolysis is represented
as described in section 8.7. When considering the additional substances HCO−

3 , H
+, and

H2O and the conservation laws for C, H, O, N, P and charge, all stoichiometric coefficients
are uniquely determined when we introduce yields for heterotrophic growth, both steps of
nitrification, and death (see Table 11.14).

The process rates are given in Table 11.15.
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These formulations are according to the sections 8.1 for growth of algae, 8.8.1 for growth
of heterotrophic bacteria, 8.8.2 for growth of nitrifiers, 8.2 for respiration processes, 8.3
for death processes, and 8.7 for hydrolysis with minor adaptations for the formulation for
benthic instead of suspended organisms.

This model is applied to a river section modelled by three reaches, R1-R3, represented
by mixed reactors in sequence. The volume of each of these reactors is calculated as the
product of the mean river width, the mean depth and the length of the reach

VRi = LRi · wRi · hRi (11.32)

All dissolved substances are transported with the water from one reactor to the next

JRi Ri+1 = Q CRi (11.33)

where Q is the river discharge. In addition, there is dissolved oxygen exchange across the
water surface in each reactor as described in section 6.3

JRi
int,O2

= K2 VRi (CO2,sat − CRi
O2

) (11.34)

where K2 is the oxygen exchange coefficient.

Figure 11.9 shows results of a simulation of the model for given, constant benthic
organism densities, Figure 11.10 for allowing the organisms to grow. These figures show
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Figure 11.9: Time series of ammonium (gNH+
4 -N/m3), nitrite (gNO−

2 -N/m3), nitrate
(gNO−

3 -N/m3), phosphate (gHPO2−
4 -P/m3), dissolved oxygen (gO2/m

3), and dissolved or-
ganic matter (gDOM/m3) in all three river reaches for a simulation with constant benthic
organism densities.
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Figure 11.10: Time series of ammonium (gNH+
4 -N/m3), nitrite (gNO−

2 -N/m3), nitrate
(gNO−

3 -N/m3), phosphate (gHPO2−
4 -P/m3), dissolved oxygen (gO2/m

3), and dissolved
organic matter (gDOM/m3), benthic algae (gDM/m2), benthic heterotrophic bacte-
ria (gDM/m2), benthic first stage nitrifiers (gDM/m2), benthic second stage nitrifiers
(gDM/m2), and benthic particulate organic matter (gDM/m2) in all three river reaches.

the phenomena discussed at the end of section 11.5 with the additional changes of benthic
biomass of the different organisms classes. Dissolved organic matter in the water column
(DOM) is produced during the process of hydrolysis and consumed by the growth of
heterotrophic bacteria. In figure 11.9 with constant bacteria density the diurnal variation
in DOM concentration result mainly from variations in ammonium and to a smaller extent
from the temperature dependency of hydrolysis and growth of heterotrophic bacteria. In
figure 11.10 with modelled density of benthic algae and bacteria the DOM concentrations
vary depending on the relation between consumption and production rate. Algae are
growing only during the day, because the growth process is limited by the available light.
During the night the processes of respiration and death lead to a decrease of the algae
density. This leads to the diurnal variation of algae density. In total the algae density
increases with time. The density of heterotrophic bacteria increases as well due to the fact
that the growth rate exceeds respiration and death. The control of algae and heterotrophic
bacteria would be achieved by grazing by higher organisms and/or by detachment due to
the shear force of water flow. Nitrifying bacteria densities decrease with time because
the increase due to growth is overcompensated by death and respiration processes. The
density of organic particles (POM) decreases as well since the rate of hydrolysis is greater
than the production by the death processes of algae and bacteria.
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11.7 Model Predictions with Stochasticity and Uncertainty

In this section, we add environmental stochasticity and parameter uncertainty, as described
in chapter 9 to the models discussed in the sections 11.1 and 11.2. These models are based
on the chapters and sections 1, 2, 3.1, 3.2, 4.1, 4.2, 8.1, 8.3, and 8.4. The model descriptions
are not reproduced here, please refer to the sections 11.1 and 11.2.

Figure 11.11 shows the results of 10 Monte Carlo simulations of the model described
in section 11.1 under constant driving conditions with either parameter uncertainty or
environmental stochasticity in the parameters kgro,ALG, kdeath,ALG and KHPO2−

4 ,ALG. For
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Figure 11.11: Results of 10 Monte Carlo simulations for the model described in section
11.1 under constant driving conditions with parameter uncertainty (top row) and with
environmental stochasticity (bottom row). The standard deviation of the parameters is in
both cases 10%. (See Fig. 11.2 for the analogous results without uncertainty.)

parameter uncertainty, a sample of 10 draws of parameter values was taken from lognor-
mal distributions with the mean given by the parameter value used in section 11.1 and
a standard deviation of 10%. The top row of plots in Fig. 11.11 then shows the corre-
sponding 10 model simulations. Analogously, to consider environmental stochasticity, 10
realizations of Ornstein-Uhlenbeck processes were drawn for the log-parameters with a
correlation time of 5 days and parameters such that the mean and standard deviation
in the original units are the same as for parameter uncertainty (see section 14.3 for the
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required transformations). Then, again, model simulations were done based on these 10
sets of parameter time series. Please note that the 10 Monte Carlo simulations shown in
Fig. 11.11 (and Figs. 11.12 to 11.14) give only a rough idea of the order of magnitude of
the prediction uncertainty. To get more accurate results, one would perform hundreds or
thousands of simulations and use empirical quantiles of the simulation results as approx-
imate prediction quantiles. However, for the didactical purpose of this section, example
runs of such a large sample may be more illustrative and take much less simulation time.
Figure 11.12 shows the corresponding results under periodic driving conditions as they
were used in section 11.1. Please note that the results with environmental stochasticity
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Figure 11.12: Results of 10 Monte Carlo simulations for the model described in section
11.1 under periodic driving conditions with parameter uncertainty (top row) and with
environmental stochasticity (bottom row). The standard deviation of the parameters is in
both cases 10%. (See Fig. 11.3 for the analogous results without uncertainty.)

tend to be less uncertain than those with parameter uncertainty as the parameters do not
stay at the same value during the course of the simulation but it fluctuates around its
mean.

Figure 11.13 shows the results of the model described in section 11.2 under constant
driving conditions with either parameter uncertainty or environmental stochasticity in
the parameters kgro,ALG, kdeath,ALG, KHPO2−

4 ,ALG, kgro,ZOO and kdeath,ZOO. Figure 11.14

shows the analogous results of the same model under the same periodic driving conditions
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Figure 11.13: Results of 10 Monte Carlo simulations for the model described in section
11.2 under constant driving conditions with parameter uncertainty (top row) and with
environmental stochasticity (bottom row). The standard deviation of the parameters is in
both cases 10%. (See Fig. 11.4 for the analogous results without uncertainty.)

as they were used in section 11.2. Note that changes in parameters lead to changes in
phase, period and amplitude of the oscillatory behaviour of this model. This leads to a
much larger uncertainty than in the case of the steady-state solution of the phytoplankton
model shown in the Figs. 11.11 and 11.12. Another interesting observation is that in
contrast to the results of the phytoplankton model, the prediction uncertainty due to
parametric uncertainty is now smaller than that due to environmental stochasticity. This
may be caused by amplitude amplifications induced by the stochasticity (McKane and
Newman, 2005).
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Figure 11.14: Results of 10 Monte Carlo simulations for the model described in section
11.2 under periodic driving conditions with parameter uncertainty (top row) and with
environmental stochasticity (bottom row). The standard deviation of the parameters is in
both cases 10%. (See Fig. 11.5 for the analogous results without uncertainty.)
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Chapter 12

Extensions of Processes and
Model Structure

In the preceding chapters of this manuscript we dealt with the formulation of physi-
cal, chemical and biological processes relevant in ecosystems, their combination to simple
ecosystem process models, and the behaviour of the resulting ecosystem model. With the
simple, didactical models, we already reached a significant level of complexity of ecosys-
tem description. However, natural ecosystems are still much more complicated than our
models and it remains a difficult decision, for which problem which model complexity is
most appropriate.

In this chapter, we first discuss some processes in aquatic ecosystems that are often
important enough to be included in ecosystem models and which were not covered in the
preceding chapters (sections 12.1 and 12.2). We then describe structural extension to the
model structure and alternative model structures that can be useful to get an even better
description of reality.
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12.1 Mechanistic Description of Physical Processes

In chapter 6 we gave an overview of important physical processes in rivers and lakes and
introduced some parameterizations of transport and mixing processes. After sufficient
calibration, these parameterizations allow us to describe the physical environment that
influences the chemical and biological processes in the ecosystem. This level of descrip-
tion is usually sufficient to investigate the biogeochemical and ecological processes in the
system. However, there are two types of cases that require a more detailed, mechanistic
physical description. The first type of cases is an ecosystem in which there is a signifi-
cant feedback from biogeochemical and ecological processes on the physical processes. A
particularly important example is chemical stratification. The release of substances from
the sediment to the water column can affect its density and lead to reduced diffusion due
to chemical stratification. This process cannot be described by a model that decouples
the physical sub-model from the biogeochemical sub-model. The second type is prediction
under changing physical driving forces. Parameterization of physical processes is rarely
universal enough to predict effects of changed physical driving forces. The most impor-
tant example for this type of problem is the prediction of the effect of climate change. To
correctly represent the effects of modified physical driving forces on an aquatic ecosystem,
we need a mechanistic physical sub-model in addition to mechanistic biogeochemical and
ecological sub-models.

The simplest models for mixing and stratification in reservoirs and lakes are one di-
mensional models that resolve the depth of the system. Upper mixed layer dynamics is
typically modelled by an energy balance model that incorporates the processes of con-
vective overturn due to surface cooling, wind stirring, entrainment at the base of the
mixed layer due to seiche-induced shear, and billowing due to shear instability. Mixing
in the hypolimnion is usually based on an eddy diffusivity parameterization (Imberger,
1978; Imberger and Patterson, 1981; Patterson et al., 1984; Hamilton and Schladow, 1997;
Gal et al., 2003). While these models are quite successful in modelling the upper mixed
layer, the description of mixing in the hypolimnion is more critical due to the three di-
mensional nature of the processes generating turbulence in the hypolimnion (in particular
internal seiches). This deficit is often not recognised as the flat temperature profiles in the
hypolimnion are insensitive to wrong mixing coefficients.

Three dimensional hydrodynamic modelling could in principle solve this problem. How-
ever, due to the high computational requirements and the difficulty of calibrating the
corresponding three dimensional biogeochemical and ecological model, three dimensional
simulations of reservoirs and lakes are still rare (Romero et al., 2004).
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12.2 Important Extensions of Biological Processes

12.2.1 Consideration of Silicon

Diatoms are a very important group of phytoplankton that are dominant in many lakes.
An important property of diatoms is that their cell walls consist of a silica frustule encased
in an organic coating (Hecky et al., 1972; Martin-Jézéquel et al., 2000). For this reason,
diatoms need dissolved silicic acid (Si(OH)4) as a nutrient for growth. This makes silicate
an important regulating nutrient for phytoplankton composition (Tilman et al., 1986; Egge
and Aksnes, 1992). Figure 12.1 demonstrates this dependence in chemostat experiments
(Tilman et al., 1986) at two different temperatures.

Figure 12.1: Relative proportion of diatoms, green, and bluegreen algae in continuous
culture competition experiments at two different temperatures as a function of the ratio
at which Si and P were supplied (Tilman et al., 1986). Diatoms are dominant at high Si:P
ratios, green and bluegreen algae at low Si:P ratios.

The concepts of deriving process stoichiometry based on mass composition described
in section 4.3 can easily be extended to silicon (Si). Only diatoms would have a mass
fraction of Si and a corresponding limitation term in their growth rate. This is not relevant
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if phytoplankton is aggregated into one model state variable as in this case diatoms will be
replaced by other algae within the same state variable if silicate is rate limiting. However,
in phytoplankton functional group models as described in section 12.2.5 this becomes
relevant for functional groups consisting of diatoms (e.g. small and large diatoms).

12.2.2 Variable Phosphorus Stoichiometry

Investigations of the composition of algae have shown that during periods with strong
phosphorus limitation, algae grow with a significantly reduced phosphorus content com-
pared to conditions in which dissolved inorganic phosphorus is easily available. Figure 12.2
shows an example of time series of C:P and C:N ratios in Lake Sempach together with
corresponding time series of bioavailable phosphorus species, here measured as soluble
reactive phosphorus (SRP) (Hupfer et al., 1995). This figure demonstrates a considerable

Figure 12.2: Time series of C:P and C:N ratios in Lake Sempach (top) together with
corresponding time series of soluble reactive phosphorus (SRP) (bottom) (Hupfer and
Gächter, 1995).

variation in particular for C:P.

Modelling variable phosphorus stoichiometry requires an extension of the concepts
discussed in section 4.3. The simplest way of dealing with variable composition would be
to introduce two types of algae with different phosphorus content and switch growth from
one type to the other as a function of dissolved inorganic phosphorus concentration in the
water column. An alternative would be to represent the phosphorus content of algae as a
separate state variable in the model (Omlin et al., 2001). This will be discussed in more
detail in the case study presented in section 13.2.1.
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12.2.3 Phosphate Uptake by Organic Particles

Organic particles sedimenting through the hypolimnion during lake stratification have
shown to take up inorganic phosphorus (Hupfer et al., 1995). Figure 12.3 shows evidence
from sediment traps exposed at different depths of the lake.

Figure 12.3: Composition of sedimenting particles in 20 m (light dots) and in 80 m (solid
dots) as observed in Lake Sempach by Hupfer and Gächter (1995).

Although the mechanism of this process is not completely clear, it may have to be
included in an aquatic ecosystem model to make its results more realistic (Omlin et al.,
2001). This will be discussed in more detail in the case study presented in section 13.2.1.

12.2.4 Modelling Internal Concentrations

Growth processes were described so far as dependent directly on external nutrient or
substrate concentrations in the water. A more detailed look at growth processes reveals
that this is a significant simplification of the process consisting of nutrient or substrate
uptake into the cell followed by growth on internal nutrient or substrate reservoirs. Growth
models can easily be modified to describe growth as such a two step process. This has
been quite successfully applied for describing algal growth (Droop, 1973; M., 1980; Droop,
1983; Droop, 2003).

Droop (see references given above) formulated the specific growth rate as a function
of “cell quota”, Qcell, the concentration of a nutrient or substrate in the cell:

µ = max

(
µ′
m

(
1−

kQ
Qcell

)
, 0

)
(12.1)

with the maximum specific growth rate µ′
m, and the minimum quota kQ. The internal

concentration, Qcell, increases by uptake (dependent on the external concentration, CS)
and decreased due to growth:

dQcell

dt
= um

CS

KS + CS
− µQcell . (12.2)

If we use these equations to formulate the mass balances of microorganisms, M (concen-
tration CM), and nutrient or substrate, S (concentration CS), in a mixed reactor without
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in- and outflow, and if we interpret Qcell as cell-internal mass of substrate per mass of
microorganisms (in the absence of explicitly modelling cells), we get

dCM

dt
= µCM − bCM = max

(
µ′
m

(
1−

kQ
Qcell

)
, 0

)
CM − bCM (12.3)

and

dCS

dt
= −um

CS

KS + CS
CM + bQcellCM . (12.4)

The mass-balance equation for the cell-internal nutrient or substrate confirms the fulfill-
ment of the overall mass balance:

d(QcellCM)

dt
=

dQcell

dt
CM +Qcell

dCM

dt
= um

CS

KS + CS
CM − bQcellCM = −dCS

dt
. (12.5)

Note that in these equations the quota, Qcell, never drops (again) below kQ once it was
higher than that value. Assuming Qcell > kQ, we can write the differential equation for
Qcell as

dQcell

dt
= µ′

m

(
Qeq(CS)−Qcell

)
. (12.6)

This indicates that the cell quota Qcell tends to approximate its (dynamic) equilibrium
value Qeq that depends on the external concentration, CS, of the nutrient or substrate:

Qeq(CS) = kQ +
um
µ′
m

CS

KS + CS
. (12.7)

If the time scale of this relaxation process, 1/µ′
m, is much smaller than the time scale

of changes in external nutrient or substrate concentration, we can assume that the cell
quota is always very close to its equilibrium value, Qeq(CS). Substituting the equilibrium
concentration (12.7) into the equations (12.3) and (12.4) leads then to the limiting case

dCM

dt
= µmax

CS

K ′
S + CS

CM − bCM (12.8)

and

dCS

dt
= −µmaxQeq(CS)

CS

K ′
S + CS

CM + bQeq(CS)CM (12.9)

with

µmax =
um

kQ +
um
µ′
m

(12.10)

and

K ′
S =

kQKS

kQ +
um
µ′
m

. (12.11)

This demonstrates that Monod-type growth as mainly used before is the limiting case of
the Droop cell-quota model for the case that changes in external nutrient or substrate
concentrations are slow. However, under fluctuations of external nutrient concentrations,
the behaviour of the Droop model is smoother than the conventional Monod-type model,
because the internal nutrient concentrations do not follow the external variations very
quickly.
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12.2.5 Modelling Functional Groups of Algae, Zooplankton or Inverte-
brates

There is a very large number of different species of phytoplankton and they show a tremen-
dous diversity in properties relevant for their description by a model. The simple models
we dealt with so far, aggregated all of these species into a single model state variable of
algae. As the properties of different species can vary considerably, this may not be a real-
istic description of the ecosystem. To consider this variability without making the model
too complex, species with similar properties (traits) can be aggregated to so-called func-
tional groups (for algae the term “functional” does not perfectly apply as all “functional”
groups still have the same function of primary production; still this term is often used, as
other organisms may be distinguished by their function in the food web). In a functional
group model of algae, we could therefore distinguish a (relatively small) number of such
functional groups.

Important properties to distinguish phytoplankton functional groups could be (Mieleit-
ner et al., 2008):

� maximum specific growth rate;

� edibility by zooplankton;

� sedimentation velocity;

� light dependence of growth;

� phosphorus dependence of growth;

� nitrogen dependence of growth / capability of fixing nitrogen;

� silicon dependence of growth (see section 12.2.1).

In a similar way functional groups of other organism classes could be distinguished
leading to a functional group model with about 4-10 functional groups.

From the model formulation point of view, disaggregation of an aggregated state vari-
able into functional groups is a simple step. All organisms can be described with growth
either through primary production (see section 8.1) or through consumption with multiple
processes for multiple food sources (see section 8.4 for the formulating consumption on
a single food source and section 4.2.5 for formulating preferences among different food
sources), respiration (see section 8.2), and death (see section 8.3). The difficulties of for-
mulating a functional group model are the choice of the functional groups and of the
parameter values (Anderson, 2005; Mieleitner and Reichert, 2008). Organisms may have
a high diversity of traits so that a unique classification into functional groups is difficult
and parameter values are not measurable directly, as they represent an average of param-
eter values for the taxa belonging to the functional group (which may even change its
taxonomic composition over time).

12.2.6 Modelling Individual Taxa

Given the difficulties of arranging taxa into functional groups, in particular if ecosystem
behaviour should be analyzed under different external pressures (e.g. concentrations of
nutrients and toxic substances), and of finding adequate parameter values for functional
groups, modelling taxa (species or families) directly can be an alternative strategy. This
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strategy avoids the aggregation problem and facilitates the interpretation of parameter
values (reflecting properties of taxa rather than averages of taxa within a functional group
that may change its taxononmic composition over time).

The problem of a model at the taxonomic level is the very large number of required
parameters. A realistic model may contain 30-50 or even more taxa, in particular if more
taxa are included that present in the real ecosystem to predict its taxonomic composition.
Two strategies may be applied to reduce the number of required parameters:

� The Metabolic Theory of Ecology is a basis for so-called allometric scaling of metabolic
parameters of a model based on body mass.

� The use of trait databases may allow a parameterization of deviations from allo-
metric scaling due to external effects such as stream velocity, nutrient or toxicant
concentrations, etc.

The metabolic theory of ecology (Brown et al., 2004) starts from the observation
that the basal metabolic rate of organisms scales as follows with body mass, m, and
temperature, T

rbasal = i0

(
M

M0

)b

exp

(
−Ea

kB

(
1

T
− 1

T0

))
(12.12)

In this equation, i0 is a “universal” constant specifying the basal energy turnover rate of
an organism with body mass m0 at temperature T0, b is a “universal” scaling exponent
typically in the range between 2/3 and 3/4, Ea is an activation energy, and kB is the
Boltzmann constant. The universal scaling according to equation (12.12) has been shown
to be approximately valid over about 20 orders of magnitude of individual body mass
although individual deviations may be significant (see example in Fig. 12.4).

Figure 12.4: Temperature and mass dependence of metabolic rate for several groups of
organisms, from unicellular eukaryotes to plants and vertebrates (Brown et al., 2004).

There is a dispute about the correct scaling exponent, b. The theoretical justification
for an exponent of 2/3 (Rubner, 1883) is that energy dissipation through the surface of an



12.2. IMPORTANT EXTENSIONS OF BIOLOGICAL PROCESSES 213

organism determines its metabolic rate whereas the mass is determined by the volume. The
concept underlying an exponent of 3/4 (Kleiber, 1947; Peters, 1983; Savage et al., 2004) is
that essential materials are transported through space-filling fractal networks of branching
tubes, that the energy dissipated is minimized and that the terminal tubes do not vary
with body size (West et al., 1997). However, none of these theoretical justifications remains
valid over the whole range of body masses and individual diversity. Empirical evidence
has confirmed that there may not be a single universal exponent (Glazier, 2009; White,
2010). Despite these concerns, models may use empirically fitted relationships of the form
(12.12) to formulate basic basal metabolic rates of the model organisms.

The second step of the application of the metabolic theory of ecology is that respiration
and growth rates are typically multiples of the basal metabolic rate with a quite constant
multiplier. For this reason, these rates follow a similar scaling (see Fig. 12.5).

Figure 12.5: The dependence of mass- and temperature corrected biomass production rate,
P , shows a power relationship with an exponent close to 3/4 (Brown et al., 2004).

The implications of the metabolic theory of ecology are that body mass may be able to
roughly explain quantitative relationships in ecosystems without specific knowledge of life
history traits of the involved organisms. As also the rate of molecular evolution scales with
the metabolic rate, even patterns of biological diversity across body size may be explained
by the metabolic theory of ecology (Gillooly et al., 2005). The approximately universal
scaling of basal metabolic rates and the approximately constant multipliers for respiration
and growth rates makes it possible to reduce the number of parameters in food web models
considerably (Yodzis and Innes, 1992; Brose et al., 2006; Schuwirth and Reichert, 2013).

While the metabolic theory of ecology may be able to explain basic patterns without
considering other traits of organisms than the body mass, at a more detailed level of
description, an ecosystem model can profit from a modification of the basic patterns by
knowledge of traits of individual taxa. Thus, combining a biological model based on the
metabolic theory of ecology by modification factors of growth or death rates that consider
specific information about the sensitivity of specific taxa to external influence factors can
turn a conceptual ecosystem model into a model that describes specific taxa (Schuwirth
and Reichert, 2013). The required information about traits of specific taxa can be gathered
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from trait databases, such as http://freshwaterecology.info. See also case study in
section 13.2.3.

12.2.7 Consideration of Rapid Evolution

It was on only recently realized that evolutionary processes can be relevant already on
short time scales (Yoshida et al., 2003; Hairston et al., 2005; Carrol et al., 2007; Fussmann
et al., 2007; Urban et al., 2008). This can lead to fast adaptation of communities to
changing environmental conditions. Current models of such processes concentrate on the
selection step and have the same mathematical structure as functional group models (see
section 12.2.5). The difference is that the different state variables do not represent different
types of organisms but different clones of the same species.
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12.3 Important Extensions to the Model Structure

12.3.1 Age-, Size- or Stage-Structured Models

The models discussed so far distinguished functional groups or taxa of organisms but did
not resolve their age, size or life-stage. To get a more detailed description and to be able
to describe the dependence of the susceptibility to external influence factors on age or
life-stage, a model is required that resolves these additional structural elements.

The simplest approach to age or stage-structured models is to distinguish nage discrete
age classes or stages and re-formulate growth and death processes as transfer processes
from one age class or stage to the next. At a discrete time scale, this leads to the Leslie-
Matrix approach of describing age-structured populations (Leslie, 1945; Leslie, 1948). In
this approch the vector of the densities of individuals at the different age classes at time
t+ 1, nt+1, is derived from the densities of individuals at time t by

nt+1 = Lnt (12.13)

with the “Leslie-Matrix”, L, given by

L =



b1 b2 b3 . . . bnage−1 bnage

s1 0 0 . . . 0 0

0 s2 0 . . . 0 0

0 0 s3 . . . 0 0
...

...
...

. . . 0 0

0 0 0 . . . snage−1 0


. (12.14)

In the Leslie-Matrix, the si are the fractions of surviving organisms of life-stage or age i
to life-stage or age i + 1 and the bi are the birth rates from age i. Obviously, the birth
rates from ages before maturation are zero. Written without matrix notation, equations
(12.13) and (12.14) lead to

n1,t+1 =
∑nage

j=1 bi nj,t

ni,t+1 = si−1 ni−1,t for 2 < i < nage ,
(12.15)

where the sum in the first equation could be restricted to the ages after reaching maturity.

This model can easily be modified to consider demographic stochasticity. If we intro-
duce a distribution of the clutch size, F , with the mean given by bi, and interpret si−1 as
a survival probability rather than a survival fraction, we get

n1,t+1 ∼
∑nage

j=1 nj,tF (bi)

ni,t+1 ∼ Binom(ni−1,t, si−1) for 2 < i < nage .
(12.16)

Here, Binom is the binomial distribution. In these equations, the n are all non-negative
integers.

A continuous time approach can be based on a continuous formulation of the additional
structuring element(s) (age, mass, life-stage). This requires the formulation of the model as
a partial differential equation model in which an “advection process” moves the organisms
continuously through age, mass or life-stage.
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To derive the partial differential equation for a continuous age-structured population
model, we apply the theory on one-dimensional mass balance equations outlined in section
3.4.1 to the number of organisms, N , in the system. We replace the spatial dimension, x,
by the age, a. Thus, our one-dimensional density, ρ̂, is the number of organisms per unit
of age, n(a, t) (T−1). The total flux, ĵ, is the number of organisms passing a given age
per unit of time. As the age and the time dimensions are the same, the density, n(a, t),
the number of organisms per unit age at age a and time t is also the number of organisms
passing that age at this time: ĵ = n(a, t) (T−1). Finally, the death of the organisms
per unit of age, can be parameterized as r̂ = −kdeathn(a, t) (T−2), where, in general,
kdeath (T−1) could depend on a, t and n. Given these expressions, the differential form
of the one-dimensional mass balance equation (3.26) takes the form of a one-dimensional
advection equation (Webb, 1985):

∂

∂t
n(a, t) +

∂

∂a
n(a, t) = −kdeath n(a, t) . (12.17)

Similarly to the first row of the Leslie-Matrix (12.14) that describes birth in the first age
class due to all (other) age classes, reproduction takes the form of a boundary condition
at age a = 0:

n(0, t) =

amax∫
0

b(a, n(a, t), t
)
n(a, t) da . (12.18)

Here, b is the reproduction “kernel” and amax the maximum age of the organisms. Again,
b(a, t) is zero for ages less than the maturation age, am. Figure 12.6 illustrates “advection”

a

t

am
initial condition

boundary
condition

“advection” velocity = 1

Figure 12.6: Movement of the individual densities of the age-structured model in the age-
time diagram.

of the organism density, n in the age-time plane. The density is defined on the lower axis
by the initial condition, n(a, 0), and on the left axis by the boundary condition, n(0, t),
calculated by equation (12.18) from the densities of all ages at the same time point. It is
then “advected” with velocity equal to 1 (the age increases by one unit whenever the time
increases by one unit) along the arrows in the diagram and decays at the same time with
relative decay rate kdeath. The total number of organisms between the ages a1 and a2 at
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a particular time is given by

N[a1,a2](t) =

a2∫
a1

n(a, t) da . (12.19)

If mass-structuring is applied instead of age-structuring, the constant advection term
through time must be replaced by a growth term that is no longer constant. n(m, t)
denotes now the number of organisms per unit of mass, instead of per unit of age. Again,
the one-dimensional density is equal to n: ρ̂ = n(m, t) (M−1). However, the flux of
organisms through a given mass is now equal to the specific growth rate, kgro (T−1), times
the number of organisms per unit of mass, n(m, t): ĵ = kgron(m, t). Again, kgro can depend
on the mass, m, time, t, and the current density, n(m, t). Given these expressions, the
differential form of the one-dimensional mass balance equation (3.26) takes the form of a
one-dimensional advection equation

∂

∂t
n(m, t) +

∂

∂m

(
kgron(m, t)

)
= −kdeath n(m, t) (12.20)

with the boundary condition for birth

n(m0, t) =

mmax∫
m0

b
(
m,n(m, t), t

)
n(m, t) dm . (12.21)

Here, m0 is the body mass at birth and mmax the maximum body mass. Figure 12.7
illustrates advection of the organism density, n in the mass-time plane. The density is

m

t

m0
initial condition

boundary
condition

mm mmax

Figure 12.7: Movement of the individual densities of the mass-structured model in the
mass-time diagram.

defined on the lower axis by the initial condition, n(m, 0), and on the left axis by the
boundary condition, n(m0, t), calculated by equation (12.21) from the densities of all
masses at the same time point. It is then “advected” with decreasing “velocity” (the mass
does not exceed the maximum mass) along the arrows in the diagram and decays at the
same time with relative decay rate kdeath. Again, the number of organisms with mass
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between m1 and m2 at a particular time is given by

N[m1,m2](t) =

m2∫
m1

n(m, t) dm . (12.22)

Combining age- and mass-structuring, and now denoting by n(a,m, t) the number of
organisms per unit of age and per unit of mass, we get

∂

∂t
n(a,m, t) +

∂

∂a
n(a,m, t) +

∂

∂m

(
kgron(a,m, t)

)
= −kdeath n(a,m, t) (12.23)

with the boundary condition

n(0,m, t) =

amax∫
0

mmax∫
m0

b
(
a,m, n(a,m, t), t

)
n(a,m, t) dmda . (12.24)

Again, the number of organisms with age between a1 and a2 and mass between m1 and
m2 is given by

N[a1,a2] [m1,m2](t) =

a2∫
a1

m2∫
m1

n(a,m, t) dmda (12.25)

(Tucker and Zimmerman, 1988).

Mass-structured models can be combined with allometric scaling according to the
metabolic theory of ecology (see section 12.2.6) to predict mass-spectra of food webs
(Hartvig et al., 2011). Figure 12.8 shows an example of a food web mass-spectrum as
calculated by such a model.

12.3.2 Discrete Individuals Models

So far, we described populations and communities by organism densities or mass densities
of organisms in space. This is a meaningful description as long as the numbers of organ-
isms in the considered volume is large and their properties are similar. If the numbers of
organisms becomes small, demographic stochasticity induced by the probabilistic nature
of the birth and death processes becomes relevant (see also the discussion in section 9.1.1).
As an example, exponential decay of an organism density by a death process leads finally
to numbers of individuals in a given volume that are smaller than a single individuum. To
adequately deal with this problem, we need discrete individuals models that describe the
state of the population by discrete numbers of organisms. As death and reproduction pro-
cesses can only be described probabilistically, this requires a stochastic model description.
In this section, will give a brief introduction to stochastic, discrete individuals models
with indistinguishable individuals (of certain classes, such as species, age or stage). In
section 12.3.3, we will further extend discrete individuals models to individual-based or
agent-based models that additionally consider differences among individuals of the same
population (or age or stage class).

In the simplest case, discrete individuals models for a population of identical organisms
can be formulated by the transition rates for an increase, T (N + 1 | N), and a decrease,
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Figure 12.8: Community mass spectrum as calculated by a model consisting of a resource
and four species of different mass at maturation (Hartvig et al., 2011).

T (N − 1 | N), in the number of individuals, N . The so-called master equation for the
probability of having N organisms at a given time in the system is then given by (Black
and McKane, 2012):

∂P (N, t)

∂t
= T (N | N + 1)P (N + 1, t) + T (N | N − 1)P (N − 1, t)

−
(
T (N − 1 | N) + T (N + 1 | N)

)
P (N, t) . (12.26)

The change in probability for the state with N individuals is composed of four terms:
increase due to transition from a state with N + 1 individuals, increase due to transition
from a state with N − 1 individuals, decrease due to transition to a state with N − 1
individuals, and decrease due to transition to a state with N+1 individuals. This equation
can easily be extended from a population to a community model by extending the scalar
N to a vector N of the size of the number of populations building the community.

As an example, we formulate and solve the equations for a simple organism or individual
density population model and the corresponding discrete individuals population model.
For this purpose, we use a very simple model of a population of organisms with a constant
decay rate constant, kdeath, and without growth in a mixed reactor of fixed volume, V .
The deterministic equation of the time-evolution of the (mass-) concentration, C, of the
organisms is given as

dC

dt
= −kdeathC . (12.27)

This equation can be solved analytically to describe the exponential decay of the concen-
tration from its initial concentration C0:

C(t) = C0 exp(−kdeatht) . (12.28)
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With the mass, M , of an individual (assuming all individuals to have the same mass), and
the total mass of the population, m, we can easily get a continuous approximation for the
number of individuals in the reactor

N =
m

M
=

CV

M
, (12.29)

which fulfills the differential equation

dN

dt
= −kdeathN (12.30)

and is solved by

N(t) = N0 exp(−kdeatht) . (12.31)

Note that this equation obviously does no longer make sense as a reasonable approximation
to reality if the number of organisms becomes small. Using the right-hand side of equation
(12.30) to formulate transition rates for a master equation, we get

T (N − 1 | N) = kdeathN

T (N + 1 | N) = 0 .
(12.32)

Growth rates could be formulated similarly for T (N + 1 | N), but we keep the simple
decay model to allow for analytical solution. Substituting these transition rates into the
master equation (12.26) we get:

∂P (N, t)

∂t
= kdeath(N + 1)P (N + 1, t)− kdeathNP (N, t) . (12.33)

This equation can be solved analytically. Starting with an initial population size N0

(P (N0, 0) = 1, P (N, 0) = 0 ∀N ̸= N0), we get the analytical solution as a binomial
distribution with p = exp(−kdeatht):

P (N, t) =

(
N0

N

) (
1− exp(−kdeatht)

)N0−N
exp(−kdeatht)

N ∀N ≤ N0 . (12.34)

As the expected value of the binomial distribution is equal to pN0, we get the expected
number of individuals in the population as a function of time as

E[N(t)] = N0 exp(−kdeatht) . (12.35)

For this simple, linear model, the expected value of the population size of the discrete indi-
viduals model (12.35) is thus the same as the solution of the deterministic model (12.31).
However, with the binomial distribution (12.34), the discrete individuals model describes
the demographic fluctuations around this mean. The variance of these fluctuations is given
by

Var[N(t)] = N0 exp(−kdeatht)
(
1− exp(−kdeatht)

)
. (12.36)

Note that for nonlinear models, the expected value of the discrete individuals model will
in general no longer be equal to the result of the deterministic model with the same
rate expressions as the demographic fluctuations can significantly affect also the mean
behaviour of the system.

For realistic models, the master equation (12.26) can usually not be solved analytically.
In this case, the population distribution can be numerically approximated by random
sampling using the Gillespie algorithm (Gillespie, 1976; Gillespie, 1977).
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12.3.3 Individual-Based Models

To describe the properties of and variability among individuals of a population more ex-
plicitly, individual-based models represent a population by an assembly of individually
modelled organisms (Grimm, 1999). This has three main advantages: First, it derives
occurrence pattern of populations from properties of the individual, which are often easier
to obtain. Second, such a model makes it much easier to describe life-stages and dif-
ferences between individuals. This makes such models more realistic. Third, this model
formulation considers intrinsically demographic stochasticity which becomes important for
populations with small numbers of organisms (see section 9.1.1 and note that this property
can already be considered by discrete individuals models as described in section 12.3.2).
On the other hand, individual-based models have often many more parameters than the
models described so far. This, and their stochastic nature, makes statistical inference of
model parameters from observed data much more difficult than with deterministic models
combined with an error term that can be evaluated analytically.
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Chapter 13

Research Models of Aquatic
Ecosystems

In this chapter, we give a short description of selected aquatic ecosystem models published
in the literature and their recommended use (section 13.1). Finally, we give a brief overview
of selected case studies of model application. The first case demonstrates how we can
make a biogeochemical lake model more universal, the second on how we can use Bayesian
inference to combine prior knowledge about model parameter values with observed benthic
community abundance data to decrease the uncertainty of some of the model parameters
in a model that describes functional feeding groups of invertebrates in streams, the third
how we can predict the occurrence of invertebrate taxa in streams (section 13.2).

223
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13.1 Examples of Models of Aquatic Ecosystems

In this section we give a brief overview of model structures, calibration strategies, and
applications of selected ecological lake and river models (Reichert and Mieleitner, 2008).
This overview is far from being complete. Nevertheless, it provides insight into the variety
of approaches used in science and management. We will briefly present an aggregated
trophic level lake model (BELAMO), two functional group lake models (SALMO and
CAEDYM), a dominant species algal community model (PROTECH), two river water
quality models (QUAL2K and RWQM1), and two models for benthic communities of
rivers (ERIMO and Streambugs).

13.1.1 BELAMO

The Biogeochemical-Ecological LAke MOdel (BELAMO) (Omlin et al., 2001; Mieleitner
and Reichert, 2006; Mieleitner et al., 2008; Mieleitner and Reichert, 2008) represents a
relatively simple, aggregated trophic level lake model with emphasis on biogeochemical
cycles rather than ecology. A particular feature is the consideration of closure of element
cycles by explicit consideration of mineralization processes in the sediment.

Model Overview
BELAMO describes the concentrations of, algae, zooplankton, dissolved oxygen, ammo-
nium, nitrate, phosphate and degradable and inert dead organic particles in the water
column and in the sediment. The model considers growth, respiration and death of algae
and zooplankton, mineralization, nitrification and phosphate uptake on sinking particles.
The model is one dimensional and resolves the depth of the lake. The physical processes
vertical mixing, advection, sedimentation, mobility of zooplankton and molecular diffusion
in the sediment and across the water sediment interface are considered. Algae can grow
with a variable stoichiometry with respect to phosphorus depending on the phosphate con-
centration in the water column to describe the low phosphorus content of algae growing
during phosphate-limited periods in summer.

Calibration strategy
BELAMO applications estimate kinetic parameters of transformation processes with the
attempt of finding “universal” values across lakes of different trophic state. As all algal
species are aggregated to a single state variable, it is hard to use kinetic parameters
measured for selected cultured species in this model. To avoid non-identifiability problems
during the parameter estimation, sensitivity and identifiability analysis techniques are
used.

13.1.2 SALMO

SALMO (Simulation by means of Analytical Lake MOdel) (Benndorf and Recknagel,
1982) represents a functional group lake model. The emphasis is on a very detailed descrip-
tion of the plankton growth dynamics. Recently SALMO was extended to SALMO-HR
(high resolution). In this version the ecological model is coupled to a hydro-thermodynamic
model of the water column.

Model Overview
SALMO describes ortho-phosphate, dissolved inorganic nitrogen, dissolved oxygen, or-
ganic particles, three functional groups of phytoplankton, and zooplankton concentrations
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in a lake. The processes growth and mortality of phytoplankton and zooplankton and min-
eralization are considered. Sedimentation of phytoplankton and migration of zooplankton
is also modelled. SALMO was designed to mechanistically describe physical, chemical and
biological processes according to a maximum of generality. The model uses only a small
number of state variables but more complex process formulations than other models in
order to achieve this goal. Each functional group of algae is characterized by an indica-
tor species, the properties of which were measured or compiled from the literature. Fish
are considered implicitly by their grazing rate on zooplankton. The nutrient release from
the sediment is modelled as an empirical function of oxygen depletion and denitrification.
SALMO describes the water body as two mixed reactors representing the epilimnion and
the hypolimnion. The depth of the epilimnion has to be specified as a boundary condition.
SALMO-HR uses a very detailed hydro-thermodynamic model of the water column.

Calibration strategy
In contrast to most other ecological lake models, the parameters of SALMO are not fitted.
Measured values are used for all parameters. The parameter values for phytoplankton
growth are determined in the laboratory for key species of each functional group. This
strategy not to calibrate the model has the advantage that the parameters are not adapted
to a specific lake at a specific time and the parameters are universal for that reason. This
improves the prediction quality and the generality of the model.

13.1.3 CAEDYM

The Computational Aquatic Ecosystem DYnamics Model (CAEDYM) (Romero et al.,
2004) is an ecological model that can be linked to different hydrodynamic models. In our
list of example models, CAEDYM represents a functional group lake model of very high
degree of resolution of ecosystem variables and processes. This is a chance for a detailed
representation of many processes and mass fluxes, but also a challenge with respect to the
number of model parameters and to calibration.

Model Overview
The ecosystem model implemented in CAEDYM is based on a detailed description of the
ecosystem. The user can choose between different ecological configuration options and
use a different model for each specific application. CAEDYM can be used for freshwater,
estuaries or costal waters. The model gives the user a large flexibility in the choice of state
variables, processes and process formulations. The state variables that can be used include
concentrations of dissolved oxygen, ammonium, nitrate, phosphate, silica, dissolved inor-
ganic carbon, quickly and slowly degradable dissolved and particulate organic matter, up
to two groups of inorganic suspended solids, bacteria, up to seven groups of algae, up to
five groups of zooplankton, up to five groups of fish, and pathogens in the water column,
up to four groups of benthic macroalgae, seagrass, up to 3 groups of benthic invertebrates,
and up to seven groups of benthic algae and more. The nonliving components in the water
column are also modelled in the sediment. Process descriptions for primary production,
secondary production, nutrient and metal cycling, and oxygen dynamics and exchange
with the sediment are included in the model. CAEDYM can easily be coupled to zero-,
one-, two- and three-dimensional lake hydrodynamics programs. It can easily be coupled
to DYRESM (a one-dimensional hydrodynamic model for lakes and reservoirs) or ELCOM
(a three-dimensional hydrodynamic model).
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Calibration strategy
CAEDYM studies follow the reductionist approach with a detailed, general lake ecosystem
model. Model parameters are fitted, but the attempt is made to find “universal” values
that do not depend on the particular application. In typical applications, most parameters
are held constant, some are fitted jointly for several systems, and some may need site
specific calibration.

13.1.4 PROTECH

The Phytoplankton RespOnse To Environmental Change model (PROTECH) (Reynolds
et al., 2001) describes the phytoplankton growth in lakes at the species level. The emphasis
of this model is on describing the phytoplankton dynamics in a wide range of different
ecosystems.

Model Overview
PROTECH is designed to make simulations of the dynamic changes in the populations of
different species of algae within a reservoir or lake environment which may be subject to
thermal stratification, periodic destratification, and hydraulic exchange. Chlorophyll a,
phosphorus, nitrogen and silica are modelled. The phytoplankton model is very detailed;
up to eight species can be selected from a library of 18 phytoplankton species. The effect
of zooplankton is described by the death rate of phytoplankton. The maximum growth
rate of the different phytoplankton species is calculated using correlations with surface
area and volume of the species. Adjustments for temperature dependence, light limitation
and nutrient limitation are made. The physical model is one dimensional. It divides the
water body into mixed layers.

Calibration strategy
The parameters for the growth of the algal species are not fitted in PROTECH. How-

ever, inputs are sometimes adapted to improve the quality of the fit. The experience with
PROTEC simulations was that the model results did not correspond well with data at
the species level. However, when aggregating data and model simulations to functional
groups, there was a good agreement. This led the authors to formulate the hypothesis
that a model should resolve one level further down than required for the comparison with
data.

13.1.5 QUAL2K

QUAL2K (http://www.epa.gov/ATHENS/wwqtsc/html/qual2k.html) is an extended ver-
sion of the QUAL2E model that has been used for many years to simulate water quality
in rivers. Qual2K describes one-dimensional steady state hydraulics of a river network.
It models temperature, dissolved oxygen, slowly and quickly degradable organic matter,
organic nitrogen, ammonium, nitrate, organic phosphorus, phosphate, phytoplankton, de-
tritus, pathogens, alkalinity in the water column, and benthic algae.

13.1.6 RWQM1

The River Water Quality Model No. 1 (Shanahan et al., 2001; Reichert et al., 2001;
Vanrolleghem et al., 2001) was developed to bridge the gap between river water quality
models and activated sludge sewage treatment process models and to stimulate the devel-
opment of a sequence of such models similarly to that of activated sludge models (Henze
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et al., 1986; Gujer et al., 1995; Henze et al., 1995; Gujer et al., 1999; Henze et al., 1999;
Henze et al., 2000).

13.1.7 ERIMO

The mechanistic modelEcologicalRIverMOdel (ERIMO) (Schuwirth et al., 2008; Schuwirth
et al., 2011) describes how the main groups of benthic organisms (invertebrates, algae)
and the organic matter deposited on the river bed (detritus) vary over time. The inver-
tebrates are grouped according to their feeding types and the algae are differentiated into
filamentous and non-filamentous algae. The model describes their growth, death, and loss
induced by floods using ordinary differential equations. This model and its calibration
using Bayesian inference is described in more detail in the following section.

13.1.8 Streambugs

The mechanistic model Streambugs (http://www.eawag.ch/en/department/siam/projects/streambugs/)
combines concepts of theoretical food web modeling, the metabolic theory of ecology, and
ecological stoichiometry with the use of functional trait databases to predict the coex-
istence of invertebrate taxa in streams. The model describes population growth, death,
and respiration of different invertebrate taxa and algae to estimate their occurrence or the
dynamic development of their populations dependent on various environmental influence
factors (Schuwirth and Reichert, 2013). So far, the model was used to assess the effect of
multiple stressors and biotic interactions on the presence or absence of invertebrate taxa in
the river Glatt (Schuwirth et al., 2016), the effects of a pesticide on invertebrate commu-
nity dynamics in stream mesocosms (Kattwinkel et al., 2016), the effect of hydropeaking
on the temporal dynamics of invertebrates in the river Sihl (Mondy and Schuwirth, 2017),
and to predict the effects of river restoration on the occurrence of macroinvertebrate taxa
in the rivers Thur and Toess in Switzerland (Paillex et al., 2017). This model is described
in more detail in the following section.
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13.2 Case Studies of Aquatic Ecosystem Model Application

In this section we discuss two case studies. The focus of the first study is the development
of the biogeochemical lake ecosystem model BELAMO and the application of this model
to lakes of different trophic state. The second case study uses the model ERIMO, a river
benthos community model that describes the dynamic development of algae and functional
feeding groups of invertebrates, to demonstrate how we can apply the methodology of
Bayesian inference to combine prior knowledge of parameter values with data and analyze
what we can learn from the data. The third case study shows an application of the model
Streambugs that predicts the occurrence of invertebrate taxa in streams.

13.2.1 Modelling Biogeochemistry and Plankton in Three Lakes of Dif-
ferent Trophic State

This case study illustrates the development of a model for Lake Zurich, Switzerland, and
its extension to two additional lakes of different trophic state.

13.2.1.1 Model of Lake Zurich

The model BELAMO extends the didactical model described in section 11.4 (Omlin et al.,
2001). Tables 13.1 to 13.3 summarize process stoichiometry and process rates.

Table 13.1: Stoichiometry of the model BELAMO. See Table 13.2 for an explanation of
some of the variables.

The main differences to the didactical model described in section 11.4 are the following:

� The model resolves the vertical dimension of the lake continuously. It uses parame-
terizations of the coefficients of vertical turbulent diffusion calibrated by temperature
profiles and, for the deep hypolimnion, by phosphate profiles.

� The model describes mineralization processes in two sediment layers. This leads to a
better description of oxic and anoxic mineralization processes than in the didactical
model, but this still resolves gradients in the sediment only poorly.

� The model contains two functional groups of alge: plaktothrix rubescens (PLR) and
other algae (ALG).

� The model considers variable phosphorus stoichiometry of algal growth (see sec-
tion 12.2.2 for empirical evidence that this is an important process feature). For
this reason, the model contains a separate state variable for phosphorus content of
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planktothrix rubescens (XP,PLR), oder algae (XP,ALG), degradable organic particles
(XP,S), and inert organic particles (XP,I). The stoichiometry of growth processes
assigns a fraction bP of phosphorus to XP,ALG or XP,PLR, respectively. This fraction,
bP, depends on the current phosphate concentration in the water column.

� The model considers an uptake process of phosphate to degradable organic particles
(XS). This requires a state variable describing the inorganich phoshorus load of
organic particles, XPI,S.

Table 13.2: Meaning of stoichiometric variables use in Table 13.1.

Figure 13.1 summarizes the results of the simulations in the year 1990 after calibration
of model pararameters during the years 1988 - 1989.

These profiles clearly show mixing of the water column in spring and development of
significant concentration gradients during summer stratification. The dissolved oxygen
profiles show depletion of oxygen in the hypolimnion during the stratified period due to
mineralization of sedimented organic particles. The metalimnic local oxygen minimum is
primarily caused by a particularly large sediment surface in this depth (there is a large
fraction of the lake that is only about 20 m deep). The phosphate profiles reflect the
build-up of phosphate during the stratification period due to release of phosphate by
mineralization processes (primarily in the sediment). There is a very strong depletion of
phosphate in the epilimnion during stratification due to primary production. The depletion
below the epilimnion (between depths of 10 and 20 m) is caused by phosphate uptake of
sinking organic particles. The depletion of nitrate in the deep hypolimnion is due to anoxic
mineralization (denitrification) in the lower sediment layer. Algae show a spring and a fall
peak, but the temporal resolution of the data of one month makes it difficult to analyze
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Table 13.3: Process rates of the model BELAMO.

plankton dynamics accurately. Planktothrix rubescenc grows at low light intensities in
the metalimnion.

Figure 13.2 shows an independent check of the reliability of the simulations. Both
flux time series of organic carbon as well as on particulate phosphorus show qualitative
agreement with measured profiles taken six years earlier.

Finally, Figure 13.3 shows a comparison of simulations of the full model with models
that omit the phosphate uptake process and the variable phosphorus stoichiometry of algal
growth. The comparison demonstrate that the phosphate uptake process is necessary to
explain the phosphate depletion at between 10 and 20 m depth below the epilimnion
where there is no primary production (compare with nitrate profiles). This process is
also required to bring enough phosphorus down to the sediment for release to the deep
hypolimnion by mineralization. Finally, the variable stoichiometry of primary production
is required to model the nitrate depletion in the epilimnion.
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Figure 13.1: Spatial profiles of dissolved oxygen (top left), phosphate (top right), nitrate
(middle left), algae without oscillatoria rubescens (middle right), and oscillatoria rubescenc
(bottom left) in Lake Zurich in the year 1990 and time series of zooplankton in the epil-
imnion over the years 1989 and 1990 (bottom right). Lines indicate simulation results, dots
measurements (Omlin et al. 2001).
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Figure 13.2: Calculated particulate organic carbon flux (left) and particulate phosphorus
flux (right) in 130 m depth in Lake Zurich. Lines indicate simulation results for 1990 by
Omlin et al. (2001); histograms measurements by Sigg et al. (1987) from 1984.
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Figure 13.3: Comparison of the resulting phosphate and nitrate profiles in September 1989
for the full model (black lines), for a model with omission of the phosphate uptake process
on sinking particles (dark grey lines), and for a model with omission of the phosphate
uptake process and with a constant (Redfield) stoichiometry of algal growth (light grey
lines). From Omlin et al. (2001).
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13.2.1.2 Extension to Three Lakes of Different Trophic State

The model described in the previous subsection was later extended to describe three lakes
of different trophic state (Mieleitner and Reichert, 2006). With only minor modifications
and only very few lake specific parameter values, the model could be calibrated to the
three lakes Walensee (oligotrophic), Lake Zurich (mesotrophic) and Greifensee (eutrophic)
shown in Figure 13.4.

Figure 13.4: Lakes, watersheds, rivers, measurement sites (triangles) and waste water
treatment plants (dots).

Figure 13.5 shows some results for all three lakes.
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Figure 13.5: Examples of measured (dots) and modelled (lines) profiles for the year 1989
from Walensee (top), Lake Zurich (middle), and Greifensee (bottom). From Mieleitner and
Reichert (2006).
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13.2.1.3 Long-Term Simulation

It is of particular interest, if a model is able to follow long-term plankton and nutrient
dynamics, in particular during a phase of changing inputs to the lakes. The model BE-
LAMO described in the previous sections was used for long-term simulations of the three
lakes Lake Zurich, Greifensee and Walensee (Dietzel et al., 2013). Figure 13.6 shows the
input loading of bioavailable nitrogen and phosphorus during the simulation period. Only
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Figure 13.6: Changes in input loding of bioavailable nitrogen and phposphorus into the
lakes. Dashed, dotted and dash-dotted lines indicate measured input data, bold lines their
moving averages over 12 months. (Dietzel et al., 2013).

observed data up to ten years before the end of the simulations was used for model calibra-
tion, data of the last ten years was used for model validation. Figures 13.7, 13.8 and 13.9
show the results of these simulations. The results indicate that the significant reduction
in phosphorus turnover did not to the same degree lead to a reduction in phytoplankton
concentrations. This demonstrates that it is difficult to learn about nutrient turnover from
concentrations. The uncertainty analysis demonstrates that despite the relatively simple
model that is constrained through mass balances of the nutrients, prediction uncertainty
is very high.
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Figure 13.7: Phytoplankton (entire lake), zooplankton (entire lake), nitrate (epilimnion),
phosphate (epilimnion) and oxygen (hypolimnion) concentrations in Greifensee. Data
points (markers), output of the deterministic model (long-dashed), median (solid) and
95% credibility bounds (dark grey area with dashed boundaries) of bias-corrected output
and median (solid; same as for bias-corrected output) and 95% credibility bounds (dark
and light grey areas with dotted boundaries) of predictions of new observations (including
observation error) (Dietzel et al., 2013).
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Figure 13.8: Phytoplankton, zooplankton, nitrate and phosphate concentrations in the
epilimnion and oxygen concentrations in the hypolimnion of Lake Zurich. Data points
(markers), output of the deterministic model (long-dashed), median (solid) and 95% credi-
bility bounds (dark grey area with dashed boundaries) of bias-corrected output and median
(solid; same as for bias-corrected output) and 95% credibility bounds (dark and light grey
areas with dotted boundaries) of predictions of new observations (including observation
error) (Dietzel et al., 2013).
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Figure 13.9: Phytoplankton, zooplankton, nitrate and phosphate concentrations in the
epilimnion and oxygen concentrations in the hypolimnion of Walensee. Data points (mark-
ers), output of the deterministic model (long-dashed), median (solid) and 95% credibility
bounds (dark grey area with dashed boundaries) of bias-corrected output and median
(solid; same as for bias-corrected output) and 95% credibility bounds (dark and light grey
areas with dotted boundaries) of predictions of new observations (including observation
error) (Dietzel et al., 2013).
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13.2.2 Modelling Benthos Community Dynamics in the River Sihl

The emphasis of this manuscript is on the mathematical formulation of processes in aquatic
ecosystems and interpretation of the combined effect of these processes interacting in an
ecosystem (model). There was less emphasis on how to use data for model calibration,
how to statistically assess model performance, and how to estimate prediction uncer-
tainty (chapter 2 provides a very brief summary). These topics are treated in a separate
manuscript as they are not specific to aquatic ecosystem models (Reichert, 2007). Never-
theless, this case study provides the opportunity to demonstrate how Bayesian techniques
can be used to update prior knowledge on model parameters based on observed data from
the aquatic ecosystem.

Figure 13.10 summarizes the methodology applied in this study (Schuwirth et al.,
2008). We start with the design of the model according to basic natural scientific
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Figure 13.10: Concept of model development applied in Schuwirth et al. 2008.

knowledge. In addition, we summarize prior knowledge about parameter values by the
prior parameter distribution. Then we perform preliminary analyses:

� Sensitivity analysis supports our understanding of the importance of parameters on
model results.

� Preliminary calibration either done manually or with empirical loss functions can be
used to find adequate model parameter values.

� The analysis of representation of key characteristics of the data by the model makes
it possible to obtain a first qualitative assessment of model performance. This has to
be done after preliminary calibration to distinguish model deficits from poor choice
of parameter values.
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� The values of model parameters that have a mechanistic interpretation must be
assessed for being within a meaningful range.

� The distribution of residuals can give us hints for the formulation of a probabilistic
error model.

� Finally, these preliminary analyses can uncover model implementation errors.

If significant model deficits have been identified during these premliminary analyses, the
model structure needs to be revised. Otherwise, the mechanistic model can be combined
with an error model that characterizes the measurement process and may also parame-
terize remaining model deficits. This probabilistic model can then be used for updating
the prior parameter distribution with the aid of observed data to a posterior distribu-
tion by Bayesian inference. This posterior distribution combines prior knowledge with
information gained from the data. Finally, an analysis of the results with respect to
identifiability, gain of information, fulfilment of statistical assumptions, and interpretation
of the results helps us assess the reliability of the model.

Figure 13.11 shows the structure of the benthos community model. The model dis-

nonfil. algaefil. algae

scrapers

predators

collectors

detritusnonfil. algaefil. algae

scrapers

predators

collectors

detritusnonfil. algaefil. algae

scrapers

predators

collectors

detritus

Figure 13.11: Structure of the benthos community dynamics model used by Schuwirth et
al. (2008).

tinguishes filamentous and non-filamentous (benthic) algae, three functional groups of
benthic invertebrates (scrapers, collectors and predators), and detritus. Tables 13.4 and
13.5 show the stoichiometry and process rates of the model.

Figure 13.12 shows the results of the posterior simulation. The residual plots shown in
Figure 13.13 demonstrate the approximate fulfillment of the statistical assumptions made
for model formulation. This indicates that we can trust the model results. Figure 13.14
shows a comparison of the marginals of the prior and posterior distributions of the model
parameters. This diagram provides an overview of what we could learn about individual
parameter values from the data.
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Table 13.4: Process stoichiometry of the benthos community dynamics model by Schuwirth
et al. 2008.

Table 13.5: Process rates of the benthos community dynamics model by Schuwirth et al.
2008.
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Figure 13.14: Comparison of prior (dashed line) and posterior (solid line) marginal distri-
butions of the parameters. From Schuwirth et al. (2008).
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13.2.3 Modelling Taxonomic Composition of Steam Benthos Communi-
ties

The model Streambugs combines the concepts of the metabolic theory of ecology (see
section 12.2.6) with ecological trait information of potentially occurring taxa to predict
occurrence patterns of macroinvertebrate taxa in streams at specific sites. It uses trait
information about the susceptibility of taxa to nutrient and micropollutant concentra-
tions and their preferences regarding flow velocity, temperature and substrate conditions.
(Schuwirth and Reichert, 2013).

Fig. 13.15 shows the dependence of modelled processes that influence the biomass of
each taxon (growth, respiration, death) on taxon requirements (e.g. regarding habitat and
water quality conditions), environmental conditions, and biotic interactions (predation and
competition for food).

Figure 13.15: Scheme of the model Streambugs (Schuwirth and Reichert, 2012).

Fig. 13.16 shows the occurrence pattern of food webs predicted by this model, and
for comparative purposes, the observed taxa. Despite the relatively rough approach that
ignors life stages of taxa and individual variablity, the basic features of the observed
occurrence pattern could be reproduced by this model.
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Figure 13.16: Observed taxa and modelled food webs at four sites in the Mönchaltorfer Aa
catchment (Schuwirth and Reichert, 2013).
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Chapter 14

Important Univariate Probability
Distributions

In this appendix a summary is given of properties and parameters of the univariabe prob-
ability distributions most frequently used in environmental modelling. More complete
overviews of commonly used probability distributions can be found in the literature (Evans
et al., 2000).

14.1 Uniform Distribution

The uniform distribution is often used to describe lack of knowledge about a position
variable. It is characterized by its minimum and maximum which bound the range of
the distribution. The probability density is constant between minimum and maximum
and zero below the minimum and above the maximum. Consequently, the distribution
function increases linearly from zero at the minimum to unity at the maximum (see Fig.
14.1).
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Figure 14.1: Probability densities and distribution functions of univariate uniform distri-
butions.
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A uniform random variable

Z ∼ U(zmin, zmax) (14.1)

is characterized by its minimum, zmin, and its maximum, zmax, which characterize the
range of the distribution. They must fulfill the condition

zmin < zmax . (14.2)

The probability density of the uniform distribution is given by

fU(zmin,zmax)(z) =


1

zmax − zmin
for z ∈ [zmin, zmax]

0 otherwise
. (14.3)

The expected value, the median and the standard deviation are given by the following
expressions, respectively:

E
[
U(zmin, zmax)

]
=

zmin + zmax

2
, (14.4)

Med
[
U(zmin, zmax)

]
=

zmin + zmax

2
, (14.5)

SD
[
U(zmin, zmax)

]
=

zmax − zmin

2
√
3

. (14.6)

Of special importance is the uniform distribution in the unit interval [0, 1], U(0, 1), as the
random variable with this distribution is the basis for constructing other random variables
through transformation.

14.2 Normal Distribution

The central limit theorem of probability theory states that an appropriately scaled sum of
any identical and independent random variables with finite variance tends to a normally
distributed random variable when the number of terms in the sum tends to infinity. More
precisely, if {Xi} are independent and identically distributed random variables with mean
µ and (finite) standard deviation σ, then

lim
n→∞

n∑
i=1

(
Xi − µ

)
√
n σ

∼ N(0, 1) (14.7)

where N(0, 1) is the standard Normal distribution (Normal distribution with mean equal
to zero and standard deviation equal to unity). This makes the normal distribution to a
natural choice for describing quantities that are sums of many additive components. This
property and its mathematical convenience is the basis of the importance of the Normal
distribution in all fields of statistics. The normal distribution is symmetrical around its
mean and extends to infinity in the positive and negative directions (see Fig. 14.2).
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Figure 14.2: Probability densities and distribution functions of univariate normal distribu-
tions.

A normally distributed random variable

Z ∼ N(µ, σ) (14.8)

is characterized by its mean, µ, and its standard deviation, σ. The standard deviation
must be positive:

σ > 0 . (14.9)

The probability density of the normal distribution is given by

fN(µ,σ)(z) =
1√
2π

1

σ
exp

(
−1

2

(z − µ)2

σ2

)
(14.10)

The expected value, the mode, the median, and the standard deviation are given by the
following expressions, respectively:

E
[
N(µ, σ)

]
= µ , (14.11)

Mode
[
N(µ, σ)

]
= µ , (14.12)

Med
[
N(µ, σ)

]
= µ , (14.13)

SD
[
N(µ, σ)

]
= σ . (14.14)

Of special importance is the standard Normal distribution with mean zero and stan-
dard deviation unity, N(0, 1).
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14.3 Lognormal Distribution

If the random variable X is normally distributed, then

Z = exp(X) , X ∼ N(m, s) (14.15)

is lognormally distributed. The range of the lognormal distribution is limited to nonneg-
ative numbers. If the standard deviation is not small compared to its expected value, it
has a significant asymmetry by extending further to larger than to smaller values than
the mean (see Fig. 14.3). These properties make the lognormal distribution in many
cases a reasonable description of highly uncertain positive variables for which the normal
distribution cannot be used because of the nonzero probability for negative numbers.
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Figure 14.3: Probability densities and distribution functions of univariate lognormal dis-
tributions.

A lognormally distributed random variable

Z ∼ LN(µ, σ) (14.16)

can be characterized by its mean, µ, and its standard deviation, σ. Nevertheless, a log-
normally distributed random variabe is often characterized by the mean and standard
deviation of its logarithm (variable X in the equation given above). Mean and standard
deviation of a lognormally distributed random variable must be positive:

µ > 0 , σ > 0 . (14.17)

The probability density of the lognormal distribution is given as

fLN(µ,σ)(z) =


1√
2π

1

sz
exp

−1

2

(
log

(
z

µ

)
+

s2

2

)2

s2

 for z > 0

0 for z ≤ 0

(14.18)
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with

s =

√
log

(
1 +

σ2

µ2

)
(14.19)

This is the preferred representation of the lognormal distribution as it makes evident that
the units of the involved variables are consistent. Because the lognormal distribution is of-
ten characterized by the mean, m, and the standard deviation, s of the normal distribution
X = log(Z), the following form is often used:

fLN(m,s)(z) =


1√
2π

1

sz
exp

(
−1

2

(
log(z)−m

)2
s2

)
for z > 0

0 for z ≤ 0

(14.20)

with

s =

√
log

(
1 +

σ2

µ2

)
, m = log(µ)− s2

2
. (14.21)

From the point of view of units of the involved variables, this form is less satisfying, as m is
an expression that is not consistent with respect to its units. This inconsistency does not
cause a problem, becausem is only used in the expression log(z)−m= log(z)−log(µ)+s2/2
= log(z/µ)+s2/2, which is consistent (all terms of the last expression are non-dimensional).

The expected value, the mode, the median, the standard deviation, and the geometric
standard deviation are given by the following expressions, respectively:

E
[
LN(µ, σ)

]
= µ , (14.22)

Mode
[
LN(µ, σ)

]
=

µ(
1 +

σ2

µ2

) 3
2

, (14.23)

Med
[
LN(µ, σ)

]
=

µ√
1 +

σ2

µ2

, (14.24)

SD
[
LN(µ, σ)

]
= σ , (14.25)

GeoSD
[
LN(µ, σ)

]
= exp

(√
log

(
1 +

σ2

µ2

))
. (14.26)

Note, however, that the expressions for the transformation of means are not consistent
with respect to the units (see comment above).
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Because a lognormal random variable, Z, is often characterized by mean and standard
deviation of its normally distributed logarithm, X = log(Z), m = E

[
log
(
LN(µ, σ)

)]
, s =

SD
[
log
(
LN(µ, σ)

)]
, we give the conversion formulas between these two parameterizations:

µ = exp

(
m+

s2

2

)
, (14.27)

σ = µ
√

exp
(
s2
)
− 1 , (14.28)

m = log
(
µ
)
− s2

2
= log

(
µ
)
− 1

2
log

(
1 +

σ2

µ2

)
, (14.29)

s =

√
log

(
1 +

σ2

µ2

)
. (14.30)



Chapter 15

Introduction to the R Package
stoichcalc

15.1 Concepts

R (http://www.r-project.org) is a very powerful publicly available program for data anal-
ysis, graphics, and statistics. stoichcalc is a (small) R package that implements the gen-
eral solution of stoichiometric equations described in section 4.3.3 (Reichert and Schuwirth,
2010). The design of the implementation is guided by the criterion of allowing the user
a high flexibility with respect to changes in “elementary constituents”, substances and
processes considered in the model.

15.2 Routines

The stoichcalc package consists of three functions. These functions are described in the
subsections of this section.

15.2.1 calc.comp.matrix

The first routine does not do any calculations, but it provides a convenient way for re-
building the substance composition matrix α according to equation (4.52) after changes
in the set of substances or their composition have been made. When introducing new sub-
stances and “elementary constituents” the substance composition matrix, α, will change
its dimension. In order not to have to redefine substances that have already been defined
and do not contain newly introduced “elementary constituents”, it is better not to refer
to “elementary constituents” in substance composition definitions by indices. Similarly,
we should not refer to substances by indices when defining processes. For this reason we
define the composition of a substance as a named vector with entries that refer to the
names of the “elementary constituents” and the “masses” of the “constituent” contained
in one measurement unit of the substance. Then we define a list of substance composi-
tions, subst.comp, which contains the substance composition vectors of all substances.
As we finally need the composition matrix, we provide the function

calc.comp.matrix(subst.comp) (15.1)

which takes the list of substance compositions as its argument and returns the composition
matrix, α, according to equation (4.52).
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15.2.2 calc.stoich.basis

The second function is the core routine we need to solve all stoichiometric problems. It
calculates the basis of the vector space of stoichiometries that are compatible with a given
composition and constraints. To do this, it calculates and returns a basis of the left
nullspace of the matrix

A =

(
α

γ

)T

(15.2)

where α is a substance composition matrix according to equation (4.52) and γ a matrix
of coefficients (4.58) of linear constraints (4.57). The call to this function is

calc.stoich.basis(alpha,constraints) (15.3)

where alpha refers to the composition matrix, α, and constraints refers to an optional
list of linear constraints, γ.

The composition matrix must contain column names that refer to the names of the
substances under consideration. It will usually have been calculated by applying the
function calc.comp.matrix to a list of substance definitions as described in the previous
section. Each constraint in this list of constraints is formulated as a vector which specifies
named coefficients of a row of the matrix γ according to equation (4.58). Such a vector
has only to contain the non-zero elements of the row of γ. The elements have to be named
according to substances specified as column names of the composition matrix α. In many
cases, a constraint is of the form of a given ratio of two stoichiometric coefficients. In
this case, according to equation (4.57), this vector will only have two elements, one being
-1 and the other the given ratio of two stoichiometric coefficients. The routine (15.3)
constructs a singular value decomposition of the matrix Ã which consists of the matrix A
given above made quadratic by extending it by columns containing only elements equal
to zero as described in section 4.3.3. The singular value decomposition is then done using
the R routine svd which is based on the LAPACK routines DGESVD and ZGESVD (Anderson
et al., 1999). The routine (15.3) returns a matrix consisting of all rows of ŨT according
to equation (4.62) which correspond to singular values that are zero. This means that the
rows of the returned matrix build a basis of the linear space of stoichiometries that are
consistent with respect to conservation laws and additional stoichiometric constraints.

15.2.3 calc.stoich.coef

The last routine provides a simpler interface for calculating the unique stoichiometric
coefficients of a process once the affected substances, their composition, and the required
additional constraints are specified. This function solves equation (4.60)

νi ·

(
α(i)

γ(i)

)T

= 0 (15.4)

for the unique row vector νi or returns an error message if this vector is not uniquely de-
fined. In this equation, α(i) is the composition matrix with only the columns correspond-
ing to the substances involved in process i, and γ(i) is the matrix of the stoichiometric
constraints of process i. The call to this function is

calc.stoich.coef(alpha,name,subst,subst.norm,nu.norm,constraints) (15.5)
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It requires the following input: alpha is the composition matrix, α, according to equation
(4.52); name is the name of the process (used to name the row of returned stoichiometric
coefficients to facilitate binding of output rows of different processes to a complete stoi-
chiometric matrix); subst is a vector of names of all substances involved in the process
(this has to be a subset of the column names of alpha), subst.norm is the name of the
substance that should have a normed stoichiometric coefficient; nu.norm is the value of
the normed stoichiometric coefficient (usually +1 or -1); and constraints is a (possibly
empty) list of constraints in the same format as described in section 15.2.2. The routine
deletes the columns of the composition matrix of all substances that are not affected by
the process, adds the additional stoichiometric constraints, and then calculates the basis
of the left nullspace of the matrix A in equation (4.60). It returns an error message if
no consistent process stoichiometry exists (if the left nullspace is empty), the number of
additional stoichiometric constraints needed to make the process unique if more than one
solution exists (if the dimension of the left nullspace is larger than unity), or the row
vector of stoichiometric coefficients of the process if these are unique (if the dimension
of the left nullspace is unity). The routine renormalizes the coefficients according to the
value specified for one of the coefficients.

15.3 Performing Stoichiometric Calculations with stoichcalc

Once installed with the command install.packages("stoichcalc"), the package is
loaded with the command

library(stoichcalc)

After execution of this statement, the three functions described in section 15.2 are avail-
able.

The following two examples demonstrate the use of the package. Please compare with
the description of the applied routines in section 15.2 if statements are unclear.

15.3.1 Simple Model for Growth and Respiration of Algae

This section demonstrates the use of the package stoichcalc with the derivation of the
stoichiometry of the simple model for growth and respiration of algae with consumption
and release of ammonium and phosphate described in section 4.3.2.1. For a more complex
example, see the next subsection.

Introducing a vector of important stoichiometric or compositional parameters facili-
tates later changes. For the current example, we use the relative nitrogen and phosphorus
content of algal biomass as parameters:

param <- list(a.N.ALG = 0.06, # gN/gALG

a.P.ALG = 0.01) # gP/gALG

We then construct the composition vectors of ammonium, phosphate and algae that con-
sider their mass fractions of nitrogen and phosphorus, combine them to the list of substance
compositions subst.comp, use the stoichcalc routine calc.comp.matrix to get the com-
position matrix alpha, and print this composition matrix to test this intermediate result.
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NH4 <- c(N = 1) # gN/gNH4-N

HPO4 <- c(P = 1) # gP/gHPO4-P

ALG <- c(N = param$a.N.ALG, # gN/gALG

P = param$a.P.ALG) # gP/gALG

subst.comp <- list(NH4 = NH4,

HPO4 = HPO4,

ALG = ALG)

alpha <- calc.comp.matrix(subst.comp)

print(alpha)

Using this composition matrix, we can apply the stoichcalc routine calc.stoich.basis
to calculate the basis of the vector space of stoichiometries that are compatible with the
composition matrix. The first statement gets this basis, the next statement prints the
matrix and the last statement demonstrates that all these stoichiometries are really com-
patible with the constraining equation (4.55).

nu.basis <- calc.stoich.basis(alpha)

print(nu.basis)

nu.basis %*% t(alpha)

As a last step, we use the stoichcalc routine calc.stoich.coef to calculate the
stoichiometric coefficients of the processes of primary production and respiration. For this
purpose, we use the composition matrix alpha calculated above, define the processes by
the list of included processes (in both cases ammonium, phosphate and algae), and by the
normed stoichiometric coefficient and its value. The only difference between the definition
of these processes is the value of the normed stoichiometric coefficient. For growth of
algae, the stoichiometric coefficient of algae is plus unity, for respiration it is minus unity.
Finally, we construct the stoichiometric matrix of the process system consisting of these
two processes and write composition matrix and stoichiometric matrix to a file.

nu.gro.ALG.NH4 <-

calc.stoich.coef(alpha = alpha,

name = "gro.ALG.NH4",

subst = c("NH4","HPO4","ALG"),

subst.norm = "ALG",

nu.norm = 1)

nu.resp.ALG <-

calc.stoich.coef(alpha = alpha,

name = "resp.ALG",

subst = c("NH4","HPO4","ALG"),
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subst.norm = "ALG",

nu.norm = -1)

nu <- rbind(nu.gro.ALG.NH4,

nu.resp.ALG)

print(nu)

write.table(alpha,file="prodrespdeath alpha.dat",sep="�",col.names=NA)

write.table(nu,file="prodrespdeath nu.dat",sep="�",col.names=NA)

15.3.2 Model of Growth, Respiration and Death of Algae Based on C,
H, O, N and P Conservation

This section illustrates more complex stoichiometric calculations with stoichcalc com-
pared to the previous section. It implements the stoichiometry of a model for growth,
respiration and death of algae and zooplankton for different composition of organisms and
dead organic particles and under consideration of conservation laws for the elements C,
H, O, N and P and electrical charge. This example was discussed in section 4.3.2.2.

As in the previous example, we start with defining composition parameters and stoi-
chiometric parameters of the model. We choose the composition parameters to fulfil the
constraint given by equation (4.45).

param <- list(a.O.ALG = 0.50, # gO/gALG

a.H.ALG = 0.07, # gH/gALG

a.N.ALG = 0.06, # gN/gALG

a.P.ALG = 0.005, # gP/gALG

a.O.ZOO = 0.50, # gO/gZOO

a.H.ZOO = 0.07, # gH/gZOO

a.N.ZOO = 0.06, # gN/gZOO

a.P.ZOO = 0.01, # gP/gZOO

a.O.POM = 0.40, # gO/gPOM

a.H.POM = 0.07, # gH/gPOM

a.N.POM = 0.04, # gN/gPOM

a.P.POM = 0.007, # gP/gPOM

Y.ZOO = 0.2, # gZOO/gALG

f.e = 0.4) # gPOM/gALG

# choose carbon fractions to guarantee that the fractions sum to unity:

param$a.C.ALG = 1-(param$a.O.ALG+param$a.H.ALG+param$a.N.ALG+param$a.P.ALG)

param$a.C.ZOO = 1-(param$a.O.ZOO+param$a.H.ZOO+param$a.N.ZOO+param$a.P.ZOO)

param$a.C.POM = 1-(param$a.O.POM+param$a.H.POM+param$a.N.POM+param$a.P.POM)

# choose yield of death to guarantee that no nutrients are required

# (oxygen content of POM was reduced to avoid need of oxygen):

param$Y.ALG.death = min(1,param$a.N.ALG/param$a.N.POM,param$a.P.ALG/param$a.P.POM)

param$Y.ZOO.death = min(1,param$a.N.ZOO/param$a.N.POM,param$a.P.ZOO/param$a.P.POM)
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There are now many more substances to consider. In contrast to the previous exam-
ple, we switch to molar mass units for the inorganic compounds because this facilitates
the definition of their composition. As before, we collect all composition definitions in the
list subst.comp and apply the function calc.comp.matrix to get the composition matrix.

NH4 <- c(H = 4, # molH/molNH4

N = 1, # molN/molNH4

charge = 1) # chargeunits/molNH4

NO3 <- c(O = 3, # molO/molNO3

N = 1, # molN/molNO3

charge = -1) # chargeunits/molNO3

HPO4 <- c(O = 4, # molO/molHPO4

H = 1, # molH/molHPO4

P = 1, # molP/molHPO4

charge = -2) # chargeunits/molHPO4

HCO3 <- c(C = 1, # molC/molHCO3

O = 3, # molO/molHCO3

H = 1, # molH/molHCO3

charge = -1) # chargeunits/molHCO3

O2 <- c(O = 2) # molO/molO2

H <- c(H = 1, # molH/molH

charge = 1) # chargeunits/molH

H2O <- c(O = 1, # molO/molH2O

H = 2) # molH/molH2O

ALG <- c(C = param$a.C.ALG/12, # molC/gALG

O = param$a.O.ALG/16, # molO/gALG

H = param$a.H.ALG, # molH/gALG

N = param$a.N.ALG/14, # molN/gALG

P = param$a.P.ALG/31) # molP/gALG

ZOO <- c(C = param$a.C.ZOO/12, # molC/gZOO

O = param$a.O.ZOO/16, # molO/gZOO

H = param$a.H.ZOO, # molH/gZOO

N = param$a.N.ZOO/14, # molN/gZOO

P = param$a.P.ZOO/31) # molP/gZOO

POM <- c(C = param$a.C.POM/12, # molC/gPOM

O = param$a.O.POM/16, # molO/gPOM

H = param$a.H.POM, # molH/gPOM

N = param$a.N.POM/14, # molN/gPOM

P = param$a.P.POM/31) # molP/gPOM

subst.comp <- list(NH4 = NH4,

NO3 = NO3,

HPO4 = HPO4,

HCO3 = HCO3,

O2 = O2,

H = H,

H2O = H2O,
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ALG = ALG,

ZOO = ZOO,

POM = POM)

alpha <- calc.comp.matrix(subst.comp)

print(alpha)

As before, we check the compatibility of composition and stoichiometry according to eqa-
tion (4.55):

nu.basis <- calc.stoich.basis(alpha)

print(nu.basis)

nu.basis %*% t(alpha)

Finally, we calculate the stoichiometric coefficients of all processes, bind these vectors
by rows to get the stoichiometric matrix and print the matrix. Please note how the
stoichiometric contraints are implemented. For death of algae the condition

YALG,death = −
νdeath,ALG POM

νdeath,ALG ALG

is written in the form of equation (4.57) or (4.59)

νdeath,ALG POM · 1 + νdeath,ALG ALG · YALG,death = 0

The constraints

YZOO,death = −
νdeath,ZOO POM

νdeath,ZOO ALG

YZOO = −
νgro,ZOO ZOO

νgro,ZOO ALG

fe = −
νgro,ZOO POM

νgro,ZOO ALG

are implemented analogously.

nu.gro.ALG.NH4 <-

calc.stoich.coef(alpha = alpha,

name = "gro.ALG.NH4",

subst = c("NH4","HPO4","HCO3","O2","H","H2O","ALG"),

subst.norm = "ALG",

nu.norm = 1)

nu.gro.ALG.NO3 <-

calc.stoich.coef(alpha = alpha,

name = "gro.ALG.NO3",

subst = c("NO3","HPO4","HCO3","O2","H","H2O","ALG"),
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subst.norm = "ALG",

nu.norm = 1)

nu.resp.ALG <-

calc.stoich.coef(alpha = alpha,

name = "resp.ALG",

subst = c("NH4","HPO4","HCO3","O2","H","H2O","ALG"),

subst.norm = "ALG",

nu.norm = -1)

nu.death.ALG <-

calc.stoich.coef(alpha = alpha,

name = "death.ALG",

subst = c("NH4","HPO4","HCO3","O2","H","H2O","ALG","POM"),

subst.norm = "ALG",

nu.norm = -1,

constraints = list(c("ALG" = param$Y.ALG.death,

"POM" = 1)))

nu.gro.ZOO <-

calc.stoich.coef(alpha = alpha,

name = "groZOO",

subst = c("NH4","HPO4","HCO3","O2","H","H2O","ALG","ZOO","POM"),

subst.norm = "ZOO",

nu.norm = 1,

constraints = list(c("ZOO" = 1,

"ALG" = param$Y.ZOO),

c("POM" = 1,

"ALG" = param$f.e)))

nu.resp.ZOO <-

calc.stoich.coef(alpha = alpha,

name = "resp.ZOO",

subst = c("NH4","HPO4","HCO3","O2","H","H2O","ZOO"),

subst.norm = "ZOO",

nu.norm = -1)

nu.death.ZOO <-

calc.stoich.coef(alpha = alpha,

name = "death.ZOO",

subst = c("NH4","HPO4","HCO3","O2","H","H2O","ZOO","POM"),

subst.norm = "ZOO",

nu.norm = -1,

constraints = list(c("ZOO" = param$Y.ZOO.death,

"POM" = 1)))

nu <- rbind(nu.gro.ALG.NH4,

nu.gro.ALG.NO3,



15.3. PERFORMING STOICHIOMETRIC CALCULATIONS WITH STOICHCALC 263

nu.resp.ALG,

nu.death.ALG,

nu.gro.ZOO,

nu.resp.ZOO,

nu.death.ZOO)

print(nu)

write.table(alpha,file="prodrespdeath alpha.dat",sep="�",col.names=NA)

write.table(nu,file="prodrespdeath nu.dat",sep="�",col.names=NA)
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Chapter 16

Introduction to the R Package
ecosim

16.1 Concepts

R (http://www.r-project.org) is a very powerful publicly available program for data anal-
ysis, graphics, and statistics. ecosim is a package of R classes that allows its users to
define a model consisting of mixed reactors connected by advective and/or diffusive links
and with arbitrary inputs and transformation processes. For this model, dynamic simu-
lations can be performed and results can be plotted. Through the functionality of R, it
is easy to extend the functionality of ecosim and to apply systems analytical techniques,
such as parameter estimation, sensitivity analysis or Monte Carlo simulation to models
implemented with the ecosim package.

Figure 16.1 gives an overview of the classes of ecosim and how they are linked to
a model system. Usually, implementation of a model starts with setting up processes.

reactor

processes

properties

reactor

processes

properties

reactor

processes

properties

process

properties

process

properties

process

properties

process

properties

link

from

properties

to

link

from

properties

to

Figure 16.1: Overview of an ecosim system consisting of reactors, processes, and advective
and diffusive links.

Processes are defined by a common process rate and substance-specific stoichiometric co-
efficients as described in section 4.1. As a next step, mixed reactors are defined. This
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requires the definition of inflow, substance and/or organism concentrations in the inflow,
outflow, substance and/or organism input not related to inflow, initial conditions, envi-
ronmental conditions to which the reactor is exposed, and a list of processes that are
active in the reactor. If the system consists of several interlinked reactors, the next step
is to define the required advective and/or diffusive links between the reactors. Finally,
the system definition consists of the list of reactors, the lists of advective and diffusive
links, the global environmental conditions, model parameters, and definitions of output
and integration. The method calcres then allows the user to perform simulations that
can be plotted with the function plotres.

16.2 Class Definitions

16.2.1 Class “process”

Table 16.1 shows the elements of the class “process” that is used to define a transforma-
tion process. Each process has a unique name which should give a minimum explanation

Elements of class “process”

Name Type Meaning

name string Name of process.

rate expression Expression for the dependence of the process rate on substance
concentrations, model parameters, and external influence fac-
tors.

stoich list List of numbers or expressions for stoichiometric coefficients.
Substances are identified by their names.

pervol logical Type of process rate: mass per volume and time (TRUE) or
per area and time (FALSE).

Table 16.1: Definition of a transformation process in ecosim.

of the physical, chemical or biological process represented by the object realizing the class
“process”. This name is specified using the entry “name” of the class definition. The
entry “rate” is a mathematical expression describing the dependence or the process rate,
ρi, (see Table 4.1) on substance or organism concentrations, model parameters, environ-
mental conditions, and time. The entry “stoich” is a list of numbers or mathematical
expressions describing the stoichiometric coeficients, νij of the process i. Note that this
list must contain the names of the substances to allow the program to uniquely identify
the stoichiometric coefficients (the order in which the coefficients are provided is irrele-
vant; they are identified by their names). Finally, the logical entry “pervol” must be
set to “TRUE” if the rate is formulated as mass per volume (for suspended or dissolved
substances or floating organims), or to “FALSE” if it is formulated as mass per surface
area (for attached substances or sessile organisms). Note that the process stoichiometry
does not have to care with conversions of substances that are attached (measured as mass
per area) and substances that are suspended or dissolved (measured as mass per volume);
this conversion is done automatically.



16.2. CLASS DEFINITIONS 267

16.2.2 Class “reactor”

Table 16.2 shows the elements of the class “reactor” that is used to define a mixed reactor.
Each reactor has a unique name which should give a minimum explanation of the part of

Elements of class “reactor”

Name Type Meaning

name string Name of reactor.

volume.ini expression Initial volume of reactor.

area expression Surface area available for sessile organisms or at-
tached (sedimented, adsorbed, etc.) substances.

conc.pervol.ini list Initial concentrations (mass per volume) of sub-
stances or organisms suspended or dissolved in the
water column. Each substance to be calculated in
the reactor must be initialized here.

conc.perarea.ini list Initial concentrations (mass per area) of substances
or organisms attached to a surface. Each substance
to be calculated in the reactor must be initialized
here.

input list Input (mass per time) of substances to the reactor
not associated with inflow.

inflow expression Inflow into the reactor (volume per time)

inflow.conc list Concentration of substances in the inflow.

outflow expression Outflow of the reactor (volume per time)

cond list Environmental conditions to which the reactor is
exposed.

processes list Processes active in the reactor.

Table 16.2: Definition of a mixed reactor in ecosim.

the aquatic ecosystem represented by the object realizing the class “reactor”. This name
is specified using the entry “name” of the class definition. The entry “volume.ini” is a
mathematical expression specifying the initial volume of the reactor. Later on, changes
in volume are calculated according to equation (3.12) with inflow and outflow defined by
the entries “inflow” and “outflow” and by advective links. The entry “area” specifies
the surface area available for sessile organisms or attached (sedimented, adsorbed, etc.)
substances in the reactor. The entry “conc.pervol.ini” is used to specify initial con-
centrations (mass per volume) of substances suspended or dissolved in the water column
and of floating organisms. These substances and/or organisms are transported with in-
and outflow. Note that each dissolved or suspended substance to be calculated in the
reactor must be initialized here. Similarly to the processes, the substances are identified
by their names. The user is responsible for keeping the same name for the same substance
here and in the process and link definitions. The entry “conc.perarea.ini” is used to
specify initial concentrations (mass per surface area) of substances or organisms attached
to a surface in the reactor. These attached substances are not transported with in- and
outflow. Note that each attached substance to be calculated in the reactor must be ini-
tialized here. Similarly to the processes, the substances are identified by their names.



268 CHAPTER 16. INTRODUCTION TO THE R PACKAGE ECOSIM

The user is responsible for keeping the same name for the same substance here and in the
process and link definitions. The entry “input” represents a vector of expressions defining
substance input to, or when negative, output from the reactor that is not associated with
in- and outflow. It represents the term interface fluxes, Jint, in equation (3.12). The entry
“inflow” is used to define inflow to the reactor according to the term Qin in the equations
(3.12) and (3.12). The entry “inflow.conc” is a list of numbers or expressions used to
define concentrations of suspended or dissolved substances in the inflow. This corresponds
to the term Ck

in in equation (3.12). The entry “cond” is used to define “environmental
conditions”. These are any reactor-specific influence factors on process rates in the reac-
tor. Finally, the entry “processes” is used to specify a list of processes that are active in
the reactor. This list must consist of objects of the class “process” described above.

16.2.3 Class “link”

Table 16.3 shows the elements of the class “link” that is used to define a link between
mixed reactors. Each advective link has a unique name which should give a minimum

Elements of class “link”

Name Type Meaning

name character Name of advective link.

from character Name of reactor from which the link starts.

to character Name of reactor at which the link ends.

flow expression Flow from one rector to the other (volume per time)

qadv.gen expression General (applies to all dissolved or suspended substances)
advective transfer coefficient.

qadv.spec list Substance-specific advective transfer coefficients.

qdiff.gen expression General (applies to all dissolved or suspended substances)
diffusive exchange coefficient.

qdiff.spec list Substance-specific diffusive exchange coefficients.

Table 16.3: Definition of a link in ecosim.

explanation of the physical significance of the object realizing the class “link”. This name
is specified using the entry “name” of the class definition. The entries “from” and “to” are
used to specify the names of the reactors that should be connected by the advective link.
The entry “flow” is used to specify an expression describing the flow from one reactor to
the other (positive means from “from” to “to”). The entry “qadv.gen” is used to specify a
general advective transfer coefficient that applies to all dissolved or suspended substances.
See section 3.3 for a more detailed explanation of its meaning. The entry “qadv.spec”
is used to specify a list of substance-specific advective transfer coefficients. The entry
“qdiff.gen” is used to specify a general diffusive exchange coefficient that applies to all
dissolved or suspended substances. See section 3.3 for a more detailed explanation of its
meaning. The entry “qdiff.spec” is used to specify a list of substance-specific diffusive
exchange coefficients.
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16.2.4 Class “system”

Table 16.4 shows the elements of the class “system” that is used to define the model
representing the system to be analyzed. Each system has a unique name. This name

Elements of class “system”

Name Type Meaning

name string Name of system.

reactors list List of the reactors in the system.

links list List of advective links between reactors of the system.

cond list List of global environmental conditions to which all reactors are
exposed.

param list List of model parameters in the form of numerical values or lists
of vectors for x and y values describing a realization of a time-
dependent parameter.

t.out vector Vector of points in time at which output should be calculated
when dynamically solving the differential equations.

Important methods of class “system”

Name Arguments Meaning

calcres system Function for calculating dynamic solutions for the sys-
tem given as the argument. The function returns a
matrix with columns for the volumes and substance
concentrations in all reactors and rows for all points
of time requested for output. A quick overview plot
of all substances can be produced with the function
plotres.

calcsens system

param.sens

scaling.factors

Function for calculating sensitivity analyses for given
model parameters. The function returns a list of
lists of matrices as produced by calcres where the
outer list represents sensitivity calculations for differ-
ent parameters, whereas the inner list represents re-
sults for different values of a single parameter. A quick
overview plot of all analyses can be produced with the
function plotres.

Table 16.4: Definition of a system of mixed reactors in ecosim.

is specified using the entry “name” of the class definition. The entries “reactors” and
“links” are used to specify lists of mixed reactors and links that represent the system
to be modelled (see also Figure 16.1). The entry “cond” represents a list of numbers or
expressions for global environmental conditions to which all reactors are exposed. The
entry “param” is used for specifying model parameters. Please note that all variables used
for formulating process rates and stoichiometric coefficients must be defined either by
global or local (reactor-specific) environmental conditions, model parameters and initial
concentrations of the reactor. Inflows, outflows, inputs, exchange coefficients, etc. can
depend on global environmental conditions or model parameters.
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The only exception of a variable that has not to be defined by the user is the name
“t” for time. This variable can be used in all expressions. The entry “t.out” is used to
define a vector of output times at which model results should be returned. The first of
these values is used as start time of the simulation.

The method “calcres” is used with the ecosim system as the only argument to per-
form a simulation. The function returns a matrix with columns for the volumes and
substance concentrations in all reactors and rows for all points of time requested for out-
put. The time corresponding to each row is given as the row name. A quick overview
plot of all integrated variables can be obtained by calling “plotres” with the returned
matrix from “calcres” as the only argument (see Table 16.5). The algorithm used for

Global function associated with class “system”

Name Arguments Meaning

plotres res

colnames

file

...

Function for plotting columns of a matrix against the values
provided as row names. This function is convenient to plot
results of the method calcres of the class “system”. res

is then the result of calcres, colnames can be used to se-
lect column names (list of vectors of column names), file
can be used to specify a pdf output file, and ... are argu-
ments passed to the pdf driver. If a list of result matrices
is provided, multiple simulations for all list elements will be
plotted.

Table 16.5: Global function plotres to visulize results.

numerically integrating the system of ordinary differential equations can be chosen by
the optional argument method of the function calcres. Numerical integration is done
using the R package deSolve and all integration methods of this package are available.
See details on the argument method of the function ode that serves as a wrapper of all
integration techniques in the package deSolve and further literature on the underlying
algorithms (Soetaert et al., 2010; Soetaert et al., 2012).

In order to propagate environmental stochasticity implemented as fluctuating param-
eter values and uncertainty implemented as probability distributions of parameters to the
results by Monte Carlo simulation, two global functions are provided to draw from Normal
and Lognormal distributions and Ornstein-Uhlenbeck processes (Table 16.6).
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Global functions for realizations of Normal dist. and Ornstein-Uhlenbeck processes

Name Arguments Meaning

randnorm mean

sd

log

n

Function for drawing a random sample of size n from a
Normal or a Lognormal distribution (log=TRUE) with given
mean (mean) and standard deviation (sd). Please note that
also the Lognormal distribution is parameterized by mean
and standard deviation on the original scale.

randou mean

sd

tau

y0

t

log

Function for drawing a realization from an Ornstein-
Uhlenbeck process with given mean (mean), standard devi-
ation (sd), correlation time (tau), and initial value (y0; NA
indicates the initial value to be drawn randomly) at given
points in time. For log=TRUE the log of the variable is an
Ornstein-Uhlenbeck process, but mean and standard devia-
tions are in original units.

Table 16.6: Global functions randnorm and randou to draw from Normal distributions and
Ornstein-Uhlenbeck processes.
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16.3 Defining and Using a Model with ecosim

Once installed with the command install.packages("ecosim"), the package is loaded
with the command

library(ecosim)

Objects are then generated with the command

new(Class=...)

where the class name has to be given in quotes after the identifier “Class” and the equal
sign. This statement is followed by a comma-separated list of identifier = value pairs,
where “identifier” represents one of the names given in Tables 16.1 to 16.4.

As an example of how this works we demonstrate the implementation of the simple
aquatic ecosystem model discussed in section 11.2.

Implementation of the processes according to Tables 11.4 and 11.5:

gro.ALG <-

new(Class = "process",

name = "Growth of algae",

rate = expression(k.gro.ALG

*C.HPO4/(K.HPO4+C.HPO4)

*C.ALG),

stoich = list(C.ALG = 1,

C.HPO4 = expression(-alpha.P.ALG)))

death.ALG <-

new(Class = "process",

name = "Death of algae",

rate = expression(k.death.ALG*C.ALG),

stoich = list(C.ALG = -1))

gro.ZOO <-

new(Class = "process",

name = "Growth of zooplankton",

rate = expression(k.gro.ZOO

*C.ALG

*C.ZOO),

stoich = list(C.ZOO = 1,

C.ALG = expression(-1/Y.ZOO)))

death.ZOO <-

new(Class = "process",

name = "Death of zooplankton",

rate = expression(k.death.ZOO*C.ZOO),

stoich = list(C.ZOO = -1))
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Definition of a mixed reactor for the epilimnion of a lake with initial conditions, boundary
conditions, reactor-specific environmental conditions, and the list of active processes:

epilimnion <-

new(Class = "reactor",

name = "Epilimnion",

volume.ini = expression(A*h.epi),

conc.pervol.ini = list(C.HPO4 = expression(C.HPO4.ini),

C.ALG = expression(C.ALG.ini),

C.ZOO = expression(C.ZOO.ini)),

inflow = expression(Q.in*86400),

inflow.conc = list(C.HPO4 = expression(C.HPO4.in),

C.ALG = 0,

C.ZOO = 0),

outflow = expression(Q.in*86400),

processes = list(gro.ALG,death.ALG,gro.ZOO,death.ZOO))

Definition of model parameters:

param1 <- list(k.gro.ALG = 0.5, # 1/d

k.gro.ZOO = 0.4, # m3/gDM/d

k.death.ALG = 0.1, # 1/d

k.death.ZOO = 0.05, # 1/d

K.HPO4 = 0.002, # gP/m3

Y.ZOO = 0.2, # gDM/gDM

alpha.P.ALG = 0.003, # gP/gDM

A = 5e+006, # m2

h.epi = 5, # m

Q.in = 5, # m3/s

C.HPO4.in = 0.04, # gP/m3

C.ALG.ini = 0.1, # gDM/m3

C.ZOO.ini = 0.1, # gDM/m3

C.HPO4.ini = 0.04) # gP/m3

Finally, the model system has to be defined. Combining the definitions given above into
the class “system” leads to the following object definition:

lake <- new(Class = "system",

name = "Lake",

reactors = list(epilimnion),

param = param1,

t.out = seq(0,730,by=1))

This completes the definition of the simple lake model. Simulations and plotting of results
can then be done with the commands:

res1 <- calcres(lake)

plotres(res=res1) # plot to screen

plotres(res=res1,colnames=c("C.ALG","C.ZOO"))
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plotres(res=res1,colnames=list("C.HPO4",c("C.ALG","C.ZOO")))

plotres(res=res1[1:365,],colnames=list("C.HPO4",c("C.ALG","C.ZOO")))

plotres(res = res1, # plot to pdf file

colnames = list("C.HPO4",c("C.ALG","C.ZOO")),

file = "didacticmodel lakeplankton 1.pdf",

width = 8,

height = 4)

The first of these commands executes the simulation and returns a matrix of results to the
variable “res1”. The results stored in this matrix are then plotted to the screen with the
following commands and to the pdf file “didacticmodel lakeplankton 1.pdf” with the
last command. This file is shown in Figure 16.2. For the chosen parameter values there is
a natural damped oscillation of algae, zooplankton and phosphate concentrations.
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Figure 16.2: Results of a simulation of the simple ecosystem model discussed in section
11.2 with parameter values defined in the text. Phosphate concentrations are in gP/m3,
algae and zooplankton concentrations in gDM/m3, and time in days.

It is interesting to compare these results with results for periodic (seasonal) instead of
constant environmental conditions for temperature and light. To do this, we first have to
replace the rates given in Table 11.5 by those given in Table 11.6:

gro.ALG.ext <-

new(Class = "process",

name = "Growth of algae",

rate = expression(k.gro.ALG

*exp(beta.ALG*(T-T0))

*C.HPO4/(K.HPO4+C.HPO4)

*log((K.I+I0)/

(K.I+I0*

exp(-(lambda.1+lambda.2*C.ALG)*h.epi)))/
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((lambda.1+lambda.2*C.ALG)*h.epi)

*C.ALG),

stoich = list(C.ALG = 1,

C.HPO4 = expression(-alpha.P.ALG)))

gro.ZOO.ext <-

new(Class = "process",

name = "Growth of zooplankton",

rate = expression(k.gro.ZOO

*exp(beta.ZOO*(T-T0))

*C.ALG

*C.ZOO),

stoich = list(C.ZOO = 1,

C.ALG = expression(-1/Y.ZOO)))

epilimnion@processes <- list(gro.ALG.ext,death.ALG,

gro.ZOO.ext,death.ZOO)

We then modify and extend the list of model parameters:

param2 <- list(k.gro.ALG = 0.8, # 1/d

k.gro.ZOO = 0.4, # m3/gDM/d

k.death.ALG = 0.1, # 1/d

k.death.ZOO = 0.05, # 1/d

K.HPO4 = 0.002, # gP/m3

Y.ZOO = 0.2, # gDM/gDM

alpha.P.ALG = 0.002, # gP/gDM

A = 5e+006, # m2

h.epi = 5, # m

Q.in = 5, # m3/s

C.HPO4.in = 0.04, # gP/m3

C.ALG.ini = 0.1, # gDM/m3

C.ZOO.ini = 0.1, # gDM/m3

C.HPO4.ini = 0.04, # gP/m3

beta.ALG = 0.046, # 1/degC

beta.ZOO = 0.08, # 1/degC

T0 = 20, # degC

K.I = 30, # W/m2

lambda.1 = 0.10, # 1/m

lambda.2 = 0.10, # m2/gDM

t.max = 230, # d

I0.min = 25, # W/m2

I0.max = 225, # W/m2

T.min = 5, # degC

T.max = 25) # degC

The new parameter list can be copied to the compartment with the following command:
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lake@param <- param2

The seasonal variation of light intensity and temperature in the epilimnion are specified:

epilimnion@cond <-

list(I0 = expression(0.5*(I0.min+I0.max)+

0.5*(I0.max-I0.min)*

cos(2*pi/365.25*(t-t.max))), # W/m2

T = expression(0.5*(T.min+T.max)+

0.5*(T.max-T.min)*

cos(2*pi/365.25*(t-t.max)))) # degC

added to the epilimnion and copied to the lake compartment:

lake@reactors <- list(epilimnion)

Finally, we extend the duration of the simulation to several years:

t.out <- seq(0,1461,by=1)

lake@t.out <- t.out

Now, we can redo the simulation and plot the results:

res2 <- calcres(lake)

plotres(res=res2) # plot to screen

plotres(res=res2,colnames=c("C.ALG","C.ZOO"))

plotres(res=res2,colnames=list("C.HPO4",c("C.ALG","C.ZOO")))

plotres(res=res2[1:365,],colnames=list("C.HPO4",c("C.ALG","C.ZOO")))

plotres(res = res2, # plot to pdf file

colnames = list("C.HPO4",c("C.ALG","C.ZOO")),

file = "didacticmodel lakeplankton 2.pdf",

width = 8,

height = 4)

The first of these commands executes the simulation and returns a matrix of results to the
variable “res2”. The results stored in this matrix is then plotted to the screen with the
following commands and to the pdf file “didacticmodel lakeplankton 2.pdf” with the
last command. Figure 16.3 shows the results. The damped oscillations are now triggered
by the external changes in environmental conditions.
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Figure 16.3: Results of a simulation of the simple ecosystem model discussed in section 11.2
with periodic driving conditions for temperature and light (compare with Figure 16.2 for
a simulation with constant driving conditions). Phosphate concentrations are in gP/m3,
algae and zooplankton concentrations in gDM/m3, and time in days.
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Chapter 17

Notation

Substances and Organisms

ALG phytoplankton.

DOM dissolved organic matter.

HPO2−
4 soluble reactive phosphorus; for the derivation of stoichiometric coef-

ficients assumed to be phosphate.

NH+
4 ammonium.

NO−
2 nitrite.

NO−
3 nitrate.

POM dead particulate organic matter.

POMD degradable dead particulate organic matter.

POMI inert dead particulate organic matter.

SALG periphyton.

SHET heterotrophic bacteria in the sediment.

SPOM dead particulate organic matter in the sediment.

SPOMD dead degradable particulate organic matter in the sediment.

SPOMI dead inert particulate organic matter in the sediment.

ZOO zooplankton.

Variables

A surface area (L2).

dA⃗ surface element multiplied by a outward directed vector of unit length
(L2).

Ak surface area in reactor k available for colonization or adsorption (L2).

C concentration of a substances or organism (ML−3).

C vector of concentrations of substances or organisms (ML−3).

Ck vector of concentrations of substances or organisms in reactor k (ML−3).

Cj concentration of substance or organism j (ML−3).

Cin vector of concentrations of substances or organisms in the inflow (ML−3).

Ck
in vector of concentrations of substances or organisms in the inflow of

reactor k (ML−3).

279
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Cin,j concentration of substance or organism j in the inflow (ML−3).

dA⃗ surface element multiplied by a outward directed vector of unit length
(L2).

dp particle diameter (L).

div divergence: the divergence of a vector field v⃗, represented by div, is a
scalar field that quantifies the volume density of the outward flux of a
vector field at each point in space; in cartesian coordinates, it is given
by div v⃗ = ∂vx/∂x+ ∂vy/∂y + ∂vz/∂z.

D vector of surface densities of substances or organisms (ML−2).

Dk vector of surface densities of substances or organisms in reactor k
(ML−2).

Dj surface density of substance or organism j (ML−2).

Dj molecular diffusion coefficient of substance j (L2T−1).

ey coefficient of lateral dispersion (L2T−1).

Ex coefficient of longitudinal dispersion (L2T−1).

fe fraction of algal biomass converted to dead organic particles due to
excretion and sloppy feeding by zooplankton.

fI fraction of biomass of dead organic particles in death process that are
inert.

fr fraction of algal biomass that is respired during feeding of zooplankton.

fst shape factor for calculation of sedimentation velocity.

g gravitational acceleration (LT−2).
−−→
grad gradient: the gradient of a scalar field s is a vector field that represents

its steepest ascent direction and magnitude (slope); in cartesiann coor-

dinates, it is given by
−−→
grad(s) = (∂s/∂x, ∂s/∂y, ∂s/∂z)T [T transposes

the row vector to a column vector]).

h height or thickness of (part of) a water body (L).

hepi height or thickness of the epilimnion of a lake or reservoir (L).

hmeta height or thickness of the metalimnion of a lake or reservoir (L).

hhypo height or thickness of the hypolimnion of a lake or reservoir (L).

H non-dimensional Henry’s law coefficient.

I light intensity (MT−3).

I0 light intensity at the surface of the water body (MT−3).

Iopt optimum light intensity of light limitation factor of algal growth (MT−3).

ĵ vector of total fluxes (“mass” per unit of time) of the quantities for
which balance equations should be formulated ([m]T−1).

j⃗ vector of fluxes (“mass” per unit of time and cross-sectional area) of
the quantities for which balance equations should be formulated m
([m]L−2T−1).

jx x-component of vector of total fluxes j⃗ ([m]L−2T−1).

jy y-component of vector of total fluxes j⃗ ([m]L−2T−1).

jz z-component of vector of total fluxes j⃗ ([m]L−2T−1).
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J vector of total (net) input fluxes of the masses, m, to the given region
per unit of time ([m]T−1).

Jl vector of mass fluxes of link l that are not associated with water flow
([m]T−1).

Jint vector of fluxes of substances or organisms across the interface to a
compartment (e.g. a mixed reactor) (MT−1).

Jint,j flux of substance or organism j across the interface to a compartment
(e.g. a mixed reactor) (MT−1).

Jadv
l,j advective flux of substance or organism j in link l (MT−1).

Jdiff
l,j diffusive flux of substance or organism j in link l (MT−1).

kfroml index of reactor at which the link l starts.

ktol index of reactor at which the link l ends.

kdeath,ALG specific death rate of algae (T−1).

kdeath,HET specific death rate of heterotrophic bacteria (T−1).

kdeath,N1 specific death rate of first stage nitrifiers (T−1).

kdeath,N2 specific death rate of second stage nitrifiers (T−1).

kdeath,ZOO specific death rate of zooplankton (T−1).

kgro,ALG,T0 specific maximum growth rate of algae (under non-limited conditions
with respect to light and nutrients) at the standard temperature, T0

(T−1).

kgro,HET,ox,T0 specific maximum growth rate of heterotrophic bacteria under oxic
conditions at the standard temperature, T0 (T−1).

kgro,HET,anox,T0 specific maximum growth rate of heterotrophic bacteria under anoxic
conditions at the standard temperature, T0 (T−1).

kgro,N1,T0 specific maximum growth rate of first stage nitrifiers at the standard
temperature, T0 (T−1).

kgro,N2,T0 specific maximum growth rate of second stage nitrifiers at the standard
temperature, T0 (T−1).

kgro,ZOO,T0 rate coefficient for growth of zooplankton at reference temperature
(M−1L3T−1).

khyd,POM,T0 specific hydrolysis rate at the standard temperature, T0 (T−1).

kminer,anox,POM,T0 specific maximum anoxic mineralization rate at the standard tem-
perature, T0 (T−1).

kminer,ox,POM,T0 specific maximum oxic mineralization rate at the standard tempera-
ture, T0 (T−1).

knitri,T0 maximum nitrification rate at the standard temperature, T0 (ML−3T−1).

knitri1,T0 maximum rate of first step nitrification at the standard temperature,
T0 (ML−3T−1).

knitri2,T0 maximum rate of second step nitrification at the standard temperature,
T0 (ML−3T−1).

kresp,ALG,T0 specific maximum respiration rate of algae at the standard tempera-
ture, T0 (T−1).

kresp,HET,T0 specific maximum respiration rate of heterotrophic bacteria at the
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standard temperature, T0 (T−1).

kresp,N1,T0 specific maximum respiration rate of first stage nitrifiers at the stan-
dard temperature, T0 (T−1).

kresp,N2,T0 specific maximum respiration rate of second stage nitrifiers at the stan-
dard temperature, T0 (T−1).

kresp,ZOO,T0 specific maximum respiration rate of zooplankton at the standard tem-
perature, T0 (T−1).

K coefficient of turbulent diffusion (L2T−1).

Kxy coefficient of horizontal turbulent diffusion (L2T−1).

Kz coefficient of vertical turbulent diffusion (L2T−1).

Kst friction coefficient according to Strickler (L1/3T−1).

KI half-saturation light intensity of light limitation factor of algal growth
(MT−3).

KHPO2−
4 ,ALG half-saturation concentration of algae with respect to phosphate (ML−3).

KHPO2−
4 ,HET half-saturation concentration of heterotrophic bacteria with respect to

phosphate (ML−3).

KN,ALG half-saturation concentration of algae with respect to nitrogen (ML−3).

KN half-saturation concentration with respect to the unspecified nutrient
N or with respect to nitrogen (ammonium plus nitrate) (ML−3).

KN,ALG half-saturation concentration of algae with respect to nitrogen (ammo-
nium plus nitrate) (ML−3).

KN,HET half-saturation concentration of heterotrophic bacteria with respect to
nitrogen (ammonium plus nitrate) (ML−3).

KNH+
4 ,nitri half-saturation concentration of nitrification with respect to ammo-

nium (ML−3).

KNO−
3 ,miner half-saturation concentration of mineralization with respect to nitrate

(ML−3).

KNO−
3 ,HET half-saturation concentration of anoxic growth of heterotrophic bacte-

ria with respect to nitrate (ML−3).

KNO−
2 ,nitri half-saturation concentration of nitrification with respect to nitrite

(ML−3).

KO2,ALG half-saturation concentration of algae with respect to oxygen (ML−3).

KO2,miner half-saturation concentration of mineralization with respect to oxygen
(ML−3).

KO2,HET half-saturation concentration of heterotrophic bacteria with respect to
oxygen (ML−3).

KO2,nitri half-saturation concentration of nitrification with respect to oxygen
(ML−3).

KO2,ZOO half-saturation concentration of zooplankton with respect to oxygen
(ML−3).

KDOM,HET half-saturation concentration of heterotrophic bacteria with respect to
dissolved organic matter (ML−3).
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KSPOM,det half-saturation concentration of detachment with respect to particulate
organic matter in the sediment (ML−2).

L dimension of length.

Ldiff diffusion distance.

M dimension of mass.

m vector of “masses” (quantities of substances, physical variables or prop-
erties) in a given region for which balance equations are to be formu-
lated ([m]).

n friction coefficient according to Manning (L−1/3T).

n organism density (L−3).

n Vector of organism densities for different species or age or stage classes.
(L−1/3T).

na number of substances attached to a surface.

nage number of age classes.

ne number of “elementary constituents”.

np number of processes.

ns number of substances.

nv number of dissolved or suspended substances.

N Number of organisms. (L−1/3T).

N Vector of numbers of organisms for different species or age or stage
classes. (L−1/3T).

pNH+
4 ,ALG preference factor of phytoplankton for ammonium rather than nitrate

as their nitrogen source.

pNH+
4 ,HET preference factor of heterotrophic bacteria for ammonium rather than

nitrate as their nitrogen source; only active if organic food does not
contain sufficient nitrogen.

P wetted perimeter (L).

qadvl,j transfer coefficient of advective flux of substance or organism j in link

l (L3T−1).

qdiffl,j transfer coefficient of diffusive flux of substance or organism j in link

l (L3T−1).

Q discharge (L3T−1).

Ql discharge of link l (L3T−1).

Qin discharge of inflow (L3T−1).

Qk
in discharge of inflow to reactor k (L3T−1).

Qout discharge of outflow (L3T−1).

Qk
out discharge of outflow of reactor k (L3T−1).

r̂ vector of “mass” per unit length and time of net production of the
quantities for which balance equations should be formulated ([m]L−1T−1).

r vector of net production rates (“mass” per unit volume and time)
of the quantities for which balance equations should be formulated
([m]L−3T−1).
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rC vector of production rates of substances or organisms per unit volume
(ML−3T−1).

rD vector of production rates of substances or organisms per unit surface
area (ML−2T−1).

rCj production rate of substance or organism j per unit volume (ML−3T−1).

rkCj
production rate of substance or organism j per unit volume in reactor

k (ML−3T−1).

rDj production rate of substance or organism j per unit surface area (ML−2T−1).

rkDj
production rate of substance or organism j per unit surface area in

reactor k (ML−2T−1).

R vector of total (net) production of the masses, m, in a given region per
unit of time ([m]T−1).

R hydraulic radius (= A/P ) (L).

S0 slope of river bed.

Sf friction slope of river.

t time (T).

tend end time (T).

tini initial time (T).

T dimension of time.

T temperature (θ).

T0 standard or reference time (T).

v velocity (LT−1).

v⃗ velocity vector (LT−1).

vex gas exchange velocity (LT−1).

vsed sedimentation velocity (LT−1).

vsed,j sedimentation velocity of substance or organism j (LT−1).

vx x-component of velocity vector (LT−1).

vy y-component of velocity vector (LT−1).

vz z-component of velocity vector (LT−1).

V volume (L3).

V k volume of reactor k (L3).

x horizontal coordinate (L).

x⃗ vector of spatial coordinates (L).

y horizontal coordinate (L).

YHET yield of heterotrophic bacteria.

YN1 biomass production of first stage nitrifiers per unit of consumed ammonium-
nitrogen.

YN2 biomass production of second stage nitrifiers per unit of consumed
nitrite-nitrogen.

YZOO yield of zooplankton.

YALG,death yield of death process of algae.
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YZOO,death yield of death process of zooplankton.

z vertical coordinate (L).

zb vertical coordinate of the sole of the river. (L).

α matrix mass fraction of elemental constituents on substances or organ-
isms.

αk,j mass fraction of elemental constituent k on mass of substance or or-
ganism j.

αC,j mass fraction of carbon on mass of substance or organism j.

αH,j mass fraction of hydrogen on mass of substance or organism j.

αN,j mass fraction of nitrogen on mass of substance or organism j.

αO,j mass fraction of oxygen on mass of substance or organism j.

αP,j mass fraction of phosphorus on mass of substance or organism j.

β coefficient of temperature dependence (θ−1).

βALG coefficient of temperature dependence of algae (θ−1).

βBAC coefficient of temperature dependence of bacteria (θ−1).

βHET coefficient of temperature dependence of heterotrophic microorganisms
(θ−1).

βhyd coefficient of temperature dependence of hydrolysis (θ−1).

βN1 coefficient of temperature dependence of first stage nitrifiers (θ−1).

βN2 coefficient of temperature dependence of second stage nitrifiers (θ−1).

βZOO coefficient of temperature dependence of zooplankton (θ−1).

γ(i) matrix of equations constraining the stoichiometry of process i.

λ light extinction coefficient. (L−1).

µ dynamic viscosity (ML−1T−1).

ν matrix of stoichiometric coefficients.

νi row vector of stoichiometric coefficients of process i.

νi,j stoichiometric coefficient of process i with respect to substance or or-
ganism j.

ρ vector of densities (“mass” per unit volume) of the quantities for which
balance equations should be formulated ([m]L−3).

ρ̂ vector of one-dimensional densities (“mass” per unit length) of the
quantities for which balance equations should be formulated ([m]L−1).

ρ density (ML−3).

ρp density of particle (ML−3).

ρw density of water (ML−3).

ρi process rate of process i (ML−3T−1).

τ shear stress (ML−1T−1).

τ0 bottom shear stress (ML−1T−1).

θ dimension of temperature.

θ non-dimensional bottom shear stress.
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Dübendorf/Zürich.
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Vanrolleghem, P. (2001). River Water Quality Model No. 1 (RWQM1): I. Modelling
approach. Water Science and Technology, 43(5):1–10.



BIBLIOGRAPHY 295

Smith, E. L. (1936). Photosynthesis in relation to light and carbon dioxide. Proc. Natl.
Acad. Sci., 22:504–511.

Soetaert, K., Cash, J., and Mazzia, F. (2012). Solving Differential Equations in R.
Springer, Heidelberg, Germany.

Soetaert, K., Petzoldt, T., and Woodrow Setzer, R. (2010). Solving differential equations
in R: Package deSolve. Journal of Statistical Software, 33(9).

Steele, J. (1962). Environmental control of photosynthesis in the sea. Limnology &
Oceanography, 7:137–150.

Sterner, R. W. and Elser, J. J. (2002). Ecological stoichiometry: the biology of elements
from molecules to the biosphere. Princeton University Press, Princeton, HJ, USA.

Stumm, W. and Morgan, J. J. (1981). Aquatic Chemistry. John Wiley, New York.

Teschl, G. (2012). Ordinary Differential Equations and Dynamical Systems. American
Mathematical Society: Graduate Studies in Mathematics 140, Providence, RI, USA.

Tierney, L. (1994). Markov chains for exploring posterior distributions. The Annals of
Statistics, 22(4):1701–1762.

Tilman, D., Kiesling, R., Sterner, R., Kilham, S. S., and Johnson, F. A. (1986). Green,
bluegreen and diatom algae: Taxonomic differences in competitive ability for phos-
phorus, silicon and nitrogen. Archiv für Hydrobiologie, 106(4):473–485.

Tucker, S. L. and Zimmerman, S. O. (1988). A nonlinear model of population dynamics
containing an arbitrary number of continuous structure variables. SIAM Journal of
Applied Mathematics, 48(3):549–591.

Urban, M. C., Leibold, M. A., Amarasekare, P., De Meester, L., Gomulkiewicz, R.,
Hochberg, M. E., Klausmeier, C. A., Loeuille, N., de Mazancourt, C., Norberg, J.,
Pantel, J. H., Strauss, S. Y., Vellend, M., and Wade, M. J. (2008). The evolutionary
ecology of metacommunities. Trends in Ecology and Evolution, 23(6):311–317.

Vanrolleghem, P., Borchardt, D., Henze, M., Rauch, W., Reichert, P., Shanahan, P., and
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